ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Thermodynamics  (525)
  • Engineering
  • Organic Chemistry
  • 2000-2004  (527)
  • 1985-1989
  • 2004  (263)
  • 2003  (264)
  • 1953
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-27
    Description: This viewpoint comments on recent advances in understanding the design principles of biological networks. It highlights the surprising discovery of "good-engineering" principles in biochemical circuitry that evolved by random tinkering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alon, U -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1866-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel 76100. urialon@weizmann.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biochemical Phenomena ; Biochemistry ; *Biological Evolution ; *Biology ; DNA/metabolism ; Engineering ; *Models, Biological ; Proteins/metabolism ; Signal Transduction ; Systems Theory
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-04-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharjee, Yudhijit -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):565.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714717" target="_blank"〉PubMed〈/a〉
    Keywords: *Academies and Institutes ; Engineering ; *Foundations ; Institute of Medicine (U.S.) ; *National Academy of Sciences (U.S.) ; *Research Support as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: During the period December 23,1997 and December August 31,2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Spalart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The Hubble Space Telescope (HST) was launched April 24, 1990, and was deployed April 25 into low Earth orbit (LEO). It was soon discovered that the metal poles holding the solar arrays were expanding and contracting as the telescope orbited the Earth passing between the sunlight and the Earth s shadow. The expansion and contraction, although very small, was enough to cause the telescope to shake because of thermal-induced jitters, a detrimental effect when trying to take pictures millions of miles away. Therefore, the European Space Agency (ESA, the provider of the solar arrays) built new solar arrays (SA-11) that contained bi-stem thermal shields which insulated the solar array metal poles. These thermal shields were made of 2 mil thick aluminized-Teflon fluorinated ethylene propylene (FEP) rings fused together into a circular bellows shape. The new solar arrays were put on the HST during an extravehicular activity (EVA), also called an astronaut space walk, during the first servicing mission (SM1) in December 1993. An on-orbit photograph of the HST with the SA-11, and a close up of the bellows-like structure of the thermal shields is provided in Figure 1.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Interm Summary Reports
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-28
    Description: A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Symposium on Advanced Flow Management. Part A: Vortex Flows and High Angle of Attack for Military Vehicles. Part B: Heat Transfer and Cooling in Propulsion and Power Systems; RTO-MP-069(I)-Pt-A-B
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-28
    Description: Extensive pressure measurements and off-surface flow visualization were obtained on the forebody and strakes of the NASA F-18 High Alpha Research Vehicle (HARV) equipped with actuated forebody strakes. Forebody yawing moments were obtained by integrating the circumferential pressures on the forebody and strakes. Results show that large yawing moments can be generated with forebody strakes. At a 50 -angle-of-attack, deflecting one strake at a time resulted in a forebody yawing moment control reversal for small strake deflection angles. However, deflecting the strakes differentially about a 20 symmetric strake deployment eliminated the control reversal and produced a near linear variation of forebody yawing moment with differential strake deflection. At an angle of attack of 50 and for 0 and 20 symmetric strake deployments, a larger forebody yawing moment was generated by the forward fuselage (between the radome and the apex of the leading-edge extensions) than on the radome where the actuated forebody strakes were located. Cutouts on the flight vehicle strakes that were not on the wind tunnel models are believed to be responsible for deficits in the suction peaks on the flight radome pressure distributions and differences in the forebody yawing moments.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Symposium on Advanced Flow Management. Part A: Vortex Flows and High Angle of Attack for Military Vehicles. Part B: Heat Transfer and Cooling in Propulsion and Power Systems; RTO-MP-069(I)-Pt-A-B
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-28
    Description: The CFD modeling used has produced reasonably good global upper-surface pressure coefficient comparisons with measured flight data at both transonic and subsonic speeds at the angles of attack presented. Boundary layer comparisons showed the profiles to be reasonably well predicted inboard and under the primary vortex system. However, the secondary vortex profile was not well predicted either at the anticipated separation point or under the secondary vortex. Moreover, the flight data showed there to be a vortex/boundary-layer interaction that occurred in the vicinity of the secondary vortex. The spanwise distribution of local skin friction measured data was reasonably well predicted, especially away from the wing leading-edge. Lastly, predicted and measured flight-pressures, as well as flight-image data, for the F-16XL-1 airplane are now available via the World Wide Web.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Symposium on Advanced Flow Management. Part A: Vortex Flows and High Angle of Attack for Military Vehicles. Part B: Heat Transfer and Cooling in Propulsion and Power Systems; RTO-MP-069(I)-Pt-A-B
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-28
    Description: Surface and off-surface flow visualization techniques were used to visualize the three-dimensional vortex flows on the F-106 aircraft with vortex flaps installed. Results at angles of attack between 9 degrees to 18 degrees and Mach numbers from 0.3 to 0.9 are presented. A smoke flow vapor screen technique was used to document leading-edge vortex paths and sizes, while an oil flow technique was employed to provide detailed information on reattachment and separation line locations and other flow details. Results were obtained for two vortex flap deflection angles, 30 degrees and 40 degrees. Flow visualization revealed the existence of a multiple vortex system that had not previously been seen in subscale tests or predicted for this configuration. The vortex flap generated a leading-edge vortex system that reattached near the flap hinge over a wide angle of attack range. In addition to the primary vortex, flow visualization revealed the presence of several distinct vortices which traced a path from the vortex flap and then over the wing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Symposium on Advanced Flow Management. Part A: Vortex Flows and High Angle of Attack for Military Vehicles. Part B: Heat Transfer and Cooling in Propulsion and Power Systems; RTO-MP-069(I)-Pt-A-B
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-28
    Description: A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-Foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow-through porosity was applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free-stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp 6)) per foot, angles of attack up to 30 deg, and angles of sideslip to +/- 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex-dominated aerodynamics to the location and level of porosity applied to the LEX.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Symposium on Advanced Flow Management. Part A: Vortex Flows and High Angle of Attack for Military Vehicles. Part B: Heat Transfer and Cooling in Propulsion and Power Systems; RTO-MP-069(I)-Pt-A-B
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-12
    Description: A computational heat transfer design methodology was developed to study the dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The source of its impact comes from the asymmetric and reduced base bleed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Propulsion and Power (ISSN 0748-4658); Volume 20; No. 3; 385-393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydro-focusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-05
    Description: The Sensors and Electronics Technology Branch of the NASA Glenn Research Center is developing thin-film-based sensors for surface measurement in propulsion system research. Thin-film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner than wire- or foil-based sensors. One type of sensor being advanced is the thin-film thermocouple, specifically for applications in high-temperature combustion environments. Ceramics are being demonstrated as having the potential to meet the demands of thin-film thermocouples in advanced aerospace environments. The maximum-use temperature of noble metal thin-film thermocouples, 1500 C (2700 F), may not be adequate for components used in the increasingly harsh conditions of advanced aircraft and next-generation launch vehicles. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically in the form of bulky rods or probes. As part of ASTP, Glenn's Sensors and Electronics Technology Branch is leading an in-house effort to apply ceramics as thin-film thermocouples for extremely high-temperature applications as part of ASTP. Since the purity of the ceramics is crucial for the stability of the thermocouples, Glenn's Ceramics Branch and Case Western Reserve University are developing high-purity ceramic sputtering targets for fabricating high-temperature sensors. Glenn's Microsystems Fabrication Laboratory, supported by the Akima Corporation, is using these targets to fabricate thermocouple samples for testing. The first of the materials used were chromium silicide (CrSi) and tantalum carbide (TaC). These refractory materials are expected to survive temperatures in excess of 1500 C. Preliminary results indicate that the thermoelectric voltage output of a thin-film CrSi versus TaC thermocouple is 15 times that of the standard type R (platinum-rhodium versus platinum) thermocouple, producing 20 mV with a 200 C temperature gradient. The photograph on the left shows the CrSi-TaC thermocouple in a test fixture at Glenn, and the resulting output signal is shown on the right. The temperature differential across the sample, from the center of the sample inside the oven to the sample mount outside the oven, is measured using a type R thermocouple on the sample.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-05
    Description: The unsteady, incompressible Navier-Stokes equations are used for the direct numerical simulation (DNS) of spatially evolving disturbances in a three-dimensional (3-D) attachment-line boundary layer. Two-dimensional (2-D) disturbances are introduced either by forcing at the in ow or by harmonic-source generators at the wall; 3-D disturbances are introduced by harmonic-source generators at the wall. The DNS results are in good agreement with both 2-D non-parallel theory (for small-amplitude disturbances) and weakly nonlinear theory (for finite-amplitude disturbances), which validates the two theories. The 2-D DNS results indicate that nonlinear disturbance growth occurs near branch II of the neutral stability curve; however, steady suction can be used to stabilize this disturbance growth. For 3-D instabilities that are generated o the attachment line, spreading both toward and away from the attachment line causes energy transfer to the attachment-line and downstream instabilities; suction stabilizes these instabilities. Furthermore, 3-D instabilities are more stable than 2-D or quasi-2-D instabilities.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-05
    Description: A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-12
    Description: The structural analysis results for a graphite/epoxy quasi-isotropic circular plate subjected to a forced rotation at the boundary and pressure is presented. The analysis is to support a specialized material characterization test for composite cryogenic tanks. Finite element models were used to ensure panel integrity and determine the pressure necessary to achieve a predetermined equal biaxial strain value. The displacement results due to the forced rotation at the boundary led to a detailed study of the bending stiffness matrix [D]. The variation of the bending stiffness terms as a function of angular position is presented graphically, as well as, an illustrative technique of considering the laminate as an I-beam.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: The influences of slow convective flow on droplet combustion, particularly in the low Reynolds number regime, have received very little attention in the past. Most studies in the literature are semi-empirical in nature and they were motivated by spray combustion applications in the moderate to high Reynolds number regime. None of the limited number of fundamental theoretical studies applicable to low Reynolds numbers have been verified by rigorous experimental data. Moreover, many unsteady phenomena associated with fluid-dynamic unsteadiness, such as impulsive starting or stopping of a burning droplet, or flow acceleration/deceleration effects, have not been investigated despite their importance in practical applications. In this study we investigate the effects of slow convection on droplet burning dynamics both experimentally and theoretically. The experimental portion of the study involves both ground-based experiments in the drop towers and future flight experiments on board the International Space Station. Heptane and methanol are used as test fuels, and this choice complements the quiescent-environment studies of the Droplet Combustion Experiment (DCE). An analytical model that employs the method of matched asymptotic expansions and uses the ratio of the convective velocity far from the droplet to the Stefan velocity at its surface as the small parameter for expansion has also been developed as a part of this investigation. Results from the ground-based experiments and comparison with the analytical model are presented in this report.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 157-160; NASA/CP-2003-212376/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: Important issues: Mass gauging; Stability dynamics of disconnected capillary surfaces; Slow capillary driven flow (i.e. wicking); Long-term material property evolution in micro-g; Dumping problem with freezing of dump lines.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems; 39-43; NASA/TM-2003-212598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-06
    Description: The objective of this viewgraph presentation is to present a summary of computational methods developed at Ames Research Center for large scale fluid/structure interaction.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This paper presents viewgraphs on a multiphase flow panel. The topics include: 1) Discussion of Priorities; 2) Critical Issues Reduced Gravity Instabilities; 3) Severely Limiting Phase Separation; 4) Severely-Limiting Phase Change; 5) Enhancements; 6) Awareness Instabilities; 7) Awareness; 8) Methods of Resolution; 9) 2008 Space Flight; 10) 2003-2008 Ground-Based Microgravity Facilities; 11) 2003-2008 Other; 12) 2009-2015 Space Flight; 13) 2009-2015 Ground-Based Microgravity Facilities; 14) 2009-2015 Other; and 15) 2016.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems; 29-38; NASA/TM-2003-212598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: The short term purpose of this research is to present a research plan and a roadmap developed for strategic research for the Office of Biological and Physical Research and the long term purpose is to conduct necessary ground-based and space-flight low gravity experiments, complemented by analyses, resulting in a documented framework for parameter prediction of needed by designers. This paper is presented in viewgraph form.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems; 201-207; NASA/TM-2003-212598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: The unsteady compressible inviscid flow is characterized by the conservations of mass, momentum, and energy; or simply the Euler equations. In this paper, a study of the subsonic one-dimensional Euler equations with local preconditioning is presented with a modal analysis approach. Specifically, this study investigates the behavior of airflow in a gas turbine engine using the specified conditions at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine, under the impact of variations in pressure, velocity, temperature, and density at low Mach numbers. Two main questions that motivate this research are: 1) Is there any aerodynamic problem with the existing gas turbine engines that could impact aircraft performance? 2) If yes, what aspect of a gas turbine engine could be improved via design to alleviate that impact and to optimize aircraft performance. This paper presents an initial attempt to the flow behavior in terms (perturbation) using simulation outputs from a customer-deck model obtained from Pratt&Whitney, (i.e., pressure, temperature, velocity, density) about their mean states at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine. Flow behavior is analyzed for the high pressure compressor and combustion chamber employing the conditions on their left and right boundaries. In the same fashion, similar analyses are carried out for the high and low-pressure turbines. In each case, the eigenfrequencies that are obtained for different boundary conditions are examined closely based on their probabilistic distributions, a result of a Monte Carlo 10,000-sample simulation. Furthermore, the characteristic waves and eave response are analyzed and contrasted among different cases, with and without preconditioners. The results reveal the existence of flow instabilities due to the combined effect of variations and excessive pressures; which are clearly the case in the combustion chamber and high-pressure turbine. Finally a discussion is presented on potential impacts of the instabilities and what can be improved via design to alleviate them for a better aircraft performance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: IEEE Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: Various artificial compressibility methods for calculating the three-dimensional incompressible Navier-Stokes equations are compared. Each method is described and numerical solutions to test problems are conducted. A comparison based on convergence behavior, accuracy, and robustness is given.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: During the past two summers Professor Milanovic conducted Wind tunnel experiments on steady jets-in-cross-flow and synthetic jets. In her anticipated visit during the upcoming summer, she will continue and complete the research on synthetic jets involving 2-dimensional orifices of different aspect ratio as well as inclined slots. In addition, experiments will be conducted on pulsatile jets-in-cross-flow. The pulsation will be provided via an oscillating valve at controllable frequencies. The experiment will involve mainly hot-wire anemometer measurements in the low-speed wind tunnel. Overall goal will be to obtain database and investigate flow control strategies. The research will be of fundamental nature.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA-OAI Collaborative Aerospace Research and Fellowship Program; 16-20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 710-737; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Recent workshops to define strategic research on critical issues in microgravity fluids and transport phenomena in support of mission orientated needs of NASA and many technical conferences over the years in support of fundamental research targeting NASA's long range missions goal have identified several phase change processes needed to design advanced space and planetary based systems for long duration operations Recommendation noted that phase change processes are profoundly affected by gravitational environment.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 255-268; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 695-709; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: One particular characteristic observed in unsteady shear layers is the phase shift relative to the main flow. In attached boundary layers this will have an effect both on the instantaneous skin friction and heat transfer. In separation bubbles the contribution to the drag is dominated by the pressure distribution. However, the most significant effect appears to be the phase shift on the transition process. Unsteady transition behaviour may determine the bursting of the bubble resulting in an un-recoverable full separation. An early analysis of the phase shift was performed by Stokes for the incompressible boundary layer of an oscillating wall and an oscillating main flow. An amplitude overshoot within the shear layer as well as a phase shift were observed that can be attributed to the relatively slow diffusion of viscous stresses compared to the fast change of pressure. Experiments in a low speed facility with the boundary layer of a flat plate were evaluated in respect to phase shift. A pressure distribution similar to that on the suction surface of a turbomachinery aerofoil was superimposed generating a typical transitional separation bubble. A periodically unsteady main flow in the suction type wind tunnel was introduced via a rotating flap downstream of the test section. The experiments covered a range of the three similarity parameters of momentum-loss-thickness Reynolds-number of 92 to 226 and Strouhal-number (reduced frequency) of 0.0001 to 0.0004 at the separation point, and an amplitude range up to 19 %. The free stream turbulence level was less than 1% .Upstream of the separation point the phase shift in the laminar boundary layer does not appear to be affected significantly bay either of the three parameters. The trend perpendicular to the wall is similar to the Stokes analysis. The problem scales well with the wave velocity introduced by Stokes, however, the lag of the main flow near the wall is less than indicated analytically. The separation point comes closest to the Stokes analysis but the phase is still 20 degrees lower at the wall.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows; 54-55; NASA/TM-2004-212913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-06
    Description: Among the numerous causes for unsteadiness in turbo machinery flows are turbulence and flow environment, wakes from stationary and rotating vanes, boundary layer separation, boundary layer/shear layer instabilities, presence of shock waves and deliberate unsteadiness for flow control purposes. These unsteady phenomena may lead to flow-structure interactions such as flutter and forced vibration as well as system instabilities such as stall and surge. A major issue of unsteadiness relates to the fact that a fundamental understanding of unsteady flow physics is lacking and requires continued attention. Accurate simulations and sufficient high fidelity experimental data are not available. The Glenn Research Center plan for Engine Component Flow Physics Modeling is part of the NASA 21st Century Aircraft Program. The main components of the plan include Low Pressure Turbine National Combustor Code. The goals, technical output and benefits/impacts of each element are described in the presentation. The specific areas selected for discussion in this presentation are blade wake interactions, flow control, and combustor exit turbulence and modeling.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows; 3-27; NASA/TM-2004-212913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: The Effects of elevated free-stream turbulence (FST) on the natural and periodically excited separation bubbles were studied experimentally, due to the relevance of this flow to low-pressure turbine blades at low Reynolds numbers. A bubble was formed at the leading edge of a flat plate and the FST level was altered by placing a grid across the flow at different locations upstream of the plate. The mixing across the separated shear-layer, forming the free boundary of the bubble, increased due to the elevated FST and due to nominally two-dimensional periodic excitation, both flattening and shortening the bubble. Periodic excitation at frequencies that were at least an order of magnitude lower than those associated with the initial shear-layer instability, were very effective at low FST, because the amplitudes of the excitation frequency and its harmonic were amplified over the bubble. High frequency excitation (F+ 3, based on the length of the baseline low FST bubble) had a major effect close to the separation location, while farther downstream the excited fluctuations rapidly decayed in the reattachment region. Low frequency excitation, that generated waves comparable to the length of the unperturbed bubble (F+ 1) were less effective and their magnitude decayed at a slower rate downstream of reattachment. An increase in the level of the FST reduced the net effect of the periodic excitation on the mixing enhancement and subsequent reattachment process, probably due to a destructive interference between the nominally 2D excitation and the random (in space and time) FST, reducing the spanwise coherence and therefore the effectiveness of the current control strategy. However, even at the reduced effectiveness of 2D periodic excitation at elevated FST, it accelerated the reattachment process and the recovery rate of the reattached boundary layer, enhancing the boundary layer resistance to repeat separation and reducing its momentum loss further downstream.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows; 392-406; NASA/TM-2004-212913/SUPPL
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-05
    Description: In this brief, we investigate the turbulent condensation of a population of droplets by means of a direct numerical simulation. To that end, a coupled Navier-Stokes/Lagrangian solver is used where each particle is tracked and its growth by water vapor condensation is monitored exactly. The main goals of the study are to find out whether turbulence broadens the droplet size distribution, as observed in in situ measurements. The second issue is to understand if and for how long a correlation between the droplet radius and the local supersaturation exists for the purpose of modeling sub-grid scale microphysics in cloud-resolving codes. This brief is organized as follows. In Section 2 the governing equations are presented, including the droplet condensation model. The implementation of the forcing procedure is described in Section 3. The simulation results are presented in Section 4 together with a sketch of a simple stochastic model for turbulent condensation. Conclusions and the main outcomes of the study are given in Section 5.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Annual Research Briefs, 2004: Center for Turbulence Research; 305-316
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-02
    Description: We demonstrate a new variation of molecular-tagging velocimetry for hypersonic flows based on laser-induced fluorescence. A thin line of nitric-oxide molecules is excited with a laser beam and then, after a time delay, a fluorescence image of the displaced line is acquired. One component of velocity is determined from the time of flight. This method is applied to measure the velocity profile in a Mach 8.5 laminar, hypersonic boundary layer in the Australian National University s T2 free-piston shock tunnel. The single-shot velocity measurement uncertainty in the freestream was found to be 3.5%, based on 90% confidence. The method is also demonstrated in the separated flow region forward of a blunt fin attached to a flat plate in a Mach 7.4 flow produced by the Australian National University s T3 free-piston shock tunnel. The measurement uncertainty in the blunt fin experiment is approximately 30%, owing mainly to low fluorescence intensities, which could be improved significantly in future experiments. This velocimetry method is applicable to very high-speed flows that have low collisional quenching of the fluorescing species. It is particularly convenient in facilities where planar laser-induced fluorescence is already being performed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Journal; Volume 41; No. 2; 263-271
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-02
    Description: Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-02
    Description: InSPACE is a microgravity fluid physics experiment that was operated on the International Space Station (ISS) in the Microgravity Science Glovebox from late March 2003 through early July 2003. (InSPACE is an acronym for Investigating the Structure of Paramagnetic Aggregates From Colloidal Emulsions.) The purpose of the experiment is to obtain fundamental data of the complex properties of an exciting class of smart materials termed magnetorheological (MR) fluids. MR fluids are suspensions, or colloids, comprised of small (micrometer-sized) superparamagnetic particles in a nonmagnetic medium. Colloids are suspensions of very small particles suspended in a liquid. (Examples of other colloids are blood, milk, and paint.) These controllable fluids can quickly transition into a nearly solid state when exposed to a magnetic field and return to their original liquid state when the magnetic field is removed. Controlling the strength of the magnetic field can control the relative stiffness of these fluids. MR fluids can be used to improve or develop new seat suspensions, robotics, clutches, airplane landing gear, and vibration damping systems. The principal investigator for InSPACE is Professor Alice P. Gast of the Massachusetts Institute of Technology (MIT). The InSPACE hardware was developed at the NASA Glenn Research Center. The InSPACE samples were delivered to the ISS in November 2002, on the Space Shuttle Endeavour, on Space Station Utilization Flight UF-2/STS113. Operations began on March 31, 2003, with the processing of three different particle size samples at multiple test parameters. This investigation focused on determining the structural organization of MR colloidal aggregates when exposed to a pulsing magnetic field. On Earth, the aggregates take the shape of footballs with spiky tips. This characteristic shape may be influenced by the pull of gravity, which causes most particles initially suspended in the fluid to sediment, (i.e., settle and collect at the bottom of the cell). In the absence of sedimentation effects on the ISS, the behavior and shape of these MR aggregate structures are dominated exclusively by magnetic and surface tension forces. The microscopic detail of these structures was imaged under two orthogonal camera views. The video was downlinked to the InSPACE team at Glenn's Telescience Support Center and to MIT and also recorded onboard the ISS on videotapes that will be brought back to the ground by the space shuttles. The study examined the effect on the structure formation by varying the magnetic field strength and pulse frequency, and particle size. Fundamental data that characterized the structure formation were obtained. InSPACE completed its last planned test run on July 2, 2003. Operations occurred on 21 days over approximately a 3-month period. Forty-one test points were completed during 26 test runs. During the initial testing, the procedures followed by the crew were modified to maximize the observation of some unexpected and interesting aggregate behavior. As a result Dr. Gast has reported on the formation of aggregate shapes that are more extended and diverse than those observed on the ground. Sheets of magnetic material folded over in a labyrinth pattern and large columnar aggregates with complex interfaces with the surrounding fluid are examples of the interesting structures that have been observed on the ISS. In light of these early findings, the understanding of the fundamental properties of MR fluids on the basis of ground-based observations may need to be reconsidered.The experiments on the ISS have provided a vast amount of video data for analysis. While this analysis is ongoing, plans are being made for additional experimental runs. For this purpose, additional hardware and cells containing samples of different magnetic particles and sizes are being fabricated for a future launch to the ISS. The InSPACE hardware will remain on orbit until this testing is completed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-02
    Description: Leakage and wear are two fundamental problems in all traditional turbine seals that contribute to an engine's inefficiency. The solutions to seal leakage and wear conflict in the conventional design space. Reducing the clearance between the seal and rotating shaft reduces leakage but increases wear because of increased contact incidents. Increasing the clearance to reduce the contact between parts reduces wear but increases parasitic leakage. The goal of this effort is to develop a seal that restricts leakage flow using acoustic pressure while operating in a noncontacting manner, thereby increasing life. In 1996, Dr. Timothy Lucas announced his discovery of a method to produce shock-free high-amplitude pressure waves. For the first time, the formation of large acoustic pressures was possible using dissonant resonators. A pre-prototype acoustic seal developed at the NASA Glenn Research Center exploits this fundamental acoustic discovery: a specially shaped cavity oscillated at the contained fluid's resonant frequency produces high-amplitude acoustic pressure waves of a magnitude approaching those required of today's seals. While the original researchers are continuing their development of acoustic pumps, refrigeration compressors, and electronic thermal management systems using this technology, the goal of researchers at Glenn is to apply these acoustic principles to a revolutionary sealing device. When the acoustic resonator shape is optimized for the sealing device, the flow from a high-pressure cavity to a low-pressure cavity will be restricted by a series of high-amplitude standing pressure waves of higher pressure than the pressure to be sealed. Since the sealing resonator cavity will not touch the adjacent sealing structures, seal wear will be eliminated, improving system life. Under a cooperative agreement between Glenn and the Ohio Aerospace Institute (OAI), an acoustic-based pre-prototype seal was demonstrated for the first time. A pressurized cavity was attached to one end of the resonator while the other end remained open to ambient pressure. Measurements were taken at several values of applied pressure with the assembly stationary, oscillated at an off-resonance frequency, and then oscillated on-resonance. The three cases show that the flow through the conical resonator can be reduced by oscillating the resonator at the resonance frequency of the air contained within the cavity. The results are currently being compared with results obtained from a commercial computational fluid dynamics code. The objective is to improve the design through numerical simulation before fabricating a next-generation prototype sealing device. Future work is aimed at implementing acoustic seal design improvements to further reduce the leakage flow rate through the device and at reducing the device's overall size.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-02
    Description: The spreading of a liquid on a solid surface is important for various practical processes, and contact-angle measurements provide an elegant method to characterize the interfacial properties of the liquid with the solid substrates. The complex physical processes occurring when a liquid contacts a solid play an important role in determining the performance of chemical processes and materials. Applications for these processes are in printing, coating, gluing, textile dyeing, and adhesives and in the pharmaceutical industry, biomedical research, adhesives, flat panel display manufacturing, surfactant chemistry, and thermal engineering.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-02
    Description: The interface between two fluids of different density can experience instability when gravity acts normal to the surface. The relatively well known Rayleigh-Taylor (RT) instability results when the gravity is constant with a heavy fluid over a light fluid. An impulsive acceleration applied to the fluids results in the Richtmyer-Meshkov (RM) instability. The RM instability occurs regardless of the relative orientation of the heavy and light fluids. In many systems, the passing of a shock wave through the interface provides the impulsive acceleration. Both the RT and RM instabilities result in mixing at the interface. These instabilities arise in a diverse array of circumstances, including supernovas, oceans, supersonic combustion, and inertial confinement fusion (ICF). The area with the greatest current interest in RT and RM instabilities is ICF, which is an attempt to produce fusion energy for nuclear reactors from BB-sized pellets of deuterium and tritium. In the ICF experiments conducted so far, RM and RT instabilities have prevented the generation of net-positive energy. The $4 billion National Ignition Facility at Lawrence Livermore National Laboratory is being constructed to study these instabilities and to attempt to achieve net-positive yield in an ICF experiment.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-02
    Description: Lightweight, strong, tough high-temperature materials are required to complement efficiency improvements for next-generation gas turbine engines that can operate with minimum cooling. Because of their low density, high-temperature strength, and high thermal conductivity, ceramics are being investigated as materials to replace the nickelbase superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass (ref. 1). To complement the effectiveness of the ceramics and their applicability for turbine engine applications, a parametric study using the finite element method is being carried out. The NASA Glenn Research Center remains very active in conducting and supporting a variety of research activities related to ceramic matrix composites through both experimental and analytical efforts (ref. 1). The objectives of this work are to develop manufacturing technology, develop a thermal and environmental barrier coating (TBC/EBC), develop an analytical modeling capability to predict thermomechanical stresses, and perform a minimal burner rig test on silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Moreover, we intend to generate a detailed database of the material s property characteristics and their effects on structural response. We expect to offer a wide range of data since the modeling will account for other variables, such as cooling channel geometry and spacing. Comprehensive analyses have begun on a plate specimen with Si3N4 cooling holes.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-02
    Description: A high-performance spontaneous Raman scattering (SRS) system for measuring quantitative species concentration and temperature in high-pressure flames is now operational. The system is located in Glenn s Engine Research Building. Raman scattering is perhaps the only optical diagnostic technique that permits the simultaneous (single-shot) measurement of all major species (N2, O2, CO2, H2O, CO, H2, and CH4) as well as temperature in combustion systems. The preliminary data acquired with this new system in a 20-atm hydrogen-air (H2-air) flame show excellent spectral coverage, good resolution, and a signal-to-noise ratio high enough for the data to serve as a calibration standard. This new SRS diagnostic system is used in conjunction with the newly developed High- Pressure Gaseous Burner facility (ref. 1). The main purpose of this diagnostic system and the High-Pressure Gaseous Burner facility is to acquire and establish a comprehensive Raman-scattering spectral database calibration standard for the combustion diagnostic community. A secondary purpose of the system is to provide actual measurements in standardized flames to validate computational combustion models. The High-Pressure Gaseous Burner facility and its associated SRS system will provide researchers throughout the world with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-06
    Description: A new technology for reducing turbulent skin friction, called the Microblowing Technique (MBT), is presented. Results from proof-of-concept experiments show that this technology could potentially reduce turbulent skin friction by more than 50% of the skin friction of a solid flat plate for subsonic and supersonic flow conditions. The primary purpose of this review paper is to provide readers with information on the turbulent skin friction reduction obtained from many experiments using the MBT. Although the MBT has a penalty for obtaining the microblowing air associated with it, some combinations of the MBT with suction boundary layer control methods are an attractive alternative for a real application. Several computational simulations to understand the flow physics of the MBT are also included. More experiments and computational fluid dynamics (CFD) computations are needed for the understanding of the unsteady flow nature of the MBT and the optimization of this new technology.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-06
    Description: Solve the time-dependent inviscid flow equations for this geometry subject to the specified inflow/outflow mean conditions and the fluctuating inflow velocity distortion. (1) Compute the unsteady solution until periodicity in pressure is achieved by showing that at least two successive periods are identical. Periodicity must be achieved on both the airfoil surface and the inflow/outflow boundaries. (2) Once periodicity is achieved, compute the pressure frequency spectra on the reference airfoil on both the upper and lower surfaces at x=(-0.25c,0.00, +0.25c), on the inflow boundary at (x,y)={1.5c,-0.3c), (-1.5c,0.0),(-1.5c,0.3c)} and on the outflow boundary at (x,y)= {(1.5c,-0.3c),(1.5c,0.0), (1.5c,0.3c)}. Express the spectral results in dB using the standard definition 20 log(P(sub(r.m.s)/P(sub ref), where p(sub ref) == 20 microPa. (3) Extract the harmonic pressure distributions on the inflow and outflow boundaries (i.e., on x= -/+ 1.5c lines) at the fundamental frequency omega and apply a Fourier transform in y direction to identify the spatial (i.e., mode order) structure of the pressure perturbations. Express the result in dB for each mode order. Repeat the process for the frequencies 2omega and 3omega.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems; 18-22; NASA/CP-2004-212954
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-06
    Description: Three benchmark problems from the current and previous CAA workshops involving tone noise generated in viscous flows are investigated using the CE/SE finite volume method. The CE/SE method is first briefly reviewed. Then, the benchmark problems, namely, flow past a single cylinder (CAA Workshop II problem), flow past twin cylinders (from the current CAA Workshop IV, Category 5, Problem 1) and flow past a deep cavity with overhang (CAA Workshop III problem) are investigated. Generally good results are obtained in comparison with the experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems; 213-228; NASA/CP-2004-212954
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: The effects of gravity on the bubble formation in an annular jet were studied. The experiments were conducted in the 2.2-second drop tower at the NASA Glenn Research Center. Terrestrial gravity experiments were conducted at the Fluid Dynamics Research Laboratory at the University of Oklahoma. Stainless steel tubing with inner diameters of 1/8" (gas inner annulus) and 5/16" (liquid outer annulus) served as the injector. A rectangular test section, 6" x 6" x 14" tall, made out of half-inch thick Lexan was used. Images of the annular jet were acquired using a high-speed camera. The effects of gravity and varying liquid and gas flow rates on bubble size, wavelength, and breakup length were documented. In general, the bubble diameter was found to be larger in terrestrial gravity than in microgravity for varying Weber numbers (0.05 - 0.16 and 5 - 11) and liquid flow rates (1.5 ft/s - 3.0 ft/s). The wavelength was found to be larger in terrestrial gravity than in microgravity, but remained constant for varying Weber numbers. For low Weber numbers (0.05 - 0.16), the breakup length in microgravity was significantly higher than in terrestrial gravity. Comparison with linear stability analysis showed estimated bubble sizes within 9% of experimental bubble sizes. Bubble size compared to other terrestrial gravity experiments with same flow conditions showed distinct differences in bubble size, which displayed the importance of injector geometry on bubble formation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 206-215; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-06
    Description: The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 146-157; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-06
    Description: The general theme of the research my NASA colleague and I have planned is "Optical and probe diagnostics applied to reacting flows". We plan to explore three major threads during the fellowship period. The first interrogates the flame synthesis of carbon nanotubes using aerosol catalysts. Having demonstrated the viability of the technique for nanotube synthesis, we seek to understand the details of this reacting system which are important to its practical application. Laser light scattering will reveal changes in particle size at various heights above the burner. Analysis of the flame gas by mass spectroscopy will reveal the chemical composition of the mixture. Finally, absorption measurements will map the nanotube concentration within the flow. The second thread explores soot oxidation kinetics. Despite the impact of soot on engine performance, fire safety and pollution, models for its oxidation are inhibited by uncertainty in the values of the oxidation rate. We plan to employ both optical and microscopic measurements to refine this rate. Cavity ring-down absorption measurements of the carbonaceous aerosol can provide a measure of the mass concentration with time and, hence, an oxidation rate. Spectroscopic and direct probe measurements will provide the temperature of the system needed for subsequent modeling. These data will be benchmarked against changes in soot nanostructures as revealed by transmission electron microscopic images from directly sampled material.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2003 NASA Faculty Fellowship Program at Glenn Research Center; 59-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-06
    Description: Flow regime and pressure drop data was obtained and analyzed. Pulse flow exists at lower liquid flow rates in 0-g compared to 1-g. 1-g flow regime maps do not apply in microgravity. Pressure drop is higher in microgravity (enhanced interfacial effects).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 2-15; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-06
    Description: Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) free-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-05
    Description: In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle configurations to be tested in a cost-effective manner. RCL 23 is poised to be a leading facility for developing modern low-emission fuel nozzles for use with jet fuel and alternative fuels.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-05
    Description: The operation of a packed bed reactor (PBR) involves gas and liquid flowing simultaneously through a fixed-bed of solid particles. Depending on the application, the particles can be various shapes and sizes but are generally designed to force the two fluid phases through a tortuous route of narrow channels connecting the interstitial space. The PBR is the most common type of reactor in industry because it provides for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. Furthermore, this type of reactor is relatively compact and requires minimal power to operate. This makes it an excellent candidate for unit operations in support of long-duration human space activities.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-05
    Description: Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-05
    Description: Many valuable advances in combustion science have come from observations of microgravity flames. This research is contributing to the improved efficiency and reduced emissions of practical combustors and is benefiting terrestrial and spacecraft fire safety. Unfortunately, difficulties associated with microgravity have prevented many types of measurements in microgravity flames. In particular, temperature measurements in flames are extremely important but have been limited in microgravity. A novel method of measuring temperatures in microgravity flames is being developed in-house at the National Center for Microgravity Research and the NASA Glenn Research Center and is described here. Called thin-filament pyrometry, it involves using a camera to determine the local gas temperature from the intensity of inserted fibers glowing in a flame. It is demonstrated here to provide accurate measurements of gas temperatures in a flame simultaneously at many locations. The experiment is shown. The flame is a laminar gas jet diffusion flame fueled by methane (CH4) flowing from a 14-mm round burner at a pressure of 1 atm. A coflowing stream of air is used to prevent flame flicker. Nine glowing fibers are visible. These fibers are made of silicon carbide (SiC) and have a diameter of 15 m (for comparison, the average human hair is 75 m in diameter). Because the fibers are so thin, they do little to disturb the flame and their temperature remains close to that of the local gas. The flame and glowing filaments were imaged with a digital black-and-white video camera. This camera has an imaging area of 1000 by 1000 pixels and a wide dynamic range of 12 bits. The resolution of the camera and optics was 0.1 mm. Optical filters were placed in front of the camera to limit incoming light to 750, 850, 950, and 1050 nm. Temperatures were measured in the same flame in the absence of fibers using 50-m Btype thermocouples. These thermocouples provide very accurate temperatures, but they generally are not useful in microgravity tests because they measure temperature at only one location at a time. Thermocouple measurements at a height of 11 mm above the burner were used to calibrate the thin-filament pyrometry system at all four wavelengths. This calibration was used to perform thin-filament pyrometry at other heights above the burner. One such profile is shown in this graph; this is for a height of 21 mm. The agreement between the pyrometry measurements and thermocouple results at this height is excellent in the range of 1000 to 2000 K, with an estimated uncertainty of 50 K and an estimated upper limit of 2500 K. Neither the thermocouple nor the thin-filament pyrometry temperatures have been corrected for radiation, but the correction is expected to be nearly the same for both methods. We anticipate that thin-filament pyrometry similar to that developed here will become an important diagnostic for studies of microgravity flames owing to its accuracy and its ability to simultaneously measure finely spaced temperatures.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-05
    Description: When discharged into an International Space Station (ISS) payload rack, a carbon dioxide (CO2) portable fire extinguisher (PFE) must extinguish a fire by decreasing the oxygen in the rack by 50 percent within 60 sec. The length of time needed for this oxygen reduction throughout the rack and the length of time that the CO2 concentration remains high enough to prevent the fire from reigniting is important when determining the effectiveness of the response and postfire procedures. Furthermore, in the absence of gravity, the local flow velocity can make the difference between a fire that spreads rapidly and one that self-extinguishes after ignition. A numerical simulation of the discharge of CO2 from PFE into the Combustion Integrated Rack (CIR) in microgravity was performed to obtain the local velocity and CO2 concentration. The complicated flow field around the PFE nozzle exits was modeled by sources of equivalent mass and momentum flux at a location downstream of the nozzle. The time for the concentration of CO2 to reach a level that would extinguish a fire anywhere in the rack was determined using the Fire Dynamics Simulator (FDS), a computational fluid dynamics code developed by the National Institute of Standards and Technology specifically to evaluate the development of a fire and smoke transport. The simulation shows that CO2, as well as any smoke and combustion gases produced by a fire, would be discharged into the ISS cabin through the resource utility panel at the bottom of the rack. These simulations will be validated by comparing the results with velocity and CO2 concentration measurements obtained during the fire suppression system verification tests conducted on the CIR in March 2003. Once these numerical simulations are validated, portions of the ISS labs and living areas will be modeled to determine the local flow conditions before, during, and after a fire event. These simulations can yield specific information about how long it takes for smoke and combustion gases produced by a fire to reach a detector location, how large the fire would be when the detector alarms, and the behavior of the fire until it has been extinguished. This new capability could then be used to optimize the location of fire detectors and fire-suppression ports as well as to evaluate the effectiveness of fire suppressants and response strategies. Numerical data collected from these simulations could also be used to develop a virtual reality fire event for crew training and fire safety awareness. This work is funded by NASA's Bioastronautics Initiative, which has the objective of ensuring and enhancing the health, safety, and performance of humans in space. As part of this initiative, the Microgravity Combustion Science Branch at the NASA Glenn Research Center is conducting spacecraft fire safety research to significantly improve fire safety on inhabited spacecraft.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-05
    Description: A fast-running unsteady aerodynamics code, LINFLUX, was previously developed for predicting turbomachinery flutter. This linearized code, based on a frequency domain method, models the effects of steady blade loading through a nonlinear steady flow field. The LINFLUX code, which is 6 to 7 times faster than the corresponding nonlinear time domain code, is suitable for use in the initial design phase. Earlier, this code was verified through application to a research fan, and it was shown that the predictions of work per cycle and flutter compared well with those from a nonlinear time-marching aeroelastic code, TURBO-AE. Now, the LINFLUX code has been applied to real configurations: fans developed under the Energy Efficient Engine (E-cubed) Program and the Quiet Aircraft Technology (QAT) project. The LINFLUX code starts with a steady nonlinear aerodynamic flow field and solves the unsteady linearized Euler equations to calculate the unsteady aerodynamic forces on the turbomachinery blades. First, a steady aerodynamic solution is computed for given operating conditions using the nonlinear unsteady aerodynamic code TURBO-AE. A blade vibration analysis is done to determine the frequencies and mode shapes of the vibrating blades, and an interface code is used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor is used to interpolate the mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh. Then, LINFLUX is used to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. Finally, a post-processor uses the unsteady pressures to calculate the generalized aerodynamic forces, eigenvalues, an esponse amplitudes. The eigenvalues determine the flutter frequency and damping. Results of flutter calculations from the LINFLUX code are presented for (1) the E-cubed fan developed under the E-cubed program and (2) the Quiet High Speed Fan (QHSF) developed under the Quiet Aircraft Technology project. The results are compared with those obtained from the TURBO-AE code. A graph of the work done per vibration cycle for the first vibration mode of the E-cubed fan is shown. It can be seen that the LINFLUX results show a very good comparison with TURBO-AE results over the entire range of interblade phase angle. The work done per vibration cycle for the first vibration mode of the QHSF fan is shown. Once again, the LINFLUX results compare very well with the results from the TURBOAE code.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-05
    Description: A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-05
    Description: The TopMaker technique was developed in an effort to reduce the time required for grid generation in complex numerical studies. Topology generation accounts for much of the man-hours required for structured multiblock grids. With regard to structured multiblock grids, topology refers to how the blocks are arranged and connected. A two-dimensional multiblock topology generation technique has been developed at the NASA Glenn Research Center. Very general configurations can be addressed by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, a multiblock topology can be generated without user intervention. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns, where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in computational fluid dynamics, where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid-generation process.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-05
    Description: An optical measurement technique known as Digital Particle Image Velocimetry (DPIV) was used previously to characterize the first- and second-order statistical properties of both cold and hot jet flows from externally mixed nozzles in NASA Glenn Research Center's Nozzle Acoustic Test Rig. In this technique, an electronic camera records particles entrained in a flow as a laser light sheet is pulsed at two instances in time. Correlation processing of the recorded particle image pairs yields the two-component velocity field across the imaged plane of the flow. The information acquired using DPIV is being used to improve our understanding of the decay of turbulence in jet flows-a critical element for understanding the acoustic properties of the flow. Recently, two independent DPIV systems were installed in Glenn's Small Hot Jet Acoustic Rig, enabling multiplane correlations in time and space. The data were collected over a range of different Mach numbers and temperature ratios. DPIV system 1 was fixed to a large traverse rig, and DPIV system 2 was mounted on a small traverse system mounted on the large traverse frame. The light sheets from the two DPIV systems were aligned to lie in the same axial plane, with DPIV system 2 being independently traversed downstream along the flow direction. For each measurement condition, the DPIV systems were started at a fully overlapping orientation. A polarization separation technique was used to avoid cross-talk between the two systems. Then, the DPIV systems fields were shifted axially apart, in successively increasing steps. The downstream DPIV system 2 was triggered at a short time delay after the upstream DPIV system 1, where the time delay was proportional to the convective flow velocity in the shear layer of the jet flow and the axial separation of the two DPIV systems. The acquired data were processed to obtain the instantaneous velocity vector maps over a range of time delays and spatial separations. The velocity fields from the different DPIV systems were then cross-correlated to determine the degree of correlation remaining in the flow as the downstream convection distance was increased. The new data provide Lagrangian measurements of the convective turbulent structures in the shear layer of an exhaust nozzle. These measurements, obtained in both cold and hot flows, will be used to validate and correct models for space-time velocity correlations-long a missing key to predicting jet noise.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-05
    Description: Most combustion processes have, in some way or another, a recirculating flow field. This recirculation stabilizes the reaction zone, or flame, but an unnecessarily large recirculation zone can result in high nitrogen oxide (NOx) values for combustion systems. The size of this recirculation zone is crucial to the performance of state-of-the-art, low-emissions hardware. If this is a large-scale combustion process, the flow field will probably be turbulent and, therefore, three-dimensional. This research dealt primarily with flow fields resulting from lean direct injection (LDI) concepts, as described in Research & Technology 2001. LDI is a concept that depends heavily on the design of the swirler. The LDI concept has the potential to reduce NOx values from 50 to 70 percent of current values, with good flame stability characteristics. It is cost effective and (hopefully) beneficial to do most of the design work for an LDI swirler using computer-aided design (CAD) and computer-aided engineering (CAE) tools. Computational fluid dynamics (CFD) codes are CAE tools that can calculate three-dimensional flows in complex geometries. However, CFD codes are only beginning to correctly calculate the flow fields for complex devices, and the related combustion models usually remove a large portion of the flow physics.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-05
    Description: Knudsen effusion mass spectrometry (KEMS) allows the simultaneous determination of the identity and pressure of vapor species in equilibrium with a condensed phase as a function of temperature. This information can be used to determine the thermodynamic properties of materials. The partial pressure of species j in the cell is related to the measured intensity of the ion k formed from j, I(sup +) less than SABjk, and the absolute temperature T, where S(sub jk) is the sensitivity factor.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-05
    Description: Rotating instability is a phenomenon that occurs in the tip flow region of axial compressor stages during stable operation. It can be observed in highly staggered rotors with significant tip clearance and is strongest at high-load operating points where the characteristic levels off. In this condition, the single-stage fan under investigation radiates an audible, whistling tone, and wall pressure spectra in the vicinity of the rotor disk exhibit nonrotational components. The graph shows the spectrum of static pressure at a point on the endwall near the leading edge. A hump appears at roughly half of the blade passing frequency (BPF) and is characteristic of rotating instability. A computational model was developed at the NASA Glenn Research Center to investigate the mechanism behind this phenomenon. A three-dimensional steady Navier-Stokes code that has been successfully tested for a wide range of turbomachinery flows was modified to execute a time-accurate simulation of the full annulus of the compressor. At the inlet of the computational domain, the total pressure, total temperature, and two velocity components are specified. Since no unsteady measurements of static pressure or other flow variables were available downstream of the rotor, circumferentially averaged static pressure was specified on the shroud at the outlet of the computational domain. A three-dimensional view of the vortex from the numerical model is shown. Particle traces released near the leading edge tip have rolled up to illustrate the tip clearance vortex. Flow near the trailing edge is pushed forward by the axially reversed flow. It then interacts with the tip clearance flow and the incoming flow and results in the rotating instability vortex, the core of which is illustrated by total pressure shading on planes located successively downstream. The rotating instability vortex is formed periodically midway between the blades and moves toward the pressure side of the passage. The unsteady behavior of this vortex structure is the main mechanism of the rotating instability is shown. The numerical model can be used to detect any possible occurrence of rotating instability when the tip clearance increases during engine service.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-05
    Description: High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-06
    Description: Inlets and exhaust nozzles are common place in the world of flight. Yet, many aerodynamic simulation packages do not provide a method of modelling such high energy boundaries in the flow field. For the purposes of aerodynamic simulation, inlets and exhausts are often fared over and it is assumed that the flow differences resulting from this assumption are minimal. While this is an adequate assumption for the prediction of lift, the lack of a plume behind the aircraft creates an evacuated base region thus effecting both drag and pitching moment values. In addition, the flow in the base region is often mis-predicted resulting in incorrect base drag. In order to accurately predict these quantities, a method for specifying inlet and exhaust conditions needs to be available in aerodynamic simulation packages. A method for a first approximation of a plume without accounting for chemical reactions is added to the Cartesian mesh based aerodynamic simulation package CART3D. The method consists of 3 steps. In the first step, a components approach where each triangle is assigned a component number is used. Here, a method for marking the inlet or exhaust plane triangles as separate components is discussed. In step two, the flow solver is modified to accept a reference state for the components marked inlet or exhaust. In the third step, the flow solver uses these separated components and the reference state to compute the correct flow condition at that triangle. The present method is implemented in the CART3D package which consists of a set of tools for generating a Cartesian volume mesh from a set of component triangulations. The Euler equations are solved on the resulting unstructured Cartesian mesh. The present methods is implemented in this package and its usefulness is demonstrated with two validation cases. A generic missile body is also presented to show the usefulness of the method on a real world geometry.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 42nd AIAA Aerospace Sciences Meeting and Exhibit; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-06
    Description: The generalization of a class of low-dissipative high order filter finite difference schemes for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been developed. The new scheme consists of a divergence free preserving high order spatial base scheme with a filter approach which can be divergence-free preserving depending on the type of filter operator being used, the method of applying the filter step, and the type of flow problem to be considered. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field (Delta * B) numerical error in the sense that no standard divergence cleaning is required. Performance evaluation of these variants, and the key role that the proper treatment of their corresponding numerical boundary conditions can play will be illustrated. Many levels of grid refinement and detailed comparison with several commonly used compressible MHD shock-capturing schemes will be sought. For certain MHD 2-D test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-06
    Description: Over the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of the computational fluid dynamics (CFD) discipline. Although incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to the rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low-speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient CFD took become increasingly important in fluid engineering for incompressible and low-speed flow. This paper reviews some of the successes made possible by advances in computational technologies during the same period, and discusses some of the current challenges faced in computing incompressible flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-06
    Description: Transport of solid-liquid slurries in pipeline transport over short and medium distances is very important in many industries, including mining related processes. The particle image velocimetry technique was successfully utilized to investigate the velocities and kinetic energy fluctuations of slurry particles at the tongue region of an optically-clear centrifugal pump. The experiments were conducted using 500 micron glass beads at volumetric Concentrations of 2.5% and 5% and at pump speeds of 725 rpm and 1000 rpm. The fluctuation kinetic energy increased approximately 200% to 500% as the pump speed was increased from 725 rpm to IO00 rpm. The directional impingement mechanism is more significant at the pressure side of the blade, tongue and the casing. This mechanism becomes more important as the speed increases. This suggests that the impeller; tongue and the casing of the slurry pump can wear out quickly, especially with an increase in speed. In this paper the emphasis is on the tongue region. The random impingement mechanism caused by the fluctuation kinetic energy of the solids can play an important role on the erosion of the tongue area.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Energy Resources Technology (ISSN 0195-0738); Volume 126; 271-278
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-06
    Description: An advanced thermal control system for the Burst Alert Telescope on the Swift satellite has been designed and an engineering test unit (ETU) has been built and tested in a thermal vacuum chamber. The ETU assembly consists of a propylene loop heat pipe, two constant conductance heat pipes, a variable conductance heat pipe (VCHP), which is used for rough temperature control of the system, and a radiator. The entire assembly was tested in a thermal vacuum chamber at NASA/GSFC in early 2002. Tests were performed with thermal mass to represent the instrument and with electrical resistance heaters providing the heat to be transferred. Start-up and heat transfer of over 300 W was demonstrated with both steady and variable condenser sink temperatures. Radiator sink temperatures ranged from a high of approximately 273 K, to a low of approximately 83 K, and the system was held at a constant operating temperature of 278 K throughout most of the testing. A novel LHP temperature control methodology using both temperature-controlled electrical resistance heaters and a small VCHP was demonstrated. This paper describes the system and the tests performed and includes a discussion of the test results.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-11
    Description: This Symposium is intended to bring together the often distinct cultures of the Stability and Control (S&C) community and the Computational Fluid Dynamics (CFD) community. The COMSAC program is itself a new effort by NASA Langley to accelerate the application of high end CFD methodologies to the demanding job of predicting stability and control characteristics of aircraft. This talk is intended to set the stage for needing a program like COMSAC. It is not intended to give details of the program itself. The topics include: 1) S&C Challenges; 2) Aero prediction methodology; 3) CFD applications; 4) NASA COMSAC planning; 5) Objectives of symposium; and 6) Closing remarks.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: COMSAC: Computational Methods for Stability and Control; 7-27; NASA/CP-2004-213028/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-11
    Description: The motivation behind the inclusion of unsteady aerodynamics and aeroelastic effects in the computation of stability and control (S&C) derivatives will be discussed as they pertain to aeroelastic and aeroservoelastic analysis. This topic will be addressed in the context of two applications, the first being the estimation of S&C derivatives for a cable-mounted aeroservoelastic wind tunnel model tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT). The second application will be the prediction of the nonlinear aeroservoelastic phenomenon known as Residual Pitch Oscillation (RPO) on the B-2 Bomber. Techniques and strategies used in these applications to compute S&C derivatives and perform flight simulations will be reviewed, and computational results will be presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: COMSAC: Computational Methods for Stability and Control, Part 2; 489-510; NASA/CP-2004-213028/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-11
    Description: COMSAC goals include increasing the acceptance of CFD as a viable tool for S&C predictions, as well as to focus CFD development and improvement towards the needs of the S&C community. We view this as a symbiotic relationship, with increasing improvement of CFD promoting increasing acceptance by the S&C community, and increasing acceptance spurring further improvements. In this presentation we want to provide an overview for the non CFD expert of current CFD strengths and weaknesses, as well as to highlight a few emerging capabilities that we feel will lead toward increased usefulness in S&C applications.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: COMSAC: Computational Methods for Stability and Control; 48-68; NASA/CP-2004-213028/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-11
    Description: Modeling fuel slosh effects accurately and completely on spinning spacecraft has been a long standing concern within the aerospace community. Gyroscopic stiffness is obtained by spinning spacecraft as it is launched from one of the upper stages before it is placed in orbit. Unbalances in the spacecraft causes it to precess (wobble). The oscillatory motions are caused in the fuel due to this precession. This phenomenon is called 'fuel slosh' and the dynamic forces induced could adversely affect the stability and control of a spacecraft that spins about one of its minor moments of inertia axes. An equivalent mechanical model of fuel slosh is developed using springs and dampers that are connected to the rigid fuel tank. The stiffness and damping coefficients are the parameters that need to be identified in the fuel slosh mechanical model. This in turn is used in the spacecraft model to estimate the Nutation Time Constant (NTC) for the spacecraft. The experimental values needed for the identification of the model parameters are obtained from experiments conducted at Southwest Research Institute using the Spinning Slosh Test Rig (SSTR). The research focus is on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic Nutation Time Constant obtained through simulation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2003 Research Reports: NASA/ASEE Fellowship Program; H-1 - H-4; NASA/CR-2003-211527
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-27
    Description: A computational and experimental study was conducted to investigate the effects of multiple injection ports in a two-dimensional, convergent-divergent nozzle, for fluidic thrust vectoring. The concept of multiple injection ports was conceived to enhance the thrust vectoring capability of a convergent-divergent nozzle over that of a single injection port without increasing the secondary mass flow rate requirements. The experimental study was conducted at static conditions in the Jet Exit Test Facility of the 16-Foot Transonic Tunnel Complex at NASA Langley Research Center. Internal nozzle performance was obtained at nozzle pressure ratios up to 10 with secondary nozzle pressure ratios up to 1 for five configurations. The computational study was conducted using the Reynolds Averaged Navier-Stokes computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. Internal nozzle performance was predicted for nozzle pressure ratios up to 10 with a secondary nozzle pressure ratio of 0.7 for two configurations. Results from the experimental study indicate a benefit to multiple injection ports in a convergent-divergent nozzle. In general, increasing the number of injection ports from one to two increased the pitch thrust vectoring capability without any thrust performance penalties at nozzle pressure ratios less than 4 with high secondary pressure ratios. Results from the computational study are in excellent agreement with experimental results and validates PAB3D as a tool for predicting internal nozzle performance of a two dimensional, convergent-divergent nozzle with multiple injection ports.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2003-3802 , 21st AIAA Applied Aerodynamics Conference; 23-26 Jun. 20003; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-18
    Description: It is well known that numerical warm season quantitative precipitation forecasts lack significant skill for numerous reasons. Some are related to the model--it may lack physical processes required to realistically simulate convection or the numerical algorithms and dynamics employed may not be adequate. Others are related to initialization-mesoscale features play an important role in convective initialization and atmospheric observation systems are incapable of properly depicting the three-dimensional stability structure at the mesoscale. The purpose of this study is to determine if a mesoscale model initialized with a diabatic initialization scheme can improve short-term (0 to 12h) warm season quantitative precipitation forecasts in the Southeastern United States. The Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory is used to diabatically initialize the Pennsylvania State University/National center for Atmospheric Research (PSUNCAR) Mesoscale Model version 5 (MM5). The SPORT Center runs LAPS operationally on an hourly cycle to produce analyses on a 15 km covering the eastern 2/3 of the United States. The 20 km National Centers for Environmental Prediction (NCEP) Rapid Update Cycle analyses are used for the background fields. Standard observational data are acquired from MADIS with GOES/CRAFT Nexrad data acquired from in-house feeds. The MM5 is configured on a 140 x 140 12 km grid centered on Huntsville Alabama. Preliminary results indicate that MM5 runs initialized with LAPS produce improved 6 and 12h QPF threat scores compared with those initialized with the NCEP RUC.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 20th Conference on Weather Analysis and Forecasting; Jan 11, 2004 - Jan 15, 2004; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-18
    Description: Four Sunpower M87N Stirling-cycle cryocoolers will be used to extend the lifetime of the Alpha Magnetic Spectrometer-02 (AMS-02) experiment. The cryocoolers will be mounted to the AMS-02 vacuum case using a structure that will thermally and mechanically decouple the cryocooler from the vacuum case while providing compliance to allow force attenuation using a passive balancer system. The cryocooler drive is implemented using a 60Hz pulse duration modulated square wave. Details of the testing program, mounting assembly and drive scheme will be presented. AMS-02 is a state-of-the-art particle physics detector containing a large superfluid helium-cooled superconducting magnet. Highly sensitive detector plates inside the magnet measure a particle s speed, momentum, charge, and path. The AMS-02 experiment, which will be flown as an attached payload on the International Space Station, will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. Two engineering model cryocoolers have been under test at NASA Goddard since November 2001. Qualification testing of the engineering model cryocooler bracket assembly is near completion. Delivery of the flight cryocoolers to Goddard is scheduled for September 2003.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 20th Space Cryogenic Workshop; Sep 18, 2003 - Sep 19, 2003; Girdwood, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-18
    Description: Experiments have shown that moderate turbulence levels can nearly double turbine blade stagnation region heat transfer. Data have also shown that heat transfer is strongly affected by the scale of turbulence as well as its level. In addition to the stagnation region, turbulence is often seen to increase pressure surface heat transfer. This is especially evident at low to moderate Reynolds numbers. Vane and rotor stagnation region, and vane pressure surface heat transfer augmentation is often seen in a pre-transition environment. Accurate predictions of transition and relaminarization are critical to accurately predicting blade surface heat transfer. An approach is described which incorporates the effects of both turbulence level and scale into a CFD analysis. The model is derived from experimental data for cylindrical and elliptical leadng edges. Results using this model are compared to experimental data for both vane and rotor geometries. The comparisons are made to illustrate that using a model which includes the effects of turbulence length scale improves agreement with data, and to illustrate where improvements in the modeling are needed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows; 36; NASA/TM-2004-212913
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-18
    Description: It is well established that residual flows exist in contained liquid metal processes. In 1-g processing, buoyancy forces often drive these flows and their magnitudes can be substantial. It is also known that residual flows can exist during microgravity processing, and although greatly reduced in magnitude, they can influence the properties of the processed materials. Unfortunately, there are very few techniques to visualize flows in opaque, high temperature liquid metals, and those available are not easily adapted to flight investigation. In this study, a novel technique is developed that uses liquid tin as the model fluid and solid-state electrochemical cells constructed from Yttria-Stabilized Zirconia (YSZ) to establish and measure dissolved oxygen boundary conditions. The melt serves as a common electrode for each of the electrochemical cells in this design, while independent reference electrodes are maintained at the outside surfaces of the electrolyte. By constructing isolated electrochemical cells at various locations along the container walls, oxygen is introduced or extracted by imposing a known electrical potential or passing a given current between the melt and the reference electrode. This programmed titration then establishes a known oxygen concentration boundary condition at the selected electrolyte-melt interface. Using the other cells, the concentration of oxygen at the electrolyte-melt interface is also monitored by measuring the open-circuit potentials developed between the melt and reference electrodes. Thus the electrochemical cells serve to both establish boundary conditions for the passive tracer and sense its path. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically. Additionally, flow field oscillations are visualized and the effect of tilt on convecting systems is quantified. Experimental studies of the effect of convection in liquid tin are presented. Three geometries are studied: (1) double electrochemical cell with vertical concentration gradients; (2) double cell with horizontal concentration gradients; and (3) multiple cells with vertical temperature gradients. The first critical Rayleigh number transition is detected with geometry (1) and it is concluded that current measurements are not as affected by convection as EMF measurements. The system is compared with numerical simulations in geometry (2), and oscillating convection is detected with geometry (3).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2002 Microgravity Materials Science Conference; 33; NASA/CP-2003-212339
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-18
    Description: A magnetohydrodynamic model that examines the effect of rotating an electrically conducting cylinder with a uniform external magnetic field applied orthogonal to its axis is presented. Noting a simple geometry, it can be classified as a fundamental dynamo problem. For the case of an infinitely long cylinder, an analytical solution is obtained and analyzed in detail. A semi-analytical model was developed that considers a finite cylinder. Experimental data from a spinning brass wheel in the presence of Earth's magnetic field were compared to the proposed theory and found to fit well.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: A theoretical and experimental study is presented on the stability of solutal convection of a magnetized fluid in the presence of a magnetic field. The total force on the fluid is derived and equilibrium positions are computed establishing the field necessary to counter fluid buoyancy. The requirements for stability are developed and compared with experiments with a paramagnetic fluid. The experiments are in good agreement not only with the theoretical predictions for equilibrium but also verify the stability theory which predicts both horizontal and vertical stability. Analogous to results for levitation, the theory indicates that solutal convection in paramagnetic fluids cannot be completely stabilized while that in diamagnetic liquid are possible.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: Mixing driven by buoyancy-induced flows inside a cavity consists of stretching and folding of an interface. Measurement of the flow field using particle imaging velocimetry shows that during stretching the flow field has a single elliptic point, thus dominated by a single vortex. However, global bifurcation that results in folding introduces a hyperbolic point whereby the flow field degenerates to multiple vortex interactions. The short-lived coherent structure observed during mixing which results in the Rayleigh- Taylor morphology is attributed to vortex interactions. The mixing characteristics of non-homogeneous fluids driven by buoyancy are important towards understanding transport phenomenon in a microgravity environment. Mixing consists of stretching and folding of an interface due to a flow field whose intensity depends on the body force. For miscible liquids, the characteristic of the flow field determines whether mass transport is governed by diffusion or bulk stirring which induces mixing. For technologically important processes, transport of mass is governed by the coupling of the body force to scalar gradients such as concentration and or temperature' 2 3 . In order to lend insight into these classes of problems we consider a model experimental system to study mixing driven by buoyancy-induced flows. The characteristics of mixing is addressed from detail measurements of the flow field using particle imaging velocimetry (PIV), and its corresponding interface dynamics using image processing techniques.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2003-1158 , 41st AIAA Aerospace Sciences Meeting and Exhibit; Jan 06, 2003 - Jan 11, 2003; Reno, NV; United States|17th Annual Microgravity Science and Space Processing Symposium; Jan 06, 2003 - Jan 11, 2003; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-18
    Description: Computational Fluid Dynamics (CFD) is becoming an important component of injector design in the rocket industry. Injector designers who use CFD in the design process need to understand the accuracy level of the particular code being used for certain aspects of the design. This paper represents a recent effort to demonstrate the accuracy of two CFD codes to calculate the wall heat flux for a single element injector. The FDNS and Loci- CHEM codes currently in use at NASA Marshall Space Flight Center were evaluated. The test case was a single shear coaxial element with gaseous oxygen and hydrogen in a chamber instrumented with coaxial heat flux gauges on the chamber wall down the axis. The data were taken at Penn State University. Measured wall temperatures were used as boundary conditions for the CFD calculations. Calculations were compared to experimental data at chamber pressures of 300,450 600, and 750 psia. The accuracy level of both codes was assessed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 10, 2005 - Jul 13, 2005; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-18
    Description: Solid-oxide fuel cells (SOFCs) show great potential as a power source for future space exploration missions. Because SOFCs operate at temperatures significantly higher than other types of fuel cells, they can reach overall efficiencies of up to 60% and are able to utilize fossil fuels. The SOFC team at GRC is leading NASA's effort to develop a solid oxide fuel cell with a power density high enough to be used for aeronautics and space applications, which is approximately ten times higher than ground transport targets. layers must be able to operate as a single unit at temperatures upwards of 900'C for at least 40,000 hours with less than ten percent degradation. One key challenge to meeting this goal arises from the thermal expansion mismatch between different layers. The amount a material expands upon heating is expressed by its coefficient of thermal expansion (CTE). If the CTEs of adjacent layers are substantially different, thermal stresses will arise during the cell's fabrication and operation. These stresses, accompanied by thermal cycling, can fracture and destroy the cell. While this is not an issue at the electrolyte-cathode interface, it is a major concern at the electrolyte-anode interface, especially in high power anode-supported systems. electrolyte are nearly identical. Conventionally, this has been accomplished by varying the composition of the anode to match the CTE of the yittria-stabilized zirconia (YSZ) electrolyte (approx.10.8x10(exp -6/degC). A Ni/YSZ composite is typically used as a base material for the anode due to its excellent electrochemical properties, but its CTE is about 13.4x10(exp -6/degC). One potential way to lower the CTE of this anode is to add a small percentage of polycrystalline Al2TiO5, with a CTE of 0.68x10(exp -6/degC, to the Ni/YSZ base. However, Al2TiO5 is thermally unstable and loses its effectiveness as it decomposes to Al2O3 and TiO2 between 750 C and 1280 C. be used as additives to increase the thermal stability of Al2TiO5 in SOFC operating conditions without adversely affecting the electrochemical properties of the SOFC anode. Three candidate materials were chosen through an extensive literature review: MgO, Fe2O3, and ZrTiO4. Although all three have been shown to prevent Al2TiO5 decomposition under various conditions, their effectiveness in the temperature range and atmosphere of the SOFC has not yet been evaluated. Several batches of Al2TiO5 with varying amounts of additives were prepared, exposed to reducing and oxidizing atmospheres at elevated temperatures, and the resulting decomposition of Al2TiO5 was measured. The most promising additives were further evaluated with the goal of ultimately preparing low CTE anodes that are chemically compatible to current systems. Adding minor constituents to stabilize Al2TiO5 could ultimately preserve its low CTE for the life of the fuel cell and improve the cell's long-term performance without a drop in anode conductivity. Further, these low CTE filler additions could allow the use of new sulfur tolerant anode materials, improving the viability of SOFCs for future aeronautics and space applications. Every SOFC consists of a cathode and an anode separated by an electrolyte, These three One way to avoid this problem is to design the cell such that the CTEs of the anode and The objective of this summer research project was to evaluate several materials that could
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-18
    Description: The density, viscosity, and electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt were measures as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(sub 0.2)Te melt as the temperature was decreased to below 1090 K.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-18
    Description: The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-18
    Description: New short-range order data are presented for equilibrium and undercooled liquids of Ti and Ni. These were obtained from in-situ synchrotron x-ray diffraction measurements of electrostatically-levitated droplets. While the short-range order of liquid Ni is icosahedral, consistent with Frank's hypothesis, significantly distorted icosahedral order is observed in liquid Ti. This is the first experimental observation of distorted icosahedral short-range order in any liquid. although this has been predicted by theoretical studies on atomic clusters.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-18
    Description: The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished fiom the loop holding them. These large crystals, originally grown for neutron diffiaction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we present used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different d a r e d transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data fkom initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light mad with h i k e d rdi&tion. The crystals were clearly distinguished from the vitrified solution in the infiared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Hauptmann Woodward Medical Research Institute Meeting; Apr 26, 2004; Buffalo, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-18
    Description: Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we nave developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3- D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities are focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: American Society of Mechanical Engineers International Mechanical Engineering Congress; Nov 13, 2004 - Nov 20, 2004; Anaheim, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-18
    Description: Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Millimeter and Sumillimeter Detectors; Jun 21, 2004 - Jun 25, 2004; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-18
    Description: Experiments to suppress thermocapillary oscillations using high-frequency vibrations were carried out in sodium nitrate floating half-zones. Such a half-zone is formed by melting one end of a vertically held sodium nitrate crystal rod in contact with a hot surface at the top. Thermocapillary convection occurs in the melt because of the temperature gradient at the free surface of the melt. In the experiments, when thermocapillary oscillations occurred, the bottom end of the crystal rod was vibrated at a high frequency to generate a streaming flow in a direction opposite to that of the thermocapillary convection. It is observed that, by generating a sufficiently strong streaming flow, the thermocapillary flow can be offset enough such that the associated thermocapillary oscillations can be quenched.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-18
    Description: Selected problems in biocrystal mechanics(1), nucleation(2) and growth(3) will be addressed. (1) Elastic moduli of protein crystals found from triple bonding, rod vibrations, ultrasound speed and Brillion light scattering vary in a wide range of 0.3 - 3 GPa. This diversity comes from behaviour of intracrystalline liquid. Namely, liquid flow through the narrow intermolecular channels between compressed and expanded regions within an inhomogeneously deformed crystal was considered. The deformation comes from bending or ultrasound wave propagation. (2) Wide scattering in the number of crystals nucleated in the batch technique may come from liquid flow turbulence associated with pipetting; the Reynolds number these injections reaches 10(exp 3). (3) Poor reproducibility in crystal size and, probably, perfection is supposed to come from a variety of growth conditions in the same batch. Growth in a kinetic growth mode in laminar flow, e.g., in a microfluidic device, would allow to better understand growth kinetics and defect formation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Conference on the Crystallization of Biological Macromolecules 10; Jun 05, 2004 - Jun 09, 2004; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-18
    Description: High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel Benchmarks (NPB). In this paper, we present some interesting performance results of ow OpenMP parallel implementation on different architectures such as the SGI Origin2000, SGI Altix, and Cray MTA-2.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Conference on Spectral and High Order Methods; Jun 21, 2004 - Jun 25, 2004; RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-18
    Description: The Composite Inbred Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer on the Cassini orbiter that measures thermal radiation over two decades in wave number, from 10 to 1400 cm (1 mm to 7pm), with a spectral resolution that can be set from 0.5 to 20 cm. The far in portion of the spectrum (10 - 600 cm) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view. The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600 - 1100cm, 1100-1400 cm). Each focal plane is composed of a 1x10 array of HgCdTe detectors, each detector having a 0.3-mrad field of view. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS ability to observe atmospheres in the limb viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn's icy satellites. It will similarly map Saturn's rings, characterizing their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: Progress can be reported in two areas related to characterizing the properties of cusp diamagnetic cavities. Laboratory terrella experiments have been conducted for the purpose of using neutral gas excitation as a tracer of trapped electron populations in the presence of two dipoles that are used to develop a magnetic cusp topology. Figure 1 and 2 show top and side views of two configurations. Dipole trapped electron populations appear as the two luminous annular rings. Other populations are the most intense regions are shown. Interspersed between these regions are narrow regions that represent the topological cusps in these configurations. That they contain luminous gas is evidence for cusp trapping similar to what we believe exists in the terrestrial magnetosphere. The asymmetry of these cusp regions as seen in Figure 1 is the result of a relative tilt between the two dipoles suggestive of what would be expected in space. It is in these regions that particle observations were sought, so as to validate the realization of proposed and laboratory achieved trapping in a diamagnetic cusp. Figure 3 shows particle trajectories in a modeled cusp magnetic topology for three particle energies. Blue, green, and red traces correspond to increasing energies. Due to factors discussed outside of this final report, a thorough exploration of relevant satellite observations have not been achieved.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: UAH-5-21050
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-18
    Description: The purpose of our project is to develop, analyze, and test novel numerical technologies central to the long term goal of direct simulations of subsonic jet noise. Our current focus is on two issues: accurate, near-field domain truncations and high-order, single-step discretizations of the governing equations. The Direct Numerical Simulation (DNS) of jet noise poses a number of extreme challenges to computational technique. In particular, the problem involves multiple temporal and spatial scales as well as flow instabilities and is posed on an unbounded spatial domain. Moreover, the basic phenomenon of interest, the radiation of acoustic waves to the far field, involves only a minuscule fraction of the total energy. The best current simulations of jet noise are at low Reynolds number. It is likely that an increase of one to two orders of magnitude will be necessary to reach a regime where the separation between the energy-containing and dissipation scales is sufficient to make the radiated noise essentially independent of the Reynolds number. Such an increase in resolution cannot be obtained in the near future solely through increases in computing power. Therefore, new numerical methodologies of maximal efficiency and accuracy are required.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: HBCUs/OMUs Research Conference Agenda and Abstracts; 28; NASA/TM-2003-212207
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Development of hydrogen in sealed silica glass ampoules during annealing at elevated temperatures was investigated. The dependence of hydrogen pressure in the ampoules as a function of time, for different temperatures and ampoule parameters was measured. The process was modeled assuming chemical solution of hydrogen according to the reaction: silica + H2 = H- Si= + H-O-Si=. The equilibrium constant of the reaction was determined by fitting the theoretical curves to the experimental data. The Gibbs function for this reaction was estimated at deltaG = -25.8 + 54T.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-18
    Description: Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The effect of periodic perturbation on jet in cross-flow (JICF) is reviewed. In the first part of the paper, flow visualization result from several past works are discussed. Beginning with description of the characteristic vortex systems of a JICF it is shown that specific perturbation techniques work by organizing and intensifying specific vortex systems. Oscillatory blowing works primarily through an organization of the shear layer vortices. In the second part of the paper, results of an ongoing experiment involving another mechanical perturbation technique are discussed. It involves two tabs at the orifice exit whose asymmetry in placement is reversed periodically. It directly modulates the counter-rotating vortex pair (CVP). Effects of the perturbation for an array of three adjacent orifices are exploded. The flowfield data show an improvement in mixing compared to the unperturbed case.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: HT-FED2004-56822 , ASME Fluids Engineering Summer Meeting; Jul 11, 2004 - Jul 15, 2004; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Direct and large-eddy simulations of the interaction between the wake of a circular cylinder and a flat-plate boundary layer are conducted. Two Reynolds numbers are examined. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re(sub theta) achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2003-0975 , 41st Aerospace Sciences Meeting and Exhibit; Jan 06, 2003 - Jan 09, 2003; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: We report research experience in applying an Unsteady Reynolds-Averaged Navier-Stokes (URANS) solver for the prediction of time-dependent flows in the presence of an active flow control device. The configuration under consideration is a synthetic jet created by a single diaphragm piezoelectric actuator in quiescent air. Time-averaged and instantaneous data for this case were obtained at Langley Research Center, using multiple measurement techniques. Computational results for this case using one-equation Spalart-Allmaras and two-equation Menter s turbulence models are presented here along with comparisons with the experimental data. The effect of grid refinement, preconditioning and time-step variation are also examined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-4967 , 22nd AIAA Applied Aerodynamics Conference and Exhibit; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: We analyze the velocity and temperature fields at steady state due to thermocapillary convection around a gas bubble that is stationary in a liquid. A linear temperature field is imposed in the undisturbed liquid. Our interest is in investigating the effect of convective transport of momentum and energy on the velocity and temperature fields. We assume the pertinent physical properties to be constant, and that buoyant convection is negligible. Suitably defined Reynolds and Marangoni numbers are assumed to be small compared with unity. When both the Reynolds and Marangoni numbers are set equal to zero, a solution can be found. In this solution, far from the bubble, the velocity field decays as the inverse of the distance from the bubble, and the disturbance temperature field decays as the inverse of the square of this distance. We now attempt to obtain a solution when the Reynolds number is zero, but the Marangoni number is small, but non-zero, by a perturbation expansion in the Marangoni number. When the temperature field is expanded in a regular perturbation series in the Marangoni number, we show that the problem for the first correction field is ill-posed. The governing equation for this perturbation field contains an inhomogeneity, and the corresponding particular solution neither decays far from the bubble, nor can be canceled by a homogeneous solution. Additional information is included in the original extended abstract.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Annual Meeting American Institute of Chemical Engineers; Oct 13, 2003 - Oct 14, 2003; Ann Arbor, MI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: The Multipurpose Hydrogen Test Bed (MHTB) Test Readiness Review (TRR), in preparation for upcoming thermodynamic vent system testing with LN2 (an LO2 simulant), was conducted on Aug 10 with no significant concerns or open action items. The 21 day test series, designed to evaluate the spray bar mixer/vent system concept suitability for zero-g operation began on August 19. The testing is progressing very well and results indicate that the Moog latching valve is more effective than the Castor solenoid valve in reducing pressure during the vent/mixing cycles. Testing with self-pressurization is expected to be completed on September 3 and testing with helium pressurization will be initiated on September 4 or 5. Additional activities during first half of August included coordination of Notification of Intent (NOI) to propose letters involving CFM in response to the HR&T BAA for Extramural Proposals.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: A computational fluid dynamic (CFD) study is performed on the Hyper-X (X-43A) Launch Vehicle stack configuration in support of the aerodynamic database generation in the transonic to hypersonic flow regime. The main aim of the study is the evaluation of a CFD method that can be used to support aerodynamic database development for similar future configurations. The CFD method uses the NASA Langley Research Center developed TetrUSS software, which is based on tetrahedral, unstructured grids. The Navier-Stokes computational method is first evaluated against a set of wind tunnel test data to gain confidence in the code s application to hypersonic Mach number flows. The evaluation includes comparison of the longitudinal stability derivatives on the complete stack configuration (which includes the X-43A/Hyper-X Research Vehicle, the launch vehicle and an adapter connecting the two), detailed surface pressure distributions at selected locations on the stack body and component (rudder, elevons) forces and moments. The CFD method is further used to predict the stack aerodynamic performance at flow conditions where no experimental data is available as well as for component loads for mechanical design and aero-elastic analyses. An excellent match between the computed and the test data over a range of flow conditions provides a computational tool that may be used for future similar hypersonic configurations with confidence.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-5385 , 22nd AIAA Applied Aerodynamics Conference and Exhibit; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 24th International Congress of the Aeronautical Sciences; Jan 01, 2004; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...