ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies  (3)
  • 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas  (2)
  • Springer  (3)
  • AGU  (2)
  • Institute of Physics
  • Taylor & Francis
  • 2020-2020
  • 2005-2009  (5)
  • 1950-1954
  • 1945-1949
  • 1940-1944
  • 2009  (5)
  • 1952
Collection
Years
  • 2020-2020
  • 2005-2009  (5)
  • 1950-1954
  • 1945-1949
  • 1940-1944
Year
  • 1
    Publication Date: 2017-04-04
    Description: New Sr and Nd isotope data for whole rocks, glasses and minerals are combined to reconstruct the nature and origin of mixing end-members of the 200 km3 trachytic to phonolitic Campanian Ignimbrite (Campi Flegrei, Italy) magmatic system. The least-evolved magmatic end-member shows equilibrium between host glass and the majority of the phenocrysts and is less radiogenic in Sr and Nd than the most-evolved magma. On the contrary, only the Fe-rich pyroxene from the most-evolved erupted magma is in equilibrium with the matrix glass, while all other minerals are in isotopic disequilibrium. These magmas mixed prior to and during the Campanian Ignimbrite eruption and minerals were freely exchanged between the magma batches. Combining the results of the geochemical investigations on magma end-members with geophysical and geological data, we develop the following scenario. In stage 1, a parental, less differentiated magma rose into the middle crust, and evolved through combined crustal assimilation and crystal fractionation. In stage 2, the differentiated magma rose to shallower depth, fed the pre-Campanian Ignimbrite activity and evolved by further open-system processes into the most-evolved and most-radiogenic Campanian Ignimbrite end-member magma. In stage 3, new trachytic magma, isotopically distinct from the pre-Campanian Ignimbrite magmas, rose from ca. 6 km to shallower depth, recharged the most-evolved pre-Campanian Ignimbrite magma chamber, and formed the large and stratified Campanian Ignimbrite magmatic system. During the course of the Campanian Ignimbrite eruption, the two layers were tapped separately and/or simultaneously, and gave rise to the range of chemical and isotopic values displayed by the Campanian Ignimbrite pumices, glasses and minerals.
    Description: Published
    Description: 285-300
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Campanian Ignimbrite ; Radiogenic isotopes ; Mixing process ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We show a set of forward model equations in the Fourier domain for calculating the 3-D gravity and magnetic anomalies of a given 3-D distribution of density or magnetization. One property of the potential field equations is that they are given by convolution products, providing a very simple analytic expression in the Fourier domain. Under this assumption, the domain of the density or magnetization parameters is connected by a biunivoc relationship with the data space, and potential field anomalies can be seen as filtered versions of the corresponding density or magnetization distributions. A very fine spatial discretization can be obtained by using a large number of points within a unique 3-D grid, where both the source distributions and field data are defined. The main advantage of this formulation is that it dramatically reduces execution times, providing a very fast forward model tool useful for modeling anomalies at different altitudes. We use this method to evaluate an average magnetization of 8 A/m for the Palinuro Seamount in the Tyrrhenian Sea (southern Italy), thus performing a joint interpretation of morphological and newly acquired magnetic data.
    Description: Published
    Description: B02103
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: potential field modeling ; Fourier transform ; Palinuro Seamount ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We show the magnetic model of the Selli-Vavilov region. The Selli Line is known as the northwestern edge of the southern Tyrrhenian basin. The tectonic evolution of the Tyrrhenian basin is dominated by a Tortonian - Quaternary extension through the eastward movement of the Apennine subduction system. This migration has generated a diffuse stretching of the continental crust with the emplacement of new oceanic material. This latter occurred in several localized zones where the eastward retreating of the Ionian subduction system produced a strong depletion of the crust with formation of basins and correlated spreading. Nowadays the presence of oceanic crust is confirmed through direct drilling investigation but a complete mapping of the oceanic crustal distribution is still lacking. The Selli-Vavilov region shows a differentiated crustal setting where seamount structures, the oceanic basement portions and continental crust blocks are superimposed. To this aim, a 2D inversion of the magnetic data of this region was conducted to define buried structures. The magnetic susceptibility pattern was computed by solving the least squares problem of the misfit between the predicted and real data for separated wavebands. This method produced two 2D models of the high and low frequency fields of the Selli-Vavilov region. The two apparent susceptibility maps provide different information for distinct ranges of depth. The results of the inversions were also combined with seismic data of the Selli region highlighting the position of the highly-magnetized buried bodies. The results confirm a role for the Selli Line as a deep crustal boundary dividing the Sardinian passive domain from the easternmost active region where different oceanic structures are located. The Selli Line has worked as a detachment fault system which has moved eastward. Finally, the Selli-Vavilov region may be interpreted as a tectonic result due to a passive asymmetrical rift occurred between the Tortonian and Pliocene.
    Description: Published
    Description: 251-266
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Geomagnetism ; Tectonics ; Geodynamics ; Inversion ; Oceanic crust ; Volcanic structure ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: A scientific debate has developed in the last few years as to whether a 130 m diameter sag pond surrounded by a saddle-shaped rim and neighboring smaller sags from the Sirente Plain (Abruzzi, Italy) represent the only known Italian meteoritic crater field, a mud volcano, or an anthropogenic feature. To decipher the nature of the Sirente landforms, we carried out geophysical and geochemical investigations. Geoelectric profiles document two karstified shelf carbonate ridges lying at 10–40 m depth below calcareous lacustrine silts (and deeper more conductive sediments, likely soils/tephra) filling the plain. The smaller sags lie just above the ridges, implying a karstic origin, whereas the main sag (also resting above a carbonate ridge) shows no roots in excess of 10–20 m depth, in contrast to the "crater" interpretation. High-resolution magnetic surveys reveal negative/positive anomaly stripes in correspondence with the buried ridges/ valleys, respectively. The smaller sags, as well as the main crater are located in the domain of negative residuals. The positive long-wavelength magnetic signature is likely due to the strongly susceptive soils/tephra filling the buried valleys. Magnetic modeling shows that the field observed over the crater is incompatible with the field generated by a buried meteorite with realistic characteristics. The smaller sags are characterized by small magnetic anomaly couplets, perfectly reproducible considering the susceptibility contrast between the fill-in soil and the surrounding silts. Our data show that the Sirente crater and the minor depressions are simply the results of human activity and karstic processes, respectively.
    Description: Published
    Description: B03103
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Sirente ; Abruzzi ; meteoritic craters ; magnetic anomalies ; geoelectric profiles ; magnetic modeling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Following the 2001 and 2002–2003 flank eruptions, activity resumed at Mt. Etna on 7 September 2004 and lasted for about 6 months. This paper presents new petrographic, major and trace element, and Sr–Nd isotope data from sequential samples collected during the entire 2004–2005 eruption. The progressive change of lava composition allowed defining three phases that correspond to different processes controlling magma dynamics inside the central volcano conduits. The compositional variability of products erupted up to 24 September is well reproduced by a fractional crystallization model that involves magma already stored at shallow depth since the 2002–2003 eruption. The progressive mixing of this magma with a distinct new one rising within the central conduits is clearly revealed by the composition of the products erupted from 24 September to 15 October. After 15 October, the contribution from the new magma gradually becomes predominant, and the efficiency of the mixing process ensures the emission of homogeneous products up to the end of the eruption. Our results give insights into the complex conditions of magma storage and evolution in the shallow plumbing system of Mt. Etna during a flank eruption. Furthermore, they confirm that the 2004–2005 activity at Etna was triggered by regional movements of the eastern flank of the volcano. They caused the opening of a complex fracture zone extending ESE which drained a magma stored at shallow depth since the 2002–2003 eruption. This process favored the ascent of a different magma in the central conduits, which began to be erupted on 24 September without any significant change in eruptive style, deformation, and seismicity until the end of eruption.
    Description: Published
    Description: 781–793
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemistry ; Isotopic compositions ; Magma feeding system ; Magma mixing ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...