ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus
  • 2015-2019
  • 2005-2009  (1,671)
  • 1975-1979
  • 1970-1974
  • 1950-1954  (46)
  • 2005  (1,671)
  • 1952  (46)
Collection
Years
  • 2015-2019
  • 2005-2009  (1,671)
  • 1975-1979
  • 1970-1974
  • 1950-1954  (46)
Year
  • 11
    Publication Date: 2005-10-19
    Description: Samples of atmospheric aerosol particles were collected in Valladolid, Spain, during the winter of 2003-2004. The measurements were made with a Dekati PM10 cascade impactor with four size stages: greater than 10 µm, between 2.5 to 10 µm, 1 to 2.5 µm and less than 1 µm. The size and shape of the particles were analyzed with a scanning electron microscope (SEM) and elemental analysis was done with an energy dispersive x-ray analysis (EDX). We present an evaluation by size, shape and composition of the major particulate species in the Valladolid urban atmosphere. The total aerosol concentration is very variable, ranging from 39.86 µg·m-3 to 184.88 µg·m-3 with the coarse particles as the dominant mass fraction. Emphasis was given to fine particles (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2005-10-20
    Description: A new cumulus convection parameterisation is presented in this paper. The parameterisation uses an explicit spectral approach and determines, unlike other convection schemes, for each convection event a new cloud distribution function regarding to the given vertical temperature and humidity profiles. This is done by using a one dimensional cloud model to create a spectrum of different clouds. The interaction between all non convective physical processes in the AGCM and all different clouds is taken into account to calculate a selfconsistent cloud spectrum. The model has been implemented in the ECHAM5 AGCM and tested against a large eddy simulation model. The representation of a shallow cumulus cloud field by the AGCM could be much improved. Diurnal cycle, cloud cover, liquid water path and the vertical structure of the mass flux, determined by the new convection scheme are close to the large eddy simulation, whereas the standard convection scheme failed in simulating this convection episode.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2005-10-21
    Description: Some of the meteorological approaches commonly considered in urban air pollution models do not take into account the importance of the smaller scales in the meteorology of complex-terrain coastal sites. The aim of this work is to estimate the impact of using the proper meteorological scales when simulating the behaviour of the pollutant concentrations emitted in the lower layers over coastal complex terrain areas. The availability of experimental measurements of a power plant plume near the Castellón conurbation (on the Spanish Mediterranean coast) has allowed us to use this plume as a tracer of opportunity of the lower atmosphere to check the results of a simulation exercise using the RAMS mesoscale model coupled to the HYPACT particle model. The results obtained show that in a complex-terrain coastal site, because of the strong effect of the meteorological interactions between the different scales on the integral advection and the turbulent dispersion of pollutants, using an inadequate scale to solve the meteorology can result in a very big gap in the simulation of lower-layer pollutant behaviour at urban scales.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2005-10-18
    Description: We explore the use of a fixed-lag Kalman smoother for sequential estimation of atmospheric carbon dioxide fluxes. This technique takes advantage of the fact that most of the information about the spatial distribution of sources and sinks is observable within a few months to half of a year of emission. After this period, the spatial structure of sources is diluted by transport and cannot significantly constrain flux estimates. We therefore describe an estimation technique that steps through the observations sequentially, using only the subset of observations and modeled transport fields that most strongly constrain the fluxes at a particular time step. Estimates of each set of fluxes are sequentially updated multiple times, using measurements taken at different times, and the estimates and their uncertainties are shown to quickly converge. Final flux estimates are incorporated into the background state of CO2 and transported forward in time, and the final flux uncertainties and covariances are taken into account when estimating the covariances of the fluxes still being estimated. The computational demands of this technique are greatly reduced in comparison to the standard Bayesian synthesis technique where all observations are used at once with transport fields spanning the entire period of the observations. It therefore becomes possible to solve larger inverse problems with more observations and for fluxes discretized at finer spatial scales. We also discuss the differences between running the inversion simultaneously with the transport model and running it entirely off-line with pre-calculated transport fields. We find that the latter can be done with minimal error if time series of transport fields of adequate length are pre-calculated.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2005-09-20
    Description: Stratospheric aerosols play an important role in a number of atmospheric issues such as midlatitude ozone depletion, atmospheric dynamics and the Earth radiative budget. Polar stratospheric clouds on the other hand are a crucial factor in the yearly Arctic and Antarctic ozone depletion. It is therefore important to quantify the stratospheric aerosol/PSC abundance. In orbit since March 2002, the GOMOS instrument onboard the European Envisat satellite has provided a vast aerosol extinction data set. In this paper we present aerosol/PSC zonal median values that were constructed from this data set, together with a discussion of the results.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2005-09-19
    Description: Atmospheric chloromethane (CH3Cl) plays an important role in stratospheric ozone destruction, but many uncertainties still exist regarding strengths of both sources and sinks and the processes leading to formation of this naturally occurring gas. Recent work has identified a novel chemical origin for CH3Cl, which can explain its production in a variety of terrestrial environments: the widespread structural component of plants, pectin, reacts readily with chloride ion to form CH3Cl at both ambient and elevated temperatures (Hamilton et al., 2003). It has been proposed that this abiotic chloride methylation process in terrestrial environments could be responsible for formation of a large proportion of atmospheric CH3Cl. However, more information is required to determine the global importance of this new source and its contribution to the atmospheric CH3Cl budget. A potentially powerful tool in studying the atmospheric CH3Cl budget is the use of stable carbon isotope ratios. In an accompanying paper it is reported that the reaction of CH3Cl with OH radical, the dominant sink for atmospheric CH3Cl, is accompanied by an unexpectedly large fractionation factor (Gola et al., 2005). Another recently published study shows that CH3Cl formed by the abiotic methylation process at ambient temperatures has a unique stable carbon isotope signature, extremely depleted in 13C, unequivocally distinguishing it from all other known sources (Keppler et al., 2004). Using these findings together with data existing in the literature, we here present three scenarios for an isotopic mass balance for atmospheric CH3Cl. Our calculations provide strong support for the proposal that the largest source of atmospheric CH3Cl (1800 to 2500 Gg yr-1) is the abiotic methylation of chloride in terrestrial ecosytems, primarily located in tropical and subtropical areas where turnover of biomass is highest. Furthermore our calculations also indicate that the microbial soil sink for CH3Cl is likely to be much larger (〉1000 Gg yr-1) than that previously assumed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2005-09-13
    Description: Global stratospheric ozone columns derived from UV nadir spectra measured by SCIAMACHY (Scanning Imaging Spectrometer for Atmospheric Chartography; data ESA Versions 5.01 and 5.04) aboard the recently launched Environmental Satellite (ENVISAT) from January to June 2003 were compared to collocated total ozone data from GOME (Global Ozone Monitoring Experiment on ERS-2) retrieved using the weighting function DOAS algorithm (WFDOAS; Version 1.0) in order to assess the level-2 data (trace gas data) retrieval accuracy from SCIAMACHY. In addition, SCIAMACHY ozone columns retrieved with WFDOAS V1.0 were compared to GOME WFDOAS for some selected days in 2003 in order to separate data quality issues that either come from the optical performance of the instrument or algorithm implementation. Large numbers of collocated total ozone data from the two instruments, which are flying in the same orbit about 30 min apart, were spatially binned into regular 2.5° times 2.5° grids and then compared. Results of these satellite comparisons show that SCIAMACHY O3 vertical columns (ESA Version 5.01/5.04) are on average 1% (±2%) lower than GOME WFDOAS and scatter increases at solar zenith angles above 85° and at very low total ozone values. Results show dependencies on the solar zenith angle, latitudes, and total ozone amounts which are explained by the implementation of an outdated GOME algorithm based on GOME Data Processor (GDP) version 2.4 algorithms for the SCIAMACHY operational product. The reprocessing with an algorithm equivalent to GOME WFDOAS V1.0 shows that the offset and dependencies on solar zenith angle, latitude, and total ozone disappear and that SCIAMACHY WFDOAS data are within 1% of GOME WFDOAS. Since GOME lost its global coverage in July 2003 due to data rate limitation, continuation of the total ozone time series with SCIAMACHY is of highest importance for long-term trend monitoring. Since the beginning of its operation in March 2002 the SCIAMACHY instrument has performed stable. With the application of proper algorithms to retrieve total ozone, SCIAMACHY will be able to contribute to the global long term satellite total ozone record and it has the potential to achieve the high accuracy of GOME total ozone.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2005-09-01
    Description: Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME) satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2). A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme) to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme) to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal correlation methods, from cloud-free and cloud-covered observations, and from two different lightning parameterizations. Accounting for a wide variety of random and possible systematic errors, we estimate the global NOx production from lightning to be in the range 1.1–6.4 Tg N in 1997.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2005-08-30
    Description: We studied the sources, compositions and size distributions of aerosol particles during long-range transport (LRT) PM2.5 episodes which occurred on 12–15 August, 26–28 August and 5–6 September 2002 in Finland. Backward air mass trajectories, satellite detections of fire areas and dispersion modelling results indicate that emissions from wildfires in Russia and other Eastern European countries arrived in Finland during these episodes. Elemental analyses using scanning electron microscopy (SEM) coupled with energy dispersive X-ray microanalyses (EDX) showed that the proportions of S-rich particles and agglomerates (agglomeration was caused partly by the sampling method used) increased during the episodes, and they contained elevated fractions of K, indicating emissions from biomass burning. These aerosols were mixed with S-rich emissions from fossil fuel burning during transport since air masses came through polluted areas of Europe. Minor amounts of coarse Ca-rich particles were also brought by LRT during the episodes, and they probably originated from wildfires and/or from Estonian and Russian oil-shale-burning industrial areas. Ion chromatography analysis showed that concentrations of sulphate (SO42-), total nitrate (NO3-+HNO3(g)) and total ammonium (NH4++NH3(g)) increased during the episodes, but the ratio of the total amount of these ions to PM10 concentration decreased, indicating unusually high fractions of other chemical components. Particle number size distribution measurements with differential mobility particle sizer (DMPS) revealed that concentrations of particles 90–500 nm increased during the episodes, while concentrations of particles smaller than 90 nm decreased. The reduction of the smallest particles was caused by suppressed new particle formation due to vapour and molecular cluster uptake of LRT particles. Our results show that emissions from wildfires in Russian and other Eastern European countries deteriorated air quality of very large areas, even at distances of over 1000 km from the fire areas.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2005-08-12
    Description: The Indian summer monsoon rainfall (ISMR), which has a strong connection to agricultural food production, has been less predictable by conventional models in recent times. Two distinct years 2002 and 2003 with lower and higher July rainfall, respectively, are selected to help understand the natural and anthropogenic influences on ISMR. We show that heating gradients along the meridional monsoon circulation are reduced due to aerosol radiative forcing and the Indian Ocean Dipole in 2002. An increase in the dust and biomass-burning component of the aerosols through the zonal monsoon circulation resulted in reduction of cloud droplet growth in July 2002. These conditions were opposite to those in July 2003 which led to an above average ISMR. In this study, we have utilized NCEP/NCAR reanalyses for meteorological data (e.g. sea-surface temperature, horizontal winds, and precipitable water), NOAA interpolated outgoing long-wave radiation, IITM constructed all-India rainfall amounts, aerosol parameters as observed from the TOMS and MODIS satellites, and ATSR fire count maps. Based on this analysis, we suggest that monsoon rainfall prediction models should include synoptic as well as interannual variability in both atmospheric dynamics and chemical composition.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...