ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Stability and Control
  • 1985-1989  (1)
  • 1955-1959  (6)
  • 1950-1954  (6)
  • 1987  (1)
  • 1955  (6)
  • 1952  (6)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A helicopter rotor control system (13) including a stop azimuth controller (32) for establishing the value of a deceleration command (15') to a deceleration controller (23), a transition azimuth predictor (41) and a position reference generator (55), which are effective during the last revolution of said rotor (14) to establish a correction indication (38) to adjust the deceleration command (15') to ensure that one of the rotor blades (27) stops at a predetermined angular position.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A flight investigation was made at altitudes of 40,000, 25,000 and 15,000 feet to determine the horizontal-tail loads of the Bell X-5 research airplane at a sweep angle of 58.7 deg over the lift range of the airplane for Mach numbers from 0.61 to 1.00. The horizontal-tail loads were found to be nonlinear with lift throughout the lift ranges tested at all Mach numbers except at a Mach number of 1.00. The balancing tail loads reflected the changes which occur in the wing characteristics with increasing angle of attack. The nonlinearities were, in general, more pronounced at the higher angles of attack near the pitch-up where the balancing tail loads indicate that the wing-fuselage combination becomes unstable. No apparent effects of altitude on the balancing tail loads were evident over the comparable lift ranges of these tests at altitudes from 40,000 feet to 15,000 feet. Comparisons of balancing tail loads obtained from flight and windtunnel tests indicated discrepancies in absolute magnitudes, but the general trends of the data agree. Some differences in absolute magnitude may be accounted for by the tail load carried inboard of the strain-gage station and the load induced on the fuselage by the presence of the tail. These loads were not measured in flight.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-H55E20a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-11
    Description: A supplementary investigation has been conducted in the Langley 20-foot free-spinning tunnel of a l/20-scale model of the Douglas XF4D-1 airplane to determine the effect of only neutralizing the rudder for recovery from an inverted spin, and the effect of partial aileron deflection with the spin for recovery from an erect spin. An estimation of the size parachute required for satisfactory recovery from a spin with the model ballasted to represent the Douglas F5D-1 (formerly the Douglas XF4D-2) airplane was also made. Results of the original investigation on the XF4D-1 design are presented in NACA RM SL50K30a. The results indicated that satisfactory recoveries from inverted spins of the airplane should be obtained by rudder neutralization when the longitudinal stick position is neutral or forward. Recoveries from erect spins from the normal-spin control configuration should be satisfactory by full rudder reversal with simultaneous movement of the ailerons to two-thirds with the spin. For the parachute tests with the model loaded to represent the F5D-1 airplane, the tests indicated that a 16.7-foot-diameter hemispherical-tail parachute (drag coefficient of 1.082 based on the projected area) with a towline 20.0 feet long (full- scale values) should be satisfactory for an emergency spin-recovery device during demonstration spins of the airplane.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL55L02 , Rept-5269
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: An investigation of a 1/20-scale dynamically similar model of the Boeing Stratocruiser airplane (C-97) was made to determine the ditching characteristics and proper technique for ditching the airplane. Scale-strength bottoms were used to determine probable damage to the fuselage and the effect of damage on behavior. The behavior of the model was determined from visual observations, motion-picture records, and time-history deceleration records. Data are presented in a table, photographs, and curves. It was concluded that the airplane should be ditched at a medium nose-high landing attitude (near 6 deg) with landing flaps full down. The airplane will probably make a smooth run of medium depth with light spray and may even trim up slightly in the water. The fuselage will probably be damaged and the lower compartment filled with water. In calm water, the maximum longitudinal deceleration will be about 4g and the landing run will be about four fuselage lengths.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9I16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-11
    Description: An experimental investigation has been made in the Langley stability tunnel to determine the low-speed yawing, pitching, and static stability characteristics of a 1/10-scale model of the Grumman F9F-9 airplane. Tests were made to determine the effects of duct-entrance-fairing plugs on the static lateral and longitudinal stability characteristics of the complete model in the clean condition. The remaining tests were concerned with determining tail contributions as well as the effect of duct-entrance-fairing plugs, slats, flaps, and landing gear on the yawing and pitching stability derivatives. These data are presented without analysis in order to expedite distribution.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL55D25 , Rept-4995
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed, power-off stability and control characteristics of a 1/10-scale model simulating the Convair F-102A airplane has been made in the Langley free-flight tunnel. The model in its basic configuration and with two modifications involving leading- edge slats and an increase in vertical-tail size was flown through a lift-coefficient range from 0.7 to the stall. Only relatively low-altitude conditions were simulated. The longitudinal stability characteristics of the model were considered satisfactory for all conditions investigated. The lateral stability characteristics were considered satisfactory for the basic configuration over the lift-coefficient range investigated, except near the stall, where large values of static directional instability caused the model to be directionally divergent. An 80-percent increase in vertical-tail area increased the angle of attack at which the model became directionally divergent. The longitudinal and lateral control characteristics were generally satisfactory. Although the adverse sideslip characteristics for the model were considered acceptable over the angle-of-attack range, analysis indicates that the adverse sideslip characteristics of the airplane may be objectionable at high angles of attack.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL55B21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-11
    Description: An experimental investigation has been made in the Langley stability tunnel to determine the low-speed yawing, pitching, and static stability characteristics of a 1/10-scale model of the Grumman F9F-9 airplane. Tests were made to determine the effects of duct-entrance-fairing plugs on the static lateral and longitudinal stability characteristics of the complete model in the clean condition. The remaining tests were concerned with determining tail contributions as well as the effect of duct-entrance-fairing plugs, slats, flaps, and landing gear on the yawing and pitching stability derivatives. These data are presented without analysis in order to expedite distribution.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL55E02 , Rept-5007
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: The static longitudinal stability characteristics of a 0.15-scale model of the Hermes A-lE2 missile have been determined in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.98, corresponding to Reynolds numbers, based on body length, of 12.3 x 10(exp 6) to 17.1 x 10(exp 6). This paper presents results obtained with body alone and body-fins combinations at 0 degrees (one set of fins vertical and the other set horizontal) and 45 degree angle of roll. The results indicate that the addition of the fins to the body insures static longitudinal stability and provides essentially linear variations of the lift and pitching moment at small angles of attack throughout the Mach number range. The slopes of the lift and pitching-moment curves vary slightly with Mach number and show only small effects due to the angle of roll.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52I10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-11
    Description: At the request of the Bureau of Aeronautics, Department of the Navy, an investigation at transonic and low supersonic speeds of the drag and longitudinal trim characteristics of the Douglas XF4D-1 airplane is being conducted by the Langley Pilotless Aircraft Research Division. The Douglas XF4D-1 is a jet-propelled, low-aspect-ratio, swept-wing, tailless, interceptor-type airplane designed to fly at low supersonic speeds. As a part of this investigation, flight tests were made using rocket- propelled 1/10- scale models to determine the effect of the addition of 10 external stores and rocket packets on the drag at low lift coefficients. In addition to these data, some qualitative values of the directional stability parameter C(sub n beta) and duct total-pressure recovery are also presented.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52G11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-11
    Description: An investigation of a vortex-generator configuration on the wings of a l/4-scale model of the X-1 airplane having a 10-percent-thick wing was conducted in the Langley 16-foot transonic tunnel. The effect of the vortex generators was determined by comparing the model aerodynamic characteristics, wing-pressure distributions, and wing-wake patterns for model configurations with and without vortex generators on the wings. Results are presented from tests at 0.1 increments in Mach number from about 0.69 to 0.99, at Reynolds numbers of about 4.1 x 10(exp 6) to 4.7 x 10(exp 6), and through an angle-of-attack range up to 1.5 deg at lower speeds and up to 5 deg at the highest speed. In general, little difference in the aerodynamic characteristics was observed, except at a Mach number of 0.90 where a rearward movement of the shock on the upper surface of the wing with the vortex generators installed resulted in less separation.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52L26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-11
    Description: An investigation of a 1/24-scale model of the Grumman F9F-6 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics of the model were determined for the normal flight loading with the model in the clean condition. The effect of loading variations was investigated briefly. Spin-recovery parachute tests were also performed. The results indicate that erect spins obtained on the airplane in the clean condition will be satisfactorily terminated for all loading conditions provided full rudder reversal is accompanied by moving the ailerons and flaperons (lateral controls) to full with the spin (stick right in a right spin). Inverted spins should be satisfactorily terminated by full reversal of the rudder alone. The model tests indicate that an 11.4-foot (laid-out-flat diameter) tail parachute (drag coefficient approximately 0.73) should be effective as an emergency spin-recovery device during demonstration spins of the airplane provided the towline is attached above the horizontal stabilizer.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52G03A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/20-scale model of the Consolidated Vultee XFY-1 airplane with a windmilling propeller simulated to determine the effects of control setting and movements upon the erect spin and recovery characteristics for a range of airplane-loading conditions. The effects on the model's spin-recovery characteristics of removing the lower vertical tail, removing the gun pods, and fixing the rudders at neutral were also investigated briefly. The investigation included determination of the size parachute required for emergency recovery from demonstration spins. The tumbling tendencies of the model were also investigated. Brief static force tests were made to determine the aerodynamic characteristics in pitch at high angles of attack. The investigation indicated that the spin and recovery characteristics of the airplane with propeller windmilling will be satisfactory for all loading conditions if recovery is attempted by full rudder reversal accompanied by simultaneous movement of the stick laterally to full with the spin (stick right in a right spin) and longitudinally to neutral. Inverted spins should be satisfactorily terminated by fully reversing the rudder followed immediately by moving the stick laterally towards the forward rudder pedal and longitudinally to neutral. Removal of the gun pods or fixing the rudders at neutral will not adversely affect the airplane's spin-recovery characteristics, but removal of the lower vertical tail will result in unsatisfactory spin-recovery characteristics. The model-test results showed that a 13.3-foot wing-tip conventional parachute (drag coefficient approximately 0.7) should be effective as an emergency spin-recovery device during demonstration spins of the airplane. It was indicated that the airplane should not tumble and that no unusual longitudinal-trim characteristics should be obtained for the center-of-gravity positions investigated.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52L10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: The possibility of overshooting the anticipated normal acceleration as a result of the artificial-feel characteristics of the F-89C airplane at a condition of minimum static stability was investigated analytically by means of an electronic simulator. Several methods of improving the stick-force characteristics were studied. It is shown that, due to the lag in build-up of the portion of the stick force introduced by the bobweight, it would be possible for excessive overshoots of normal acceleration to occur in abrupt maneuvers with reasonable assumed control movements. The addition of a transient stick force proportional to pitching acceleration (which leads the normal acceleration) to prevent this occurring would not be practical due to the introduction of an oscillatory mode to the stick-position response. A device to introduce a viscous damping force would Improve the stick-force characteristics so that normal acceleration overshoots would not be likely, and the variation of the maximum stick force in rapid pulse-type maneuvers with duration of the maneuver then would have a favorable trend.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SA52L31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...