ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • Continental shelf/slope  (5)
  • American Meteorological Society  (5)
  • Blackwell Publishing Ltd
  • De Gruyter
  • GFZ Data Services
  • International Union of Crystallography
  • Oxford University Press
  • Springer Nature
  • Springer Science + Business Media
  • Taylor & Francis
  • 2020-2024
  • 2020-2023  (5)
  • 2020-2022
  • 1960-1964
  • 1950-1954
  • 1935-1939
  • 2022  (2)
  • 2022  (2)
  • 2022  (2)
  • 2021  (3)
  • 2021  (3)
  • 2021  (3)
  • 1964
  • 1959
  • 1951
Collection
  • Articles  (5)
Publisher
  • American Meteorological Society  (5)
  • Blackwell Publishing Ltd
  • De Gruyter
  • GFZ Data Services
  • International Union of Crystallography
  • +
Years
  • 2020-2024
  • 2020-2023  (5)
  • 2020-2022
  • 1960-1964
  • 1950-1954
  • +
Year
  • 2022  (2)
  • 2022  (2)
  • 2022  (2)
  • 2021  (3)
  • 2021  (3)
  • +
  • 1
    Publication Date: 2022-12-21
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12), (2022): 2923–2933, https://doi.org/10.1175/jpo-d-22-0064.1.
    Description: The characteristics and dynamics of depth-average along-shelf currents at monthly and longer time scales are examined using 17 years of observations from the Martha’s Vineyard Coastal Observatory on the southern New England inner shelf. Monthly averages of the depth-averaged along-shelf current are almost always westward, with the largest interannual variability in winter. There is a consistent annual cycle with westward currents of 5 cm s−1 in summer decreasing to 1–2 cm s−1 in winter. Both the annual cycle and interannual variability in the depth-average along-shelf current are predominantly driven by the along-shelf wind stress. In the absence of wind forcing, there is a westward flow of ∼5 cm s−1 throughout the year. At monthly time scales, the depth-average along-shelf momentum balance is primarily between the wind stress, surface gravity wave–enhanced bottom stress, and an opposing pressure gradient that sets up along the southern New England shelf in response to the wind. Surface gravity wave enhancement of bottom stress is substantial over the inner shelf and is essential to accurately estimating the bottom stress variation across the inner shelf.
    Description: The National Science Foundation, Woods Hole Oceanographic Institution, the Massachusetts Technology Collaborative, and the Office of Naval Research have supported the construction and maintenance of MVCO. The analysis presented here was partially funded by the National Science Foundation under Grants OCE 1558874 and OCE 1655686.
    Keywords: Continental shelf/slope ; Coastal flows ; Momentum ; Ocean dynamics ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 247-266, https://doi.org/10.1175/JPO-D-20-0098.1.
    Description: This study focuses on mechanisms of shelf valley bathymetry affecting the spread of riverine freshwater in the nearshore region. In the context of Changjiang River, a numerical model is used with different no-tide idealized configurations to simulate development of unforced river plumes over a sloping bottom, with and without a shelf valley off the estuary mouth. All simulated freshwater plumes are surface-trapped with continuously growing bulges near the estuary mouth and narrow coastal currents downstream. The simulations indicate that a shelf valley tends to compress the bulge along the direction of the valley long axis and modify the incident angle of the bulge flow impinging toward the coast, which then affects the strength of the coastal current. The bulge compression results from geostrophic adjustment and isobath-following tendency of the depth-averaged flow in the bulge region. Generally, the resulting change in the direction of the bulge impinging flow enhances down-shelf momentum advection and freshwater delivery into the coastal current. Sensitivity simulations with altered river discharges Q, Coriolis parameter, shelf bottom slope, valley geometry, and ambient stratification show that enhancement of down-shelf freshwater transport in the coastal current, ΔQc, increases with increasing valley depth within the bulge region and decreasing slope Burger number of the ambient shelf. Assuming potential vorticity conservation, a scaling formula of ΔQc/Q is developed, and it agrees well with results of the sensitivity simulations. Mechanisms of valley influences on unforced river plumes revealed here will help future studies of topographic influence on river plumes under more realistic conditions.
    Description: This work is conducted by Canbo Xiao and Weifeng (Gordon) Zhang during CX’s one-year visit at Woods Hole Oceanographic Institution (WHOI) in 2018–19. CX was supported by China Scholarship Council.
    Keywords: Continental shelf/slope ; Buoyancy ; Coastal flows ; Topographic effects ; Runoff ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-25
    Description: Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Han, L., Seim, H., Bane, J., Todd, R. E., & Muglia, M. A shelf water cascading event near Cape Hatteras. Journal of Physical Oceanography, 51(6), (2021): 2021–2033, https://doi.org/10.1175/JPO-D-20-0156.1.
    Description: Carbon-rich Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) shelf waters typically converge on the continental shelf near Cape Hatteras. Both are often exported to the adjacent open ocean in this region. During a survey of the region in mid-January 2018, there was no sign of shelf water export at the surface. Instead, a subsurface layer of shelf water with high chlorophyll and dissolved oxygen was observed at the edge of the Gulf Stream east of Cape Hatteras. Strong cooling over the MAB and SAB shelves in early January led to shelf waters being denser than offshore surface waters. Driven by the density gradient, the denser shelf waters cascaded beneath the Gulf Stream and were subsequently entrained into the Gulf Stream, as they were advected northeastward. Underwater glider observations 80 km downstream of the export location captured 0.44 Sv (1 Sv ≡ 106 m3 s−1) of shelf waters transported along the edge of the Gulf Stream in January 2018. In total, as much as 7 × 106 kg of carbon was exported from the continental shelf to a greater depth in the open ocean during this 5-day-long cascading event. Earlier observations of near-bottom temperature and salinity at a depth of 230 m captured several multiday episodes of shelf water at a location that was otherwise dominated by Gulf Stream water, indicating that the January 2018 cascading event was not unique. Cascading is an important, yet little-studied pathway of carbon export and sequestration at Cape Hatteras.
    Description: This research was funded by the National Science Foundation (Grants OCE-1558920 to University of North Carolina at Chapel Hill and OCE-1558521 to Woods Hole Oceanographic Institution) as part of PEACH. We acknowledge and thank Sara Haines for the processing and QC of the mooring data, and we thank the PEACH group for helpful discussions and for their support. Additional thanks are given to the crew of R/V Armstrong (AR-26).
    Keywords: Continental shelf/slope ; Fronts ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(8), (2020): 2251-2270, doi:10.1175/JPO-D-19-0303.1.
    Description: The Gulf Stream affects global climate by transporting water and heat poleward. The current’s volume transport increases markedly along the U.S. East Coast. An extensive observing program using autonomous underwater gliders provides finescale, subsurface observations of hydrography and velocity spanning more than 15° of latitude along the path of the Gulf Stream, thereby filling a 1500-km-long gap between long-term transport measurements in the Florida Strait and downstream of Cape Hatteras. Here, the glider-based observations are combined with shipboard measurements along Line W near 68°W to provide a detailed picture of the along-stream transport increase. To account for the influences of Gulf Stream curvature and adjacent circulation (e.g., corotating eddies) on transport estimates, upper- and lower-bound transports are constructed for each cross–Gulf Stream transect. The upper-bound estimate for time-averaged volume transport above 1000 m is 32.9 ± 1.2 Sv (1 Sv ≡ 106 m3 s−1) in the Florida Strait, 57.3 ± 1.9 Sv at Cape Hatteras, and 75.6 ± 4.7 Sv at Line W. Corresponding lower-bound estimates are 32.3 ± 1.1 Sv in the Florida Strait, 54.5 ± 1.7 Sv at Cape Hatteras, and 69.9 ± 4.2 Sv at Line W. Using the temperature and salinity observations from gliders and Line W, waters are divided into seven classes to investigate the properties of waters that are transported by and entrained into the Gulf Stream. Most of the increase in overall Gulf Stream volume transport above 1000 m stems from the entrainment of subthermocline waters, including upper Labrador Sea Water and Eighteen Degree Water.
    Description: We gratefully acknowledge funding from the Office of Naval Research (N000141713040), the National Science Foundation (OCE-0220769, OCE-1633911, OCE-1923362), NOAA’s Global Ocean Monitoring and Observing Program (NA14OAR4320158, NA19OAR4320074), WHOI’s Oceans and Climate Change Institute, Eastman Chemical Company, and the W. Van Alan Clark, Jr. Chair for Excellence in Oceanography at WHOI (awarded to Breck Owens).
    Keywords: Continental shelf/slope ; North Atlantic Ocean ; Boundary currents ; Transport ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(6),(2020): 1717-1732, doi:10.1175/JPO-D-19-0273.1.
    Description: Recent measurements and modeling indicate that roughly half of the Pacific-origin water exiting the Chukchi Sea shelf through Barrow Canyon forms a westward-flowing current known as the Chukchi Slope Current (CSC), yet the trajectory and fate of this current is presently unknown. In this study, through the combined use of shipboard velocity data and information from five profiling floats deployed as quasi-Lagrangian particles, we delve further into the trajectory and the fate of the CSC. During the period of observation, from early September to early October 2018, the CSC progressed far to the north into the Chukchi Borderland. The northward excursion is believed to result from the current negotiating Hanna Canyon on the Chukchi slope, consistent with potential vorticity dynamics. The volume transport of the CSC, calculated using a set of shipboard transects, decreased from approximately 2 Sv (1 Sv ≡ 106 m3 s−1) to near zero over a period of 4 days. This variation can be explained by a concomitant change in the wind stress curl over the Chukchi shelf from positive to negative. After turning northward, the CSC was disrupted and four of the five floats veered offshore, with one of the floats permanently leaving the current. It is hypothesized that the observed disruption was due to an anticyclonic eddy interacting with the CSC, which has been observed previously. These results demonstrate that, at times, the CSC can get entrained into the Beaufort Gyre.
    Description: This work was principally supported by the Stratified Ocean Dynamics of the Arctic (SODA) program under ONR Grant N000141612450. S.B. wants to thank Labex iMust for supporting his research. R.S.P. acknowledges U.S. National Science Foundation Grants OPP-1702371, OPP-1733564, and PLR-1303617. P.L. acknowledges National Oceanic and Atmospheric Administration Grant NA14-OAR4320158. M.L. acknowledges National Natural Science Foundation of China Grants 41706025 and 41506018. T.P. thanks ENS de Lyon for travel support funding. The authors gratefully acknowledge the support of Steve Jayne, Pelle Robins, and Alex Ekholm at the Woods Hole Oceanographic Institution for preparation, deployment, and data provision for the ALTO floats. Chanhyung Jeon assisted in preparing and deploying the floats. The invaluable support of the crew of the R/V Sikuliaq is also gratefully acknowledged.
    Keywords: Arctic ; Continental shelf/slope ; Currents ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...