ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Propulsion and Power  (16)
  • LUNAR AND PLANETARY EXPLORATION
  • Physics
  • SOLAR PHYSICS
  • 1975-1979
  • 1955-1959  (6)
  • 1950-1954  (10)
  • 1930-1934
  • 1958  (6)
  • 1950  (10)
Collection
Years
  • 1975-1979
  • 1955-1959  (6)
  • 1950-1954  (10)
  • 1930-1934
Year
  • 1
    Publication Date: 2019-06-28
    Description: Average spanwise blade temperatures and cooling-air pressure losses through a small (1.4-in, span, 0.7-in, chord) air-cooled turbine blade were calculated and are compared with experimental nonrotating cascade data. Two methods of calculating the blade spanwise metal temperature distributions are presented. The method which considered the effect of the length-to-diameter ratio of the coolant passage on the blade-to-coolant heat-transfer coefficient and assumed constant coolant properties based on the coolant bulk temperature gave the best agreement with experimental data. The agreement obtained was within 3 percent at the midspan and tip regions of the blade. At the root region of the blade, the agreement was within 3 percent for coolant flows within the turbulent flow regime and within 10 percent for coolant flows in the laminar regime. The calculated and measured cooling-air pressure losses through the blade agreed within 5 percent. Calculated spanwise blade temperatures for assumed turboprop engine operating conditions of 2000 F turbine-inlet gas temperature and flight conditions of 300 knots at a 30,000-foot altitude agreed well with those obtained by the extrapolation of correlated experimental data of a static cascade investigation of these blades.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E58E20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: Two short turbojet combustors designed for use with vaporized hydrocarbon fuels were tested in a one-quarter annular duct. The experimental combustors consisted of many small "swirl-can" combustor elements manifolded together. This design approach allowed the secondary mixing zone to be considerably reduced over that of conventional combustors. The over-all combustion lengths, for the two configurations were 13.5 and 11.0 inches, approximately one-half the length of the shortest conventional combustors. These short combustors did not provide combustion efficiencies as high as those for conventional combustors at low pressures. However, over the range of combustor-inlet total-pressures expected in aircraft capable of flight at Mach numbers of 2.5 and above, these short combustors gave very high efficiencies. A combustion efficiency of 97 percent was obtained at a combustor-inlet total-pressure of 25.0 inches of mercury absolute, reference velocity of 120 feet per second, and inlet-air total temperature of 1160 deg R. By proportioning the fuel flow between the manifold rows of can combustor elements, control of the combustor-outlet radial total-temperature profile was demonstrated. Combustor totalpressure loss varied from 0.75 percent of the inlet total pressure at isothermal conditions and a reference velocity of 75 feet per second to 5.5 percent at a total-temperature ratio of 1.8 and a reference velocity of 180 feet per second.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E57J03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: This analysis investigates the application of gas turbine engines at a cruise Mach number of 4.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-X-60935 , NACA-C-8548
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: A program was conducted in an altitude facility at the NACA Lewis laboratory to investigate the effects of rapid inlet pressure oscillations on the operation of a current turbo jet engine. These pressure oscillations were approximately sinusoidal in form and were generated to cover a frequency range of 2 to 75 cycles per second and an amplitude range of 10 to 70 percent of the free-stream total pressure. As the oscillation progressed through the compressor, the amplitude was attenuated considerably and a relatively large phase shift (lag) occurred. Engine stall limits obtained during pressure oscillations differed from quasi-steady-state stall limits as defined by over-all compressor pressure ratio.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E58A03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-16
    Description: A lightweight turbine rotor assembly was devised, and components were evaluated in a full-scale jet engine. Thin sheet-metal airfoils were brazed to radial fingers that were an integral part of a number of thin disks composing the turbine rotor. Passages were provided between the disks and in the blades for air cooling. The computed weight of the assembly was 50 percent less than that of a similar turbine of normal construction used in a conventional turbojet engine. Two configurations of sheet-metal test blades simulating the manner of attachment were fabricated and tested in a turbojet engine at rated speed and temperature. After 8-1/2 hours of operation pieces broke loose from the tip sections of the better blades. Severe cracking produced by vibration was determined as the cause of failure. Several methods of overcoming the vibration problem are suggested.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-10-5-58E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: The performance and operational characteristics of two afterburner configurations for the Iroquois turbojet engine were evaluated in an altitude test chamber over a range of afterburner equivalence ratios at afterburner-inlet pressures from 733 to 3186 pounds per square foot absolute. These conditions correspond to an altitude range from 38,700 to 66,800 feet at a flight Mach number of 1.5. The only difference between the two afterburner configurations was in the pattern of afterburner fuel injection. At an afterburner-inlet pressure of approximately 3100 pounds per square foot absolute, corresponding to an altitude of 38,700 feet and a_ flight Mach number of 1.5, the combustion efficiency of both configurations reached peak values of 0.80 to 0.85 at equivalence ratios of 0.35 to 0.40. However, further reduction in the afterburner-inlet pressure severely affected combustion efficiency. For example, at an afterburner inlet pressure level of 700 to 1000 pounds per square foot absolute, the efficiency for both configurations was 0.20 to 0.40.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE58G01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TN-2227
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: As part of a general investigation of propellers at high forward speeds, tests of two 2-blade propellers having the NACA 4-(3)(8)-03 and NACA 4-(3)(8)-45 blade designs have been made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.725 to establish in detail the changes in propeller characteristics due to compressibility effects. These propellers differed primarily only in blade solidity, one propeller having 50 percent and more solidity than the other. Serious losses in propeller efficiency were found as the propeller tip Mach number exceeded 0.91, irrespective of forward speed or blade angle. The magnitude of the efficiency losses varied from 9 percent to 22 percent per 0.1 increase in tip Mach number above the critical value. The range of advance ratio for peak efficiency decreased markedly with increase of forward speed. The general form of the changes in thrust and power coefficients was found to be similar to the changes in airfoil lift coefficient with changes in Mach number. Efficiency losses due to compressibility effects decreased with increase of blade width. The results indicated that the high level of propeller efficiency obtained at low speeds could be maintained to forward sea-level speeds exceeding 500 miles per hour.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-974 , NACA-ACR-L6D02 , NACA-AR-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-16
    Description: Contents: Preliminary notes on the efficiency of propulsion systems; Part I: Propulsion systems with direct axial reaction rockets and rockets with thrust augmentation; Part II: Helicoidal reaction propulsion systems; Appendix I: Steady flow of viscous gases; Appendix II: On the theory of viscous fluids in nozzles; and Appendix III: On the thrusts augmenters, and particularly of gas augmenters
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1259
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-11
    Description: An investigation was conducted to determine the effects of water injection on the over-all performance of a modified J33-A-27 turbojet-engine compressor at the design equivalent speed of 11,800 rpm. The water-air ratio by weight was 0.05. With water injection the peak pressure ratio increased 9.0 per- cent, the maximum efficiency decreased 15 percent (actual numerical difference 0.12), and. the maximum total weight flow increased 9.3 percent.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50F14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-11
    Description: The compressor from the XT-46 turbine-propeller engine was revised by removing the last two rows of stator blades and by eliminating the interstage leakage paths described in a previous report. With the revised compressor, the flow choking point shifted upstream into the last rotor-blade row but the maximum weight flow was not increased over that of the original compressor. The flow range of the revised compressor was reduced to about two-thirds that obtained with the original compressor. The later stages of the compressor did not produce the design static-pressure increase probably because of excessive boundary-layer build-up in this region. Measurements obtained in the ninth-stage stator showed that the performance up to this station was promising but that the last three stages of the compressor were limiting the useful operating range of the preceding stages. Some modifications in flow-passage geometry and blade settings are believed to be necessary, however, before any major improvements in over-all compressor performance can be obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50J10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-11
    Description: The power plant from a Mark 25 aerial torpedo was investigated both as a two-stage turbine and as a single-stage modified turbine to determine the effect on overall performance of nozzle size and shape, first-stage rotor-blade configuration, and axial nozzle-rotor running clearance. Performance was evaluated in terms of brake, rotor, and blade efficiencies. All the performance data were obtained for inlet total to outlet static pressure ratios of 8, 15 (design), and 20 with inlet conditions maintained constant at 95 pounds per square inch gage and 1000 F for rotor speeds from approximately 6000 to 18,000 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50D12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-11
    Description: Performance data obtained with recording oscillographs are presented to show the transient response of the General Electric Integrated Electronic Control operating on the J47 RXl-3 turbo-Jet engine over a range of altitudes from 10,000 to 45,000 feet and at ram pressure ratios of 1.03 and 1.4. These data represent the performance of the final control configuration developed after an investigation of the engine transient behavior in the NACA altitude wind tunnel. Oscillograph traces of controlled accelerations (throttle bursts),oontrolled decelerations (throttle chops), and controlled altitude starts are presented.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50G12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-11
    Description: A modified J33-A-27 compressor was operated over a range of equivalent impeller speeds from 6100 to 13,250 rpm in order to obtain the over-all compressor performance. At the equivalent design speed of 11,800 rpm, the maximum efficiency of 0.764 and peak pressure ratio of 4.56 occurred at an equivalent weight flow of 104.07 pounds per second. At the highest equivalent speed (13,250 rpm) a maximum efficiency of 0.711, a maximum equivalent weight flow of 123.00 pounds per second, and a peak pressure ratio of 5.76 were obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50D25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-12
    Description: An investigation is being conducted to determine the performance of the 12-stage axial-flow compressor of the XT-46 turbine-propeller engine. This compressor was designed to produce a pressure ratio of 9 at an adiabatic efficiency of 0.86. The design pressure ratios per stage were considerably greater than any employed in current aircraft gas-turbine engines using this type of compressor. The compressor performance was evaluated at two stations. The station near the entrance section of the combustors indicated a peak pressure ratio of 6.3 at an adiabatic efficiency of 0.63 for a corrected weight flow of 23.1 pounds per second. The other, located one blade-chord downstream of the last stator row, indicated a peak pressure ratio of 6.97 at an adiabatic efficiency of 0.81 for a corrected weight flow of 30.4 pounds per second. The difference in performance obtained at the two stations is attributed to shock waves in the vicinity of the last stator row. These shock waves and the accompanying flow choking, together with interstage circulatory flows, shift the compressor operating curves into the region where surge would normally occur. The inability of the compressor to meet design pressure ratio is probably due to boundary-layer buildup in the last stages, which cause axial velocities greater than design values that, in turn, adversely affect the angles of attack and turning angles in these blade rows.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50E22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...