ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 42.75
  • FLUID MECHANICS AND HEAT TRANSFER
  • 2005-2009
  • 1950-1954  (7)
  • 1952  (5)
  • 1950  (2)
  • 1
    Publikationsdatum: 2019-06-28
    Beschreibung: An investigation was conducted in the NACA Lewis icing research tunnel to determine the characteristics and requirements of cyclic deicing of a 65,2-216 airfoil by use of an external electric heater. The present investigation was limited to an airspeed of 175 miles per hour. Data are presented to show the effects of variations in heat-on and heat-off periods, ambient air temperature, liquid-water content, angle of attack, and. heating distribution on the requirements for cyclic deicing. The external heat flow at various icing and heating conditions is also presented. A continuously heated parting strip at the airfoil leading edge was found necessary for quick, complete, and consistent ice removal. The cyclic power requirements were found to be primarily a function of the datum temperature and heat-on time, with the other operating and meteorological variables having a second-order effect. Short heat-on periods and high power densities resulted in the most efficient ice removal, the minimum energy input, and the minimum runback ice formations. The optimum chordwise heating distribution pattern was found to consist of a uniform distribution of cycled power density in the impingement region. Downstream of the impingement region the power density decreased to the limits of heating which, for the conditions investigated, extended from 5.7 percent chord on the upper surface of the airfoil to 8.9 percent chord on the lower surface. Ice removal did not take place at a heater surface temperature of 32 F; surface temperatures of approximately 50 to 100 F were required to effect removal. Better de-icing performance and greater energy savings would be possible with a heater having a higher thermal efficiency.
    Schlagwort(e): FLUID MECHANICS AND HEAT TRANSFER
    Materialart: NACA-RM-E51J30
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-06-28
    Beschreibung: An experimental investigation was conducted to determine the temperature profiles downstream of heated air jets directed at angles of 90 deg, 60 deg, 45 deg, and 30 deg to an air stream. The profiles were determined at two positions downstream of the jet as a function of jet diameter, jet density, jet velocity, free-stream density, free-stream velocity, jet total temperature, orifice flow coefficient, and jet angle. A method is presented which yields a good approximation of the temperature profile in terms of the flow and geometric conditions.
    Schlagwort(e): FLUID MECHANICS AND HEAT TRANSFER
    Materialart: NACA-TN-2855
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-06-28
    Beschreibung: An NACA 65(sub 1)-212 airfoil of 8-foot chord was provided with a gas-heated leading edge for investigations of cyclical de-icing. De-icing was accomplished with intermittent heating of airfoil segments that supplied hot gas to chordwise passages in a double-skin construction. Ice removal was facilitated by a spanwise leading-edge parting strip which was continuously heated from the gas-supply duct. Preliminary results demonstrate that satisfactory cyclical ice removal occurs with ratios of cycle time to heat-on period (cycle ratio) from 10 to 26. For minimum runback, efficient ice removal, and minimum total heat input, short heat-on periods of about 15 seconds with heat-off periods of 260 seconds gave the best results. In the range of conditions investigated, the prime variables in the determination of the required heat input for cyclical ice removal were the air temperature and the cycle ratio; heat-off period, liquid water content, airspeed, and angle of attack had only secondary effects on heat input rate.
    Schlagwort(e): FLUID MECHANICS AND HEAT TRANSFER
    Materialart: NACA-RM-E51J29
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-06-28
    Beschreibung: The trajectories of droplets in the air flowing past an NACA 651-212 airfoil at an angle of attack of 40 were determined. The collection efficiency, the area of droplet impingement, and the rate of droplet impingement were calculated from the trajectories and are presented herein.
    Schlagwort(e): FLUID MECHANICS AND HEAT TRANSFER
    Materialart: NACA-RM-E52B12
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-06-28
    Schlagwort(e): FLUID MECHANICS AND HEAT TRANSFER
    Materialart: NACA-TN-2799
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-06-28
    Beschreibung: An experimental investigation was conducted to determine the penetration of air jets d.irected perpendicularlY to an air stream. Jets Issuing from circular, square, and. elliptical orifices were investigated. and. the jet penetration at a position downstream of the orifice was determined- as a function of jet density, jet velocity, air-stream d.enaity, air-stream velocity, effective jet diameter, and. orifice flow coeffIcient. The jet penetrations were determined for nearly constant values of air-stream density at three tunnel-air velocities arid for a large range of Jet velocities and. densities. The results were correlated in terms of dimensionless parameters and the penetrations of the various shapes were compared. Greater penetration was obtained. with the square orifices and the elliptical orifices having an axis ratio of 4:1 at low tunnel-air velocities and low jet pressures than for the other orifices investigated. The square orifices gave the best penetrations at the higher values of tunnel-air velocity and jet total pressure.
    Schlagwort(e): FLUID MECHANICS AND HEAT TRANSFER
    Materialart: NACA-TN-2019
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-06-28
    Beschreibung: An investigation was conducted to determine the electric power requirements necessary for ice protection of inlet guide vanes by continuous heating and by cyclical de-icing. Data are presented to show the effect of ambient-air temperature, liquid-water content, air velocity, heat-on period, and cycle times on the power requirements for these two methods of ice protection. The results showed that for a hypothetical engine using 28 inlet guide vanes under similar icing conditions, cyclical de-icing can provide a total power saving as high as 79 percent over that required for continuous heating. Heat-on periods in the order of 10 seconds with a cycle ratio of about 1:7 resulted in the best over-all performance with respect to total power requirements and aerodynamic losses during the heat-off period. Power requirements reported herein may be reduced by as much as 25 percent by achieving a more uniform surface-temperature distribution. A parameter in terms of engine mass flow, vane size, vane surface temperature, and the icing conditions ahead of the inlet guide vanes.was developed by which an extension of the experimental data to icing conditions and inlet guide vanes, other than those investigated was possible.
    Schlagwort(e): FLUID MECHANICS AND HEAT TRANSFER
    Materialart: NACA-RM-E50H29
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...