ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earthquake source observations  (2)
  • Oxford University Press  (2)
  • 2020-2024
  • 2015-2019  (2)
  • 1945-1949
  • 2018  (2)
  • 1949
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2018. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 215 (2018): 1072–1087, doi:10.1093/gji/ggy203.
    Description: An earthquake rupture process can be kinematically described by rupture velocity, duration and spatial extent. These key kinematic source parameters provide important constraints on earthquake physics and rupture dynamics. In particular, core questions in earthquake science can be addressed once these properties of small earthquakes are well resolved. However, these parameters of small earthquakes are poorly understood, often limited by available data sets and methodologies. The Incorporated Research Institutions for Seismology Community Wavefield Experiment in Oklahoma deployed ∼350 three-component nodal stations within 40 km2 for a month, offering an unprecedented opportunity to test new methodologies for resolving small earthquake finite source properties in high resolution. In this study, we demonstrate the power of the nodal data set to resolve the variations in the seismic wavefield over the focal sphere due to the finite source attributes of an M2 earthquake within the array. The dense coverage allows us to tightly constrain rupture area using the second moment method even for such a small earthquake. The M2 earthquake was a strike-slip event and unilaterally propagated towards the surface at 90 per cent local S-wave speed (2.93 km s−1). The earthquake lasted ∼0.019 s and ruptured Lc ∼70 m and Wc ∼45 m. With the resolved rupture area, the stress-drop of the earthquake is estimated as 7.3 MPa for Mw 2.3. We demonstrate that the maximum and minimum bounds on rupture area are within a factor of two, much lower than typical stress-drop uncertainty, despite a suboptimal station distribution. The rupture properties suggest that there is little difference between the M2 Oklahoma earthquake and typical large earthquakes. The new three-component nodal systems have great potential for improving the resolution of studies of earthquake source properties.
    Description: WF is currently supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. JM was partially supported by SCEC grant #17177 at Woods Hole Oceanographic Institution. This research was supported by the Southern California Earthquake Center (Contribution No. 8014). SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038.
    Keywords: Inverse theory ; Waveform inversion ; Body waves ; Earthquake dynamics ; Earthquake source observations ; Seismic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 214 (2018): 2224–2235, doi:10.1093/gji/ggy201.
    Description: The key kinematic earthquake source parameters: rupture velocity, duration and area, shed light on earthquake dynamics, provide direct constraints on stress drop, and have implications for seismic hazard. However, for moderate and small earthquakes, these parameters are usually poorly constrained due to limitations of the standard analysis methods. Numerical experiments by Kaneko and Shearer demonstrated that standard spectral fitting techniques can lead to roughly one order of magnitude variation in stress-drop estimates that do not reflect the actual rupture properties even for simple crack models. We utilize these models to explore an alternative approach where we estimate the rupture area directly. For the suite of models, the area averaged static stress drop is nearly constant for models with the same underlying friction law, yet corner-frequency-based stress-drop estimates vary by a factor of 5–10 even for noise-free data. Alternatively, we simulated inversions for the rupture area as parametrized by the second moments of the slip distribution. A natural estimate for the rupture area derived from the second moments is A = πLcWc, where Lc and Wc are the characteristic rupture length and width. This definition yields estimates of stress drop that vary by only 10 per cent between the models but are slightly larger than the true area averaged values. We simulate inversions for the second moments for the various models and find that the area can be estimated well when there are at least 15 available measurements of apparent duration at a variety of take-off angles. The improvement compared to azimuthally averaged corner-frequency-based approaches results from the second moments accounting for directivity and removing the assumption of a circular rupture area, both of which bias the standard approach. We also develop a new method that determines the minimum and maximum values of rupture area that are consistent with a particular data set at the 95 per cent confidence level. For the Kaneko and Shearer models with 20+ randomly distributed observations and ∼10 per cent noise levels, we find that the maximum and minimum bounds on rupture area typically vary by a factor of two and that the minimum stress drop is often more tightly constrained than the maximum.
    Description: This work was supported by USGS NEHRP Award G17AP00029. The research was supported by the Southern California Earthquake Center (SCEC; Contribution No. 8013). SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038. YK was supported by both public funding from the Government of New Zealand and the Royal Society of New Zealand’s Rutherford Discovery Fellowship.
    Keywords: Earthquake dynamics ; Earthquake source observations ; Body waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...