ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics  (55)
  • Aircraft Stability and Control  (35)
  • 1960-1964
  • 1945-1949  (90)
  • 1947  (90)
  • 1
    Publication Date: 2019-06-28
    Description: Pressure distribution over an extended leading-edge flap on a 42 degree swept-back wing was investigated. Results indicate that the flap normal-force coefficient increased almost linearly with the angle of attack to a maximum value of 3.25. The maximum section normal-force coefficient was located about 30 percent of the flap span outboard of the inboard end and had a value of 3.75. Peak negative pressures built up at the flap leading edge as the angle of attack was increased and caused the chordwise location of the flap center of pressure to be move forward.
    Keywords: Aerodynamics
    Type: NACA-RM-L7J03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.
    Keywords: Aerodynamics
    Type: NACA-RM-E7G23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An experimental investigation was made of a preloaded spring-tab flutter model to determine the effects on flutter speed of aspect ratio, tab frequency, and preloaded spring constant. The rudder was mass-balanced, and the flutter mode studied was essentially one of three degrees of freedom (fin bending coupled with rudder and tab oscillations). Inasmuch as the spring was preloaded, the tab-spring system was a nonlinear one. Frequency of the tab was the most significant parameter in this study, and an increase in flutter speed with increasing frequency is indicated. At a given frequency, the tab of high aspect ratio is shown to have a slightly lower flutter speed than the one of low aspect ratio. Because the frequency of the preloaded spring tab was found to vary radically with amplitude, the flutter speed decreased with increase in initial displacement of the tab.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7G18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: In the course of a flight test of a supersonic research pilotless aircraft (the NACA RM-1), large-amplitude aileron oscillations, probably aileron compressibility flutter, were encountered in the transonic and supersonic speed ranges. The wing was oscillating at the same frequency as the aileron. The aircraft was equipped with 45 degree swept-back wings of symmetrical NASA 65-010 airfoil section. Completely mass-balanced ailerons with 20 degree beveled trailing edges were installed on the wings. The ailerons were free floating with no mechanical restraining force other than the friction of the aileron hinges and servomechanism bearings throughout the high-speed interval of flight.
    Keywords: Aerodynamics
    Type: NACA-RM-L6L09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A three-dimensional investigation of straight-sided-profile plain ailerons on a wing with 30 degrees and 45 degrees of sweepback and sweepforward was made in a high-speed wind tunnel for aileron deflections from -10 degrees to 10 degrees and at Mach numbers from 0.60 to 0.96. Wing configurations of 30 degrees generally reduced the severity of the large changes in rolling-moment and aileron hinge-moment coefficients experienced by the upswept wing configurations as the result of compression shock and extended to higher Mach numbers the speeds at which such changes occurred.
    Keywords: Aerodynamics
    Type: NACA-RM-L7I15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Low-speed tests of a pilotless aircraft were conducted in the Langley propeller-research tunnel to provide information for the estimation of the longitudinal stability and. control, to measure the aileron effectiveness, and to calibrate the radome and the Machmeter pitot-static orifices. It was found that the model possessed a stEb.le variation of elevator angle required for trim throughout the speed range at the design angle of attack. A comparison of the airplane with and without JATO units and with an alternate rocket booster showed that a large loss in longitudinal stability and control resulting from the addition of the rocket booster to the aircraft was sufficient to make the rocket-booster assembly unsatisfactory as an alternate for the JATO units. Reversal of the aileron effectiveness was evident at positive deflections of the vertical wing flap indicating that the roll-stabilization system would produce roiling moments in a tight right turn contrary to its design purpose. Vertical-wing-flap deflections caused large errors in the static-pressure reading obtained by the original static-tube installation. A practical installation point on the fuselage was located which should yield reliable measurement of the free-stream static pressure.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J18a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: On the basis of a recently developed theory for finite sweptback wings at supersonic speeds, calculations of the supersonic wave drag at zero lift were made for a series of wings having thin symmetrical biconvex sections with untapered plan forms and various angles of sweepback and aspect ratios. The results are presented in a unified form so that a single chart permits the direct determination of the wave drag for this family of airfoils for an extensive range of aspect ratio and sweepback angle for stream Mach numbers up to a value corresponding to that at which the Mach line coincides with the wing leading edge. The calculations showed that in general the wave-drag coefficient decreased with increasing sweepback. At Mach numbers for which the Mach lines are appreciably ahead of the wing leading edge, the 'wave-drag coefficient decreased to an important extent with increases in aspect ratio or slenderness ratio. At Mach numbers for which the Mach lines approach the wing leading edge (Mach numbers approaching a value equal to the secant of the angle of sweepback), the wave-drag coefficient decreased with reductions in aspect ratio or slenderness ratio. In order to check the results obtained by the theory, a comparison was made with the results of tests at the Langley Memorial Aeronautical Laboratory of sweptback wing attached to a freely falling body. The variation of the drag with Mach number and aspect ratio as given by the theory appeared to be in reasonable
    Keywords: Aerodynamics
    Type: NACA-RM-L6K29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-L7C04a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: An investigation has been conducted in the Cleveland 18- by 18-inch supersonic tunnel at a Mach number of 1.85 and angles of attack from 0 deg to 5 deg to determine optimum design configurations for a convergent-divergent type of supersonic diffuser with a subsonic diffuser of 5 deg included divergence angle. Total pressure recoveries in excess of theoretical recovery across a normal shock at a free-stream Mach number of 1.85 wore obtained with several configurations. The highest recovery for configurations without a cylindrical throat section was obtained with an inlet having an included convergence angle of 20 deg. Insertion of a 2-inch throat section between a 10 deg included angle inlet and the subsonic diffuser stabilized the shock inside the diffuser and resulted in recoveries as high as 0.838 free-stream total pressure at an angle of attack of 0 deg, corresponding to recovery of 92.4 percent of the kinetic energy of the free air stream. Use of the throat section also lessened the reduction in recovery of all configurations due to angle of attack.
    Keywords: Aerodynamics
    Type: NACA-RM-E6K21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A wind-tunnel investigation has been made to determine the effects of unsymmetrical horizontal-tail arrangements on the power-on static longitudinal stability of a single-engine single-rotation airplane model. Although the tests and analyses showed that extreme asymmetry in the horizontal tail indicated a reduction in power effects on longitudinal stability for single-engine single-rotation airplanes, the particular "practical" arrangement tested did not show marked improvement. Differences in average downwash between the normal tail arrangement and various other tail arrangements estimated from computed values of propeller-slipstream rotation agreed with values estimated from pitching-moment test data for the flaps-up condition (low thrust and torque) and disagreed for the flaps-down condition (high thrust and torque). This disagreement indicated the necessity for continued research to determine the characteristics of the slip-stream behind various propeller-fuselage-wing combinations. Out-of-trim lateral forces and moments of the unsymmetrical tail arrangements that were best from consideration of longitudinal stability were no greater than those of the normal tail arrangement.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1474 , AD-A801528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Description: Wing was tested with full-span, partial-span, or split flaps deflected 60 Degrees and without flaps. Chordwise pressure-distribution measurements were made for all flap configurations.. Peak values of maximum lift coefficient were obtained at relatively low free-stream Mach numbers and, before critical Mach number was reached, were almost entirely dependent on Reynolds Number. Lift coefficient increased by increasing Mach number or deflecting flaps while critical pressure coefficient was reached at lower free-stream Mach numbers.
    Keywords: Aerodynamics
    Type: NACA-TN-1299
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Description: Theoretical analysts of lateral dynamic motion of tailless and conventional airplanes was made for fighter and heavy transport. Their reactions to a lateral gust and control power required by each for simple maneuvers were determined and compared. Both types of airplanes require almost identical aileron control power to perform a given maneuver; tailless airplane requires about 1-2 to 1-3 directional control power of conventional airplane. Tailless airplane also shows greatest displacement for a given disturbance and has least damping in oscillatory mode.
    Keywords: Aerodynamics
    Type: NACA-TN-1154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-06-28
    Description: Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.
    Keywords: Aerodynamics
    Type: NACA-TN-1495
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-28
    Description: The first part of this paper reviews the present state of the problem of the instability of laminar boundary layers which has formed an important part of the general lectures by von Karman at the first and fourth Congresses and by Taylor at the fifth Congress. This problem may now be considered as essentially solved as the result of work completed since 1938. When the velocity fluctuations of the free-stream flow are less than 0.1 percent of the mean speed, instability occurs as described by the well-known Tollmien-Schlichting theory. The Tollmien-Schlichting waves were first observed experimentally by Schubauer and Skramstad in 1940. They devised methods of introducing controlled small disturbances and obtained measured values of frequency, damping, and wave length at various Reynolds numbers which agreed well with the theoretical results. Their experimental results were confirmed by Liepmann. Much theoretical work was done in Germany in extending the Tol1mien-Schlichting theory to other boundary conditions, in particular to flow along a porous wall to which suction is applied for removing part of the boundary layer. The second part of this paper summarizes the present state of knowledge of the mechanics of turbulent boundary layers, and of the methods now being used for fundamental studies of the turbulent fluctuations in turbulent boundary layers. A brief review is given of the semi-empirical method of approach as developed by Buri, Gruschwitz, Fediaevsky, and Kalikhman. In recent years the National Advisory.Commsittee for Aeronautics has sponsored a detailed study at the National Bureau of Standards of the turbulent fluctuations in a turbulent boundary layer under adverse pressure gradient sufficient to produce separation. The aims of this investigation and its present status are described.
    Keywords: Aerodynamics
    Type: NACA-TN-1168
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-28
    Description: Tests of a partial-span model of a large bomber-type air1ane were conducted to determine the. aerodynamic characteristics of the wing equipped with full-span flaps and a retractable spoiler end aileron lateral control system. The arrangement consisted of (1) a double slotted flap extending over aproximate1y 86 percent of the wing semispan, (2) a 20-percent constant-percentage-chord aileron extending from the outboard end of the flap to the wing tip, and (3) a retractable spoiler, located at the 65-percent wing-chord station and extending from approximately 63 percent of the wing semispan to the wing tip. In addition, tests were made of a wing vent (of 1 and 2 percent of the wing chord located directly behind the spoiler), perforations in the spoiler, a blot or cut-out along the lower edge of the spoiler and spoilers of various spans. With full-span flaps deflected and with the 2-percent vent open or closed the initial stalling of the wing occurred at the tips, but with the vents closed there probably would be no appreciable loss in lateral control until maximum lift was reached. The l-percent vent increased the rolling effectiveness of the spoiler at small spoi1er deflections, particularly at high angles of attack with flaps deflected. With flaps deflected the 2-percent vent caused a large reduction in both the wing lift and rolling effectiveness of the spoiler at large angles of attack. However, at small angle of attack the 2-percent vent increased the rolling effectiveness of the spoiler at small spoiler deflections. The simultaneous operation of the spoiler and vent (in contrast to a vent fixed in the wing) would result in a large increase in the effectiveness of the spoiler and would avoid any loss in wing lift as in a fixed vent arrangement. The tests of the spoiler modifications revealed that (1) the spoiler perforations reduced the rolling-moment and yawing-moment coefficients but caused the spoiler hinge-moment coefficients to become more positive; (2) the spoiler slot had no notable effect on the rolling-moment and yawing-moment characteristics but produced a positive increase in the spoiler hinge-moment coefficients at large spoiler deflections; (3) the effects produced by the individual modifications were additive when the various modifications were combined. In general, progressively decreasing the spoiler span by removing the segments from the inboard end of the spoiler caused a decrease in rolling effectiveness approximately proportional to the span of the segment.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1409
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-17
    Description: The mutual influences of compression shocks and friction boundary layers were investigated by means of high speed wind tunnels.Schlieren optics provided a clear picture of the flow phenomena and were used for determining the location of the compression shocks, measurement of shock angles, and also for Mach angles. Pressure measurement and humidity measurements were also taken into consideration.Results along with a mathematical model are described.
    Keywords: Aerodynamics
    Type: NACA-TM-1113 , Mitteilungen aus dem Institut fuer Aerodynamik an der Eidgenoessischen Technischen Hochschule; 10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-17
    Description: Low Mach number longitudinal-stability and control characteristics as predicted by use of wind tunnel data from a powered 3/16-scale model are compared with flight test measurements of a Navy BTD-1 airplane. The accuracy of the wind tunnel data and the discrepancies involved in attempting to correlate with flight data are discussed and analyzed. The comparison showed that wind tunnel predictions were, in general, in good agreement with flight test data. The predicted values were for the most part sufficiently accurate to show the satisfactory and unsatisfactory characteristics in the preliminary design stage and to indicate possible methods of improvement. The discrepancies which did occur were attributed principally to physical dissimilarities between model and airplane and the instability to determine accurately the flight power conditions. The effect of Mach number was considered negligible since the maximum flight test value was about 0.5. In order to simulate more closely the flight conditions and hence obtain more accurate data for predictions, it appears desirable to perform large-scale tests of unorthodox control surfaces such as the sealed vaned elevators with which the airplane was equipped.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A6L30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-16
    Description: This report addresses a method for the approximate calculation of compressible flows about profiles with local regions of supersonic velocity. The flow around a slender profile is treated as an example.
    Keywords: Aerodynamics
    Type: NACA-TM-1114 , Forschungsbericht-1794 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluftzeugmeisters
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-11
    Description: The hydrodynamic characteristics of a 1/10-size powered dynamic model of the XP5Y-1 flying boat were determined in Langley tank no. 1. Stable take-offs were possible at all practicable positions of the center of gravity and flap deflections. An increase in gross load from 123.5 to 150.0 pounds (21.5 percent) had only a slight effect on the stable range for take-off. A decrease in forward acceleration from 3.0 to 1.0 feet per second per second had only a very small effect on the stable range for take-off. In general, the landings were free from skipping except at trims below 6 deg where one skip was encountered at an aft position of the center of gravity. The model porpoised during the landing runout at all positions of the center of gravity when landed at trims above 10 deg. Spray in the propellers was light at the design gross load, and was not considered excessive,at a gross load of 136.0 pounds.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9K14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-11
    Description: At the request of the Air Material Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a jet propelled, parasite fighter with a 34 deg sweepback at the wing quarter chord. It was designed to be carried in a bomb bay of the B-36 air plane. The first portion of the investigation consists of a preliminary evaluation of the stability and control characteristics of the airplane from force and fight tests of an unballasted 1/5-scale model. The second portion of the investigation consists of test of a properly balasted 1/10-scale model which will include a study of the stability of the Xp-85 when attached to the trapeze for retraction into the B-36 bomb bay. The results of the preliminary test with the 1/5-scale model are presented herein. This portion fo the investigation included tests of the model with various center fin arrangements. Both the design nose flap and a stall control vane were investigated.
    Keywords: Aerodynamics
    Type: NACA-RM-L7C27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-11
    Description: An investigation has been made by the NACA wing-flow method to provide information on the relative longitudinal characteristics of a straight and sweptback wing in the transonic speed range. Tests were made of a semispan model of the Grumman airplane design 83 (XFlOF) incorporating a wing swept back 42.5deg with reference to quarter-chord line and also of the model with the swept wing replaced by a straight wing similar to that of the XF9F airplane. The airfoil sections were symmetrical 64l-series, with thickness ratios of 12 percent for the straight wing and 10 percent for the sweptback wing parallel to the stream direction. Measurements were made of normal force, chord force, and pitching moment at various angles of attack with the two wings both with and without the empennage, and with the fuselage alone. The tests covered a range of effective Mach numbers at the wing of the model from 0.65 to 1.10.
    Keywords: Aerodynamics
    Type: NACA-RM-SL9A19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed; power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane equipped with full-span leading-edge slats has been conducted in the Langley free-flight tunnel. In this investigation it was found that the-full-span leading-edge slat gave about the same maximum lift coefficient as was obtained with the outboard single slotted flap and inboard slat. The stability and control characteristics were greatly improved except near the stall where the characteristics with the full-span slat were considered unsatisfactory because of a loss of directional stability and a slight nosing-up tendency.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL7L17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-11
    Description: An analysis has been made of the lift control effectiveness of a 20-percent-chord plain trailing-edge flap on the NACA 65-210 airfoil section from section lift-coefficient data obtained at Mach numbers from 0.3 to 0.875. In addition, the effectiveness of the plain flap as a lift-control device has been compared with the corresponding effectiveness of both a spoiler and a dive-recovery flap on the NACA 65-210 airfoil section. The analysis indicates that the plain trailing-edge flap employed on the 10-percent-thick airfoil at Mach numbers as high as 0.875 retains at least 50-percent of its low-speed lift-control effectiveness, and is sufficiently effective in lateral control application, assuming a rigid wing, to provide adequate airplane rolling characteristics. The plain trailing-edge flap, as compared to the spoiler and the dive-recovery flap, appears to afford the most favorable characteristics as a device for controlling lift continuously throughout the range of Mach numbers from 0.3 to 0.875. At Mach numbers above those for lift divergence of the wing, either a plain flap or a dive-recovery flap may be used on a thin airplane wing to provide auxiliary wing lift when the airplane is to be controlled in flight, other than in dives, at these Mach numbers. The choice of a lift-control device for this use, however, should include the consideration of other factors such as the increments of drag and pitching moment accompanying the use of the device, and the structural and high-speed aerodynamic characteristics of the airplane which is to employ the device.
    Keywords: Aerodynamics
    Type: NACA-RM-A7A17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-11
    Description: On the basis of a recently developed theory for sweptback wings at supersonic velocities, equations are derived for the wave drag of sweptback tapered wings with thin symmetrical double-wedge sections at zero lift. Calculations of section wave-drag distributions and wing wave drag are presented for families of tapered plan forms. Distributions of section wave drag along the span of tapered wings are, in general, very similar in shape to those of untapered plan forms. For a given taper ratio and aspect ratio, an appreciable reduction in wing wave-drag coefficient with increased sweepback is noted for the entire range of Mach number considered. For a given sweep and taper ratio, higher aspect ratios reduce the wing wave-drag coefficient at substantially subcritical supersonic Mach numbers. At Mach numbers approaching the critical value, that is, a value equal to the secant of the sweepback angle, the plan forms of low aspect ratio have lower drag coefficients. Calculations for wings of equal root bending stress (and hence different aspect ratio) indicate that tapering the wing reduces the wing wave-drag coefficient at Mach numbers considerably less than the critical value and a decrease of the drag coefficient with taper at Mach numbers near the critical value.
    Keywords: Aerodynamics
    Type: NACA-RM-L7E23a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-11
    Description: The previous measurements on airfoils with hinged nose disclosed a comparatively large low-pressure peak at the bend of the hinged nose; which favored the separation of flow. It was therefore attempted to reduce these low-pressure peaks by reducing the camber of the forward profile and thereby ensure a longer adherence of the flow and a maximum lift increase. The forces were measured on a rectangular wing with double-hinged nose and end plates, the pressure distributions were measured in the center section of the wing. The measurements disclosed that the highest lift attained with a single-hinged nose cannot be increased by a double-hinged nose. The sum of the deflection angles of both hinged noses related to the maximum lift is about equal to the corresponding angle of the single-hinge nose (approx. 30 deg to 40). The respective angle of attack in both cases amounts to approx. 21 deg. Even the low-pressure peak is about the same in both cases (P/q approx. -5.5). Therefore, a milder curvature of the forward portion of the profile affords no definite increase of the maximum lift.
    Keywords: Aerodynamics
    Type: NACA-TM-1117 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluft-zeugmeisters; Rept-1676/3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-11
    Description: The problem of turbulence in aerodynamics is at present being attacked both theoretically and experimentally. In view of the fact however that purely theoretical considerations have not thus far led to satisfactory results the experimental treatment of the problem is of great importance. Among the different measuring procedures the hot wire methods are so far recognized as the most suitable for investigating the turbulence structure. The several disadvantages of these methods however, in particular those arising from the temperature lag of the wire can greatly impair the measurements and may easily render questionable the entire value of the experiment. The name turbulence is applied to that flow condition in which at any point of the stream the magnitude and direction of the velocity fluctuate arbitrarily about a well definable mean value. This fluctuation imparts a certain whirling characteristic to the flow.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1130 , A Muegyetem Aerodinamikai Intezeteben Keszult Munka
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-11
    Description: The tests on the Russian airfoil 2315 Bis were continued. This airfoil shows, according to Moscow tests, good laminar flow characteristics. Several tests were prepared in the large wind tunnel at Gottingen; partial results were obtained.
    Keywords: Aerodynamics
    Type: NACA-TM-1127 , Untersuchungen und Mitteilungen; Rept-3067
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-11
    Description: The report UM No. 1023/1 which presented the results of measurements for a series of trapezoidal wings was the beginning of a series on wings with aspect ratio 1 to 3 and various contours. In report No. 1023/1 the aspect ratio (Lambda = 4/3) remained the same; the tapering was modified. The present report gives the results of the series of elliptic wings. Here the aspect ratio varies from 1 to 2 with the sweepback. The contour is formed by elliptic arcs. The influence of sweepback and contour upon the neutral point is shown.
    Keywords: Aerodynamics
    Type: NACA-TM-1146 , Untersuchungen und Mitteilungen; Rept-1023/3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-11
    Description: Tests of two 10-foot-diameter two-blade propellers which differed only in shank design have been made in the Langley 16-foot high-speed tunnel. The propellers are designated by their blade design numbers, NACA 10-(5)(08)-03, which had aerodynamically efficient airfoil shank sections, and NACA l0-(5)(08)-03R which had thick cylindrical shank sections typical of conventiona1 blades, The propellers mere tested on a 2000-horsepower dynamometer through a range of blade-angles from 20deg to 55deg at various rotational speeds and at airspeeds up to 496 miles per hour. The resultant tip speeds obtained simulate actual flight conditions, and the variation of air-stream Mach number with advance ratio is within the range of full-scale constant-speed propeller operation. Both propellers were very efficient, the maximum envelope efficiency being approximately 0,95 for the NACA 10-(5)(08)-03 propeller and about 5 percent less for the NACA 10-(5)(08)-03R propeller. Based on constant power and rotational speed, the efficiency of the NACA 10-(05)(08)-03 propeller was from 2.8 to 12 percent higher than that of the NACA 10-(5)(08)-03R propeller over a range of airspeeds from 225 to 450 miles per hour. The loss in maximum efficiency at the design blade angle for the NACA 10-(5)(08)-03 and 10-(5)(08)-03R propellers vas about 22 and 25 percent, respectively, for an increase in helical tip Mach number from 0.70 to 1.14.
    Keywords: Aerodynamics
    Type: NACA-RM-L6L27a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-11
    Description: An investigation was made to determine the effects of changes in the amount and distribution of forebody and afterbody dead rise on the hydrodynamic resistance and spray characteristics of a 1/11-size model of the Bureau of Aeronautics design No. 22ADR class VPB airplane. The variations in dead rise within the range investigated had no significant effects on resistance or trim, free to trim, or on resistance or trimming moment, fixed in trim. The coordinates of the peaks of the bow-spray blisters, with reference to the model, were measured at low speeds, and it was found that the model with the low dead rise at the bow had the lowest blisters. The changes in position of the maximum dead rise of the afterbody had no effect on the bow-spray blister.
    Keywords: Aerodynamics
    Type: NACA-RM-L7H18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-11
    Description: Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The wing-alone tests and the effect of the various vertical-fin modifications, speed-brake modifications, and fuselage modifications on the aerodynamic characteristics in pitch and yaw are presented in the present paper with a limited analysis of the results. Also included are tuft studies of the flow for some of the modifications tested.
    Keywords: Aerodynamics
    Type: NACA-RM-L7J09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-11
    Description: The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6H30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed, power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane has been conducted in the Langley free-flight tunnel. In the investigation it was found that with flaps neutral satisfactory flight behavior at low speeds was obtainable with an increase in height of the vertical tail and with the inboard slats opened. In the flap-down slat-open condition the longitudinal stability was satisfactory, but it was impossible to obtain satisfactory lateral-flight characteristics even with the increase in height of the vertical tail because of the negative effective dihedral, low directional stability, and large-adverse yawing moments of the ailerons.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7J17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-12
    Description: The results obtained from gust and draft velocity measurements within thunderstorms for the period July 24, 1946 to August 6, 1946 at Orlando, Florida are presented herein. These data are summarized in tables I and II and are of the type presented in reference 1 for previous flights. In two thunderstorm traverses, indications of ambient-air temperature were obtained from photo-observer records. These data are summarized in table III.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7C28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-12
    Description: Wind-tunnel tests on a 1/5-scale model of the Ryan XF2R airplane were conducted to determine the aerodynamic characteristics of the air intake for the front power plant, a General Electric TG-100 gas turbine, and to determine the stability and control characteristics of the airplane. The results indicated low-dynamic-pressure recover3- for the air intake to the TG-100 gas turbine ~rith the standard propeller in operation. Propeller cuffs were designed and tested for the purpose of imp~oving the dynamic-pressure recovery. Data obtained with the cuffs installed and the gap between the spinner an& the cuff sealed indicated a substantial gain in dynamic pressure recovery over that obtained with the standard propeller and with the cuffed propeller unsealed. Stability and control tests were conducted with the sealed cuffs installed on the propeller. The data from these tests indicated the following unsatisfactory characteristics for the airplane: 1. Marginal static longitudinal stability. 2. Inadequate directional stability and control. 3. Rudder-pedal-force reversal in the climb condition. 4. Negative dihedral effect in the power-on approach and wave-off conditions.
    Keywords: Aerodynamics
    Type: NACA-Rm-SA7E26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of three deep-stepped planing-tail flying-boat hulls differing only in the amount of step fairing. The hulls were derived by increasing the unfaired step depth of a planing-tail hull of a previous aerodynamic investigation to a depth about 92 percent of the hull beam. Tests were also made on a transverse-stepped hull with an extended afterbody for the purpose of comparison and in order to extend and verify the results of a previous investigation. The investigation indicated that the extended afterbody hull had a minimum drag coefficient about the same as a conventional hull, 0.0066, and an angle-of-attack range for minimum drag coefficient of 0.0057 which was 14 percent less than the transverse stepped hull with extended afterbody; the hulls with step fairing had up to 44 percent less minimum drag coefficient than the transverse-stepped hull, or slightly more drag than a streamlined body having approximately the same length and volume. Longitudinal and lateral instability varied little with step fairing and was about the same as a conventional hull.
    Keywords: Aerodynamics
    Type: NACA-RM-L7C18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: The motion of different bodies imersed in liquid or gaseous media is accompanied by characteristic sound which is excited by the formation of unstable surfaces of separation behind the body, usually disintegrating into a system of discrete vortices(such as the Karman vortex street due to the flow about an infintely long rod, etc.).In the noise from fans,pumps,and similar machtnery, vortexnQif3eI?Yequently predominates. The purpose of this work is to elucidate certain questions of the dependence ofthis sound upon the aerodynamic parameters and the tip speed of the rotating rods,or blades. Although scme material is given below,insufficientto calculate the first rough approximation to the solution of this question,such as the mechanics of vortex formation,never the less certain conclusions maybe found of practical application for the reduction of noise from rotating blades.
    Keywords: Aerodynamics
    Type: NACA-TM-1136 , Zhurnal Tekhnicheskoi Fiziki; 14; 9; 561
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-17
    Description: This report contains the flight-test results of the longitudinal-stability and -control phase of a general flying qualities investigation of the Lockheed P-80A airplane (Army No. 44-85099). The tests were conducted at indicated airspeeds up to 530 miles per hour (0.76 Mach number) at low altitude and up to 350 miles per hour (0.82) Mach number) at high altitude. These tests showed that the flying qualities of the airplane were in accordance with the requirements of the Army Air Forces Stability and Control Specification except for excessive elevator control forces in maneuvering flight and the inadequacy of the longitudinal trimming control at low airspeeds.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A7G01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-17
    Description: Estimates of the static stick-fixed stability and control characteristics of the Consolidated Vultee model 240 airplane are presented in this report. The estimates are based on tests of a 0.092-scale powered model in the 10-foot wind tunnel of the Guggenheim Aeronautical Laboratory of the California Institute of Technology. Results of the analysis are evaluated in terms of the Army specifications for stability and control characteristics which are more specific and, in general, equal to or more rigid than the Civil Aeronautics Administration requirements. The stick-fixed stability and control characteristics of the Consolidated Vultee model 240 were found to be satisfactory except for the following: 1) Marginal longitudinal stability in the landing approach (flaps 30 deg, 50% minimum continuous power) with aft center of gravity (31% M.A.C.); 2) Marginal rudder control to hold zero sideslip in a climb after take-off with asymmetric power (flaps 30 deg, left engine inoperative, right engine delivering take-off power) with maximum rudder throw limited to +/- 18 deg; 3) Marginal dihedral effect with flaps 40 deg and engines delivering maximum continuous power.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A7F19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-17
    Description: Tests were conducted to find the effects of compressibility on the longitudinal stability and control of a 1/7-scale semispan model of the Northrop YB-49 airplane. Lift, drag, pitching moment, and elevon hinge moments were measured and are presented in graphical form. The results show that, due to a loss of lift on the outboard portion of the wing, the longitudinal static stability decreased rapidly as the Mach numbers increased above 0.735 the model experienced a climbing moment at positive lift coefficients. Also, a longitudinal-control effectiveness began to decrease at a Mach number of about 0.725
    Keywords: Aerodynamics
    Type: NACA-RM-A7C13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: Wind-tunnel measurements on projectiles are discussed. Tests at the Gottingen Tunnel are described. The tunnel operates on the Prandtl principle, that is, a brief stationary air stream produced in an evacuated tank by induction of atmospheric air.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1122 , Lilienthal-Gesellschaft; 139; 29-37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: It is known that the compressibility shocks accompanying local or total supersonic flows lead to pronounced flow separations which result in unusually high energy losses on airplane wings, vanes, and in diffusers. These phenomena were investigated experimentally and theoretically.
    Keywords: Aerodynamics
    Type: NACA-TM-1152 , Technische Berichte Band; 10; 2; 59-61
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-11
    Description: Calculations and test results are given about the feed-power requirement of airplanes with boundary-layer control. Curves and formulas for the rough estimate of pressure-loss and feed-power requirement are set up for the investigated arrangements which differ structurally and aerodynamically. According to these results the feed power for three different designs is calculated at the end of the report.
    Keywords: Aerodynamics
    Type: NACA-TM-1167 , Deutsche Luftfahrtforschung, Forschungsbericht No. 1618
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: The lift coefficient of!a wing of small span at first shows a linear increase for the increasing angle of attack, but to a lesser degree then was to be expected according to the theory of the lifting line; thereafter the lift coefficient increases more rapidly than linearity, as contrasted with the the theory of the lifting line. The induced drag coefficient for a given lift coefficient, on the other hand, is obviously much smaller than it would be according to the theory. A mall change in the theory of the lifting line will cover these deviations.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1151 , Deutsche Luftfahrtforschung, Forschungsbericht; Rept-1665
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-11
    Description: The stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane have been investigated over a Mach number range from 0.40 to 0.91. Results of the basic longitudinal tests of the complete model with undeflected control surfaces are given in the present report with a very limited analysis of the results.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7G08-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-11
    Description: An investigation was made by the NACA wing-flow method to determine the longitudinal stability and control characteristics at transonic speeds of a semispan model of the XF7U-1 tailless airplane. The 25-percent chord line of the wing of the model was swept back 35 deg. The airfoil sections of the wing perpendicular to the 25-percent chord line were 12 percent thick. Measurements were made of the normal force and pitching moment through an angle-of-attack range from about -3 deg to 14 deg for several ailavator deflections at Mach numbers from 0.65 to about 1.08. The results of the tests indicated no adverse effects of compressibility up to a Mach number of at least 0.85 at low normal-force coefficients and small ailavator deflections. Up to a Mach number of 0.85, the neutral point at low normal-force coefficients was at about 25 percent of the mean aerodynamic chord and moved rearward irregularly to 41 or 42 percent with a further increase in Mach number to about 1.05. For deflections up to -8.0 percent, the ailavator was effective in changing the pitching moment except at Mach numbers from 0.93 to about 1.0 where ineffectiveness or reversal was indicated for deflections and normal-force coefficients. With -13.2 deg deflection at normal-force coefficients above about 0.3, reversal of ailavator effectiveness occurred at Mach numbers as low as 0.81. A nose-down trim change, which began at a Mach number of about 0.85, together with the loss in effectiveness of the ailavator, indicated that with increase in the Mach number from about 0.95 to 1.05 an abrupt ailavator movement of 5 deg or 6 deg first up and then down would be required to maintain level flight.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7I08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-11
    Description: Additional tests of a 1/7-size model of the Grumman XJR2F-1 amphibian were made in Langley tank no. 1 to compare the behavior during take-off of the model equipped with split- and slotted-type flaps. The slotted flag had a large effect on locating the forward center-of-gravity limits for stable take-offs. Stable take-offs within the normal operating range of positions of the center of gravity could be made with the split flaps deflected 45deg or with the slotted flaps deflected less than 20deg. At flap deflections required for similar take-off stability, the use of split-flaps resulted lower take-off speeds than the use of slotted flaps. An increase in forward acceleration from 1.1 to 4.8 feet per second per second moved the center-of-gravity limit forward approximately 3-percent mean aerodynamic chord.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7A07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-11
    Description: A 1/4 - scale model of the Naval Aircraft Factory float-wing convoy interceptor was tested in the Langley 7-by 10-foot tunnel to determine the longitudinal and lateral stability characteristics. The model was tested in the presence of a ground board to determine the effect of simulating the ground on the longitudinal characteristics.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-11
    Description: Tests have been conducted in the Langley high speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0,08-scale model of the Chance Vought XF7U-1 airplane. The longitudinal-control characteristics of the complete model are presented in the present report with a limited analysis of the results.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7H01-PT-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-11
    Description: Low-speed wind-tunnel tests of a l/8 scale model of the Republic XP-91 airplane were made to determine its low-speed characteristics and the relative merits of a vee and a conventional tail on the model. The results of the tests showed that for the same amount of longitudinal and directional stability the conventional tail gave less roll due to sideslip than did the vee tail. The directional stability of the model was considered inadequate for both the vee and conventional tails; however, increasing the area and aspect ratio of the conventional vertical tail provided adequate directional stability. It was possible with negative wing dihedral and open main landing gear doors to reduce the excessive roll due to sideslip for the landing configuration (flaps and gear down) to a more reasonable value commensurate with the aileron power. The use of variable wing incidence to adjust the longitudinal balance was sufficiently effective to reduce the predicted up-elevator required for landing by approximately 5 deg.
    Keywords: Aerodynamics
    Type: NACA-RM-SA7L07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-11
    Description: A 1/8 scale model of the Grumman XTB3F-1 airplane was tested in the Langley 7- by 10-foot tunnel to determine the stability and control characteristics and to provide data for estimating the airplane handling qualities. The report includes longitudinal and lateral stability and control characteristics of the complete model, the characteristics of the isolated horizontal tail, the effects of various flow conditions through the jet duct, tests with external stores attached to the underside of the wing, ana tests simulating landing and take-off conditions with a ground board. The handling characteristics of the airplane have not been computed but some conclusions were indicated by the data. An improvement in the longitudinal stability was obtained by tilting the thrust line down. It is shown that if the wing flap is spring loaded so that the flap deflection varies with airspeed, the airplanes will be less stable than with the flap retracted or fully deflected. An increase in size of the vertical tail and of the dorsal fin gave more desirable yawing-moment characteristics than the original vertical tail and dorsal fin. Preventing air flow through the jet duct system or simulating jet operation with unheated air produced only small changes in the model characteristics. The external stores on the underside of the wing had only small effects on the model characteristics. After completion of the investigation, the model was returned to the contractor for modifications indicated by the test results.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7G17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-14
    Description: A brief discussion is given of some recent experimental results obtained on a supersonic transport-type airplane for a large range of Mach numbers. The theoretical arguments which led to the configuration of this airplane were brought out at the NACA Conference on Supersonic Aerodynamics at the Langley Laboratory, June 1940, 1947; hence, it will not be necessary to dwell on them herein. Briefly, our calculations showed that a reasonably good lift-drag ratio and, hence, reasonably good fuel economy, could be maintained up to a Mach number of 1.5. The configuration required would incorporate a long slender body and wings having a large angle of sweepback together with the highest practicable aspect ratio.
    Keywords: Aerodynamics
    Type: NACA Conference on Aerodynamic Problems of Transonic Airplane Design; 165-168
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: The numerous patent applications on arrow-stabilized projectiles indicate that the idea of projectiles without spin is not new, but has appeared in various proposals throughout the last decades. As far as projectiles for subsonic speeds are concerned, suitable shapes have been developed for sometime, for example, numerous grenades. Most of the patent applications, though, are not practicable particularly for projectiles with supersonic speed. This is because the inventor usually does not have any knowledge of aerodynamic flow around the projectile nor any particular understanding of the practical solution. The lack of wind tunnels for the development of projectiles made it necessary to use firing tests for development. These are obviously extremely tedious or expensive and lead almost always to failures. The often expressed opinion that arrow-stabilized projectiles cannot fly supersonically can be traced to this condition. That this is not the case has been shown for the first time by Roechling on long projectiles with foldable fins. Since no aerodynamic investigations were made for the development of these projectiles, only tedious series of firing tests with systematic variation of the fins could lead to satisfactory results. These particular projectiles though have a disadvantage which lies in the nature cf foldable fins. They occasionally do not open uniformly in flight, thus causing unsymmetry in flow and greater scatter. The junctions of fins and body are very bad aerodynamically and increase the drag. It must be possible to develop high-performance arrow-stabilized projectiles based on the aerodynamic research conducted during the last few years at Peenemuende and new construction ideas. Thus the final shape, ready for operational use, could be developed in the wind tunnel without loss of expensive time in firing tests. The principle of arrow-stabilized performance has been applied to a large number of caliburs which were stabilized by various means Most promising was the development of a subcaliber wing-stabilized projectile with driving disc (Treibspiegel) where rigid control surfaces extend beyond the caliber of the projectile into the free stream. The stabilized projectiles of full-caliber, wing-stabilized projectiles with fins within the caliber is considerably more difficult. A completely satisfactory solution for the latter has not been found yet.
    Keywords: Aerodynamics
    Type: NACA-TM-1175 , Schriften der Deutschen Akademie der Luftfahrtforschung; 1059/43; 33-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: This is the second of a series of six reports dealing with three- and six-component measurements on the tapering series at small aspect ratio. The present report concerns the trapezoidal wing with fuselage.
    Keywords: Aerodynamics
    Type: NACA-TM-1129 , Teilbericht: Trapezfluegel mit Rumpf; 1023/2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: The problem of the intake of air is treated for a missile flying at supersonic speeds and of changing the kinetic energy of the air into pressure with the least possible losses. Calculations are carried out concerning the results which can be attained. After a discussion of several preliminary experiments, the practical solution of the problem at hand is indicated by model experiments. The results proved very satisfactory in view of the results which had been attained previously and the values which were anticipated theoretically.
    Keywords: Aerodynamics
    Type: NACA-TM-1140 , Forschungen und Entwicklungen des Heereswaffenamtes; 1005
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley two-dimensional low-turbulence tunnels to develop the optimum configuration of a .035-chord slotted flap on an NACA 65(sub(112)-111 airfoil section modified by removing the trailing-edge cusp. Included in the investigation were measurements to determine the scale effects on the section lift and drag characteristics of the airfoil with the flap retracted for Reynolds numbers ranging from 3.0 X 10(exp 6) to 2.5 X 10(exp 6). The scale effects on the lift characteristics were also determined for the same reynolds numbers for the flap deflected in the rotation found to be optimum at a Reynolds number of 9.0 X 10(exp 6).
    Keywords: Aerodynamics
    Type: NACA-RM-L7A24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-11
    Description: The flying qualities of the Martin model 202 airplane have been estimated chiefly from the results of tests of an 0.0875-scale complete model with power made in the Wright Brothers tunnel at the Massachusetts Institute of Technology and from partial span wing and isolated vertical tail tests made in the Georgia Tech Nine-Foot Tunnel. These estimated handling qualities have been compared with existing Army-Navy and CAA requirements for stability and control. The results of the analysis indicate that the Martin model 202 airplane will possess satisfactory handling qualities in all respects except possibly in the following: The amount of elevator control available for landing or maneuvering in the landing condition is either marginal or insufficient when using the adjustable stabilizer linked to the flaps . Moreover, indications are that the longitudinal trim changes will be neither large nor appreciably worse with a fixed stabilizer than with the contemplated arrangement utilizing the adjustable stabilizer in an attempt to reduce the magnitude of the trim changes caused by flap deflection.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7A31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-11
    Description: An investigation was made in the Langley two-dimensional low-turbulence tunnel on a wing section for the XB-36 airplane equipped with a double slotted flap to determine the effect on lift and drag of various slot-entry skirt extension. A skirt extension of 0.787 deg. was found to provide the best combination of high maximum lift with flap deflected and law drag with flap retracted. The data showed that the maximum lift at intermediate (20 deg. to 45 deg.) flap deflections was lowered considerably by the slot-entry extension; but at high flap deflections the effect was small. An increase in Reynolds number from 2.4 million to 6.0 million increased the maximum.lift coefficient at a flap deflection of 55 deg. from 3.12 to 3.30 and from 1.18 to 1.40 for the flap retracted condition, but did not greatly affect the maximum lift coefficient for intermediate flap deflections. The flap and fore flap load data indicated that the maximum lift coefficients at high flap deflections are limited by a breakdown in the flow over the .flaps.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7A29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-11
    Description: Studies of the stalling characteristics show that the stall begins at the tip and moves inboard with increasing angle of attack at positive sweep; the sta11 begins at root and moves outboard at negative sweep (sweepforward). At +/-45 deg sweep the stall was less sharply defined than at the lower angles of sweep. No effect of Mach number on the.flow patterns as indicated by tufts was found in the speed range of these tests which extended to a Mach number of 0.55.
    Keywords: Aerodynamics
    Type: NACA-RM-L7C05a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-11
    Description: Flight tests were made of six noninstrumented rocket-powered "Tin Can" models of AAF Project MX-800. Velocity and drag data were obtained by use of CU Doppler radar. The existence of stability and adequate structural strength for flight near zero lift was checked by visual and photographic observation. Drag data obtained during the tests agreed reasonably well with estimates based on experimental data from NACA RM-2 rocket-powered drag research models.
    Keywords: Aerodynamics
    Type: NACA-RM-L7K07a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-11
    Description: An investigation of the spin and recovery characteristics of a 1/24-scale model of the McDonnell XP-88 airplane has been conducted in the Langley 20-ft free-spinning tunnel. Results of tests with a conventional tail have been previously reported; the results presented herein are for the model with a vee tail installed. The effects of control settings and movements on the erect and inverted spin and recovery characteristics of the model. In the normal loading were determined. Tests of the model in the long-range loading also were made. The investigation included leading-edge-flap, spin-recovery-parachute, and rudder-pedal-force tests. The recovery characteristics of the model were satisfactory for the normal loading. Deflecting the leading-edge flaps improved recoveries. The results indicated that with the external wing tanks installed (long-range loading) recoveries may be poor and, therefore, if a spin is inadvertently entered in this condition the tanks should be jettisoned if recovery does not appear imminent immediately after it is attempted. A 10-foot spin-recovery tail parachute with a towline 40 feet long and a drag coefficient of 0.63 was found to be effective for spin recovery. The rudder pedal force required for spin recovery was indicated to be within the capabilities of the pilot.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7J23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: This report presents preliminary data obtained in the Langley supersonic sphere. The supersonic sphere is essentially a whirling mechanism enclosed in a steel shell which can be filled with either air or Freon gas. The test models for two-dimensional study are of propeller form having the same plan form and diameter but varying only in the airfoil shape and thickness ratio. Torque coefficients for the 16-006, 65-110, and the 15 percent thick ellipse models are presented, as well as pressure distributions on a circular-arc supersonic airfoil section having a maximum thickness of 10 percent chord at the 1/3-chord position. Torque coefficients were measured in both Freon and air on the 15 percent thick ellipse, and the data obtained in air and Freon are found to be in close agreement. The torque coefficients for the three previously mentioned models showed large differences in magnitude at tip Mach numbers above 1, the model with the thickest airfoil section having the largest torque coefficient. Pressure distribution on the previously mentioned circular-arc airfoil section are presented at Mach numbers of 0.69, 1.26, and 1.42. At Mach numbers of 1.26 and 1.42 the test section is in the mixed flow region where both subsonic and supersonic speeds occur on the airfoil. No adequate theory has been developed for this condition of mixed flow, but the experimental data have been compared with values of pressure based on Ackeret's theory. The experimental data obtained at a Mach number of 1.26 on the rear portion of the airfoil section agree fairly well with the values calculated by Ackeret's theory. At a Mach number of 1.42 a larger percentage of the airfoil is in supersonic flow, and the experimental data for the entire airfoil agree fairly well with the values obtained using Ackeret's theory.
    Keywords: Aerodynamics
    Type: NACA-RM-L6L20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-11
    Description: Tests of a PB2Y-3 flying boat were made at the U.S〉 Naval Air Station, Patuxent River, Md., to determine its hydrodynamic trim limits of stability. Corresponding tests were also made of a 1/8-size powered dynamic model of the same flying boat in Langley tank no. 1. During the tank tests, the full-size testing procedure was reproduced as closely as possible in order to obtain data for a direct correlation of the results. As a nominal gross load of 66,000 pounds, the lower trim limits of the full-size and model were in good agreement above a speed of 80 feet per second. As the speed decreased below 80 feet per second, the difference between the model trim limits and full-scale trim limits gradually became larger. The upper trim limit of the model with flaps deflected 0 deg was higher than that of the full-size, but the difference was small over the speed range compared. At flap deflections greater than 0 deg, it was not possible to trim either the model of the airplane to the upper limit with the center of gravity at 28 percent of the mean aerodynamic chord. The decrease in the lower trim limits with increase in flap deflection showed good agreement for the airplane and model. The lower trim limits obtained at different gross loads for the full-size airplane were reduced to approximately a single curve by plotting trim against the square root of C(sub delta (sub o)) divided by C(sub V).
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7C04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-11
    Description: The tumbling characteristics of a 1/20-scale model of the Northrop N-9M airplane have been determined in the Langley 20-foot free-spinning tunnel for various configurations and loading conditions of the model. The investigation included tests to determine whether recovery from a tumble could be effected by the use of parachutes. An estimation of the forces due to acceleration acting on the pilot during a tumble was made. The tests were performed at an equivalent test altitude of 15,000 feet. The results of the model tests indicate that if the airplane is stalled with its nose up and near the vertical, or if an appreciable amount of pitching rotation is imparted to the airplane as through the action of a strong gust, the airplane will either tumble or oscillate in pitch through a range of angles of the order of +/-120 deg. The normal flying controls will probably be ineffective in preventing or in terminating the tumbling motion. The results of the model tests indicate that deflection of the landing flaps full down immediately upon the initiation of pitching rotation will tend to prevent the development of a state of tumbling equilibrium. The simultaneous opening of two-7-foot diameter parachutes having drag coefficients of 0.7, one parachute attached to the rear portion of each wing tip with a towline between 10 and 30 feet long, will provide recovery from a tumble. The accelerations acting on the pilot during a tumble will be dangerous.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6L10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-11
    Description: The results of flight tests to determine flying qualities of a Chance Vought F4U-4 airplane are presented and discussed herein. In addition to comprehensive measurements at low altitude (about 8000 ft), tests of limited scope were made at high altitude (about 25,000 ft). The more important characteristics, based on a comparison of the test results and opinions of the pilots with the Navy requirements, can be summarized as follows: 1. The short-period control-free oscillations of the elevator angle and the normal acceleration were satisfactorily damped. 2. The most rearward center-of-gravity locations for satisfactory static longitudinal stability with power on, as determined by the control-force variations, were approximately 30 and 27 percent M.A.C. with flaps and gear up and down, respectively. 3. In maneuvering flight the conditions for which control-force gradients of satisfactory magnitude were obtained were seriously limited by sizable changes in the gradient with center-of-gravity location, airspeed, altitude, acceleration factor, and direction of turn. 4. The elevator and rudder controls were satisfactory for landings and take-offs. 5. The trim tabs were sufficiently effective for all controls. 6. The directional and lateral dynamic stability was positive, but the rudder oscillation did not damp within one cycle. The airplane oscillation damped sufficiently at low altitude but not at high altitude. 7. Both rudder-fixed and rudder-free static directional stability were positive over a sideslip range of +/-15 deg. However, the rudder force tended to reverse at high angles of right sideslip with flaps and gear up, power on, at low speeds. 8. The stick-fixed static lateral stability (dihedral effect) was positive in all conditions, but the stick-free dihedral effect was neutral at low speeds with flap and gear down, power on. 9. The yaw due to abrupt full aileron deflection at low speed was mot excessive, and the rudder control was adequate to hold trim sideslip. 10. In abrupt rudder-fixed aileron rolls in the clean configuration the maximum pb/2V for full aileron deflection at low and normal speeds was only 0.064. 11. The stalling characteristics were considered unsatisfactory in all configurations in both straight and turning flight due to inadequate stall warning. The motions in the stalls were not unduly severe, and recovery could be effected promptly by normal use of the controls.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A7C05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: The paper presents a systematical analysis of the problem of the determination of the unsteady motion about an airfoil moving in an infinite fluid that contains a system of vortices and the determination of the hydrodynamical forces acting on the airfoil. The hydrodynamical problem is reduced to the determination of the function f (xi) which transforms conformally the external region of the airfoil into the interior of a circle. The proposed methods of determining the irrotational motion of a fluid that is produced by any motion of the airfoil are especially simple and effective if the function f (xi) is rational. As an example the flow is determined for the case of an arbitrary motion of an airfoil of the Joukowsky type. The formulas obtained for the determination of the hydrodynamical forces by means of contour integration are similar to those given by S. Chaplygin. These formulas are used to determine the force acting on the airfoil in the cases where the unsteady motion is potential throughout and the circulation about the airfoil is constant and also when the fluid contains a system of vortices. A full discussion is given of the concept of virtual masses together with practical formulas for computing the virtual mass coefficients.
    Keywords: Aerodynamics
    Type: NACA-TM-1156
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-11
    Description: The gust and draft velocities from records of NACA instruments installed in P-61c airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from July 12, to July 18, 1947 are presented.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7L08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-11
    Description: The XF-12 airplane is a high-performance photo-reconnaissance aircraft designed for the Army Air Forces by the Republic Aviation Corporation. An investigation of a 1/8.33 - scale powered model was made in the Langley l9-foot pressure tunnel to obtain information relative to the aerodynamic design of the airplane. The model was tested with and without the original vertical tail. and with two revised tails. For the revised tail no. 1, the span of the original vertical .tail was increased about 15 percent and the portion of the vertical tail between the stabilizer and fuselage behind the rudder hinge line was allowed to deflect simultaneously with the main rudder. Revision no. 2 incorporated the increased span, but the lower rudder was locked in the neutral position. For all the tail arrangements investigated it was indicated that the airplane will possess positive effective dihedral and will be directionally stable regardless of flap or power condition. The rudder effectiveness is greater for the revised tails than for the original tail, but this is offset by the increase in directional stability caused by the revised tail. All the rudder arrangements appear inadequate in trimming out the resultant yawing moments at zero yaw in a take - off condition with the left-hand outboard propeller windmilling and the remaining engines developing take-off power.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7B21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-11
    Description: Flight tests were conducted at the Flight Test Station of the Pilotless Aircraft Research Division at Wallop Island, Va., to determine the longitudinal control and stability characteristics of 0.5-scale models of the Fairchild Lark pilotless aircraft with the tail in line with the wings a d with the horizontal wing flaps deflected 60 deg. The data were obtained by the use of a telemeter and by radar tracking.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7F17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-11
    Description: Tests were made with a C-54 airplane in which airline pilots made several blind approaches to determine whether any special flying techniques were used in blind landings and whether any special handling-qualities requirements would have to be formulated because of such special techniques. It was found that the airplane was flown at all times in the normal manner; that is, all turns were banked turns that were nearly coordinated by use of the rudder so that the sideslip was held close to zero. The pilot expended considerable physical work in continually moving the controls but this wake was due in part to the large friction in the three control systems. The actual control deflections used were small compared to the maximum deflections available.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7F20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-11
    Description: At the request of the Air Materiel Command, Army Air Forces, an investigation of the low-speed, power-off, stability and control characteristics of the McDonnell XP-85 airplane has been conducted in the Langley free-flight tunnel. The results of the portion of the investigation consisting of tests of a 1/10-scale model to study the stability of the XP-85 when attached to the trapeze and during retraction into the B-36 bomb bay are presented herein. In the power-off condition the stability was satisfactory with all oscillations well damped and the nose-restraining collar could be placed in position without difficulty. In a simulated power-on condition the model had a constant-amplitude rolling and sidewise motion and when the collar was layered, a violent motion resulted if the collar struck the model but failed to hold it in the proper manner. Folding of the wings and retraction into the bomb bay offered no problem once the airplane was properly held by the collar. It is recommended that the power be cut immediately after hooking on and that a restricting mechanism be incorporated in the center of the trapeze to eliminate the sidewise motion. It also appears desirable to have the retracting procedure controlled by the XP-85 pilot or an observer in the mother ship to insure that the parasite is in proper position after hooking up before bringing the collar down.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7J16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-11
    Description: The flight investigation of the C-54D airplane was initiated to determine the necessity of changes or additions to existing handling-qualities requirements to cove the case of instrument approaches with large airplanes. This paper gives a brief synopsis of the results and presents the measured data of tests to determine the stability and control characteristics. It was found that no new requirements were necessary to cover the problems of instrument approaches. The C-54D airplane tested met the Amy and Navy stability and control requirements except for the following items. The control-system friction with autopilot installed vas double that allowed by the requirements. The amount of friction was found to impair the controllability of the airplane in precision flying. The lateral and directional characteristics were good except that the maximum pb/2V was slightly below the minimum required, and the elevator-control forces to obtain the maximum pb/2V at low speeds were above the Army and Navy requirements. The longitudinal stability and control characteristics were good except that the elevator-control forces exceeded the limits of the Army and Navy requirements in turns and in landings. The stalling characteristics were considered good in all conditions with the stall warning in the form of tail buffeting occurring at speeds approximately 5 miles per hour above the stall.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7L17a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-10
    Description: Flight tests were conducted to determine the effect of length of a conical windshield on the drag of a bluff body moving at supersonic speeds. A comparison is made between results obtained and results of previous drag tests of body-windshield combinations.The effect of increasing the length of the windshield is discussed.
    Keywords: Aerodynamics
    Type: NACA-RM-L6J16a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-10
    Description: Drag measurements at transonic speeds on rectangular airfoils and on airfoils swept back 450 are reported. These airfoils, which were mounted on cylindrical test bodies, are part of a series being tested in free drops from high altitude to determine the effect of variation of basic airfoil parameters on airfoil drag characteristics at transonic speeds. These rectangular and swept-back airfoils had the same span, airfoil section (NACA 65-009), and chord perpendicular to the leading edge. The tests were made to compare the drag of rectangular and sweptback airfoils at a higher aspect ratio than had been used in a similar comparison reported previously. The results showed that the drag of the swept-back airfoil was less than 0.15 that of the rectangular airfoil at a Mach number of 1.00 and less than 0.30 that of the rectangular airfoil at a Mach number of 1.17. A comparison of these swept-back airfoils with similar airfoils of lower aspect ratio previously tested by the same method indicated that in the investigated speed range reduction in aspect ratio results in increased drag. In the highest part of the investigated speed range, however, the drag coefficient of the high-aspect-ratio swept-back airfoils showed a tendency to approach that of the lower-aspect-ratio swept-back airfoils. A similar comparison for the rectangular airfoils showed that delay in the drag rise and a reduction in drag at supercritical speeds can be realIzed through reduction in aspect ratio. These results confirm those reported in NACA ACR No. L5J16.
    Keywords: Aerodynamics
    Type: NACA-RM-L6K08c
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-10
    Description: An untwisted wing, which when unswept has an NACA 65-210 section, an aspect ratio of 9.0 and a taper ration of 2.5:1.0, has been tested with no sweep, and 30 deg and 45 deg of sweepback and sweepforward in conjunction with a typical fuselage at Mach numbers from 0.60 to 0.96 at angles of attack generally between -2 deg and 10 deg in the Langley 8-foot high-speed tunnel. Sweep was obtained by rotating the wing semispans about a point in the plane of symmetry. The normal-force, pitching-moment, profile-drag, and loading characteristics for the wings have been obtained from pressure measurements and wake surveys. The results indicate that the wings with +/-30 deg of sweep experienced the severe changes in characteristics associated with the presence of a shock at higher Mach numbers then did the wing without sweep. The differences between the Mach numbers at which the changes occurred for the wings with +/-30 deg sweep and no sweep were generally slightly less than the factor 1/cosDelta(sub r) times the Mach numbers at which the changes occurred for the unswept wing, Delta(sub r) being the sweep angle. The wings with +/-45 deg of sweep did not experience the changes in the characteristics associated with the presence of shock at an angle of attack of 2 deg at Mach numbers up to the highest test value. The magnitudes of changes in the normal-force and pitching-moment coefficients that occurred were less for the wing with 30 deg of sweep than for the unswept wing. The use of sweepforward was superior to sweepback in delaying and reducing the changes in the normal-force coefficients, but was inferior in delaying and reducing the changes in the profile-drag coefficients. Increasing the Mach number to the highest test values had little effect on the positions of the center of loads on the various configurations for the probable design load conditions.
    Keywords: Aerodynamics
    Type: NACA-RM-L6J01a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-10
    Description: The tests reported herein were made for the purpose of determining the high-speed load distribution on the wing of a 3/16 scale model of the Douglas XSB2D-1 airplane. Comparisons are made between the root bending moment and section torsional moment coefficients as obtained experimentally and derived analytically. The results show good correlation for the bending moment coefficients but considerable disagreement for the torsional moment coefficients, the measured moments being greater than the analytical moments. The effects of Mach number on both the bending moment and torsional moment coefficients were small.
    Keywords: Aerodynamics
    Type: NACA-RM-A7A30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-10
    Description: The available foreign and American data relating to Reynolds number effects on the maximum lift coefficients of swept-back wings are summarized and discussed. The data show that at low Reynolds numbers (below about 2.0 x 10(exp 6)) higher maximum lift coefficients were measured in most cases for moderately swept-back wings than for unswept wings of similar plan form; at high Reynolds numbers, however, increasing sweepback resulted in decreasing maximum lift coefficients. A smaller rate of increase of the maximum lift coefficient with Reynolds number was measured for the swept-back wings than for similar unswept wings in the critical range of Reynolds number. Increasing the Reynolds number resulted in decreases in the maximum lift coefficients of the two wings of approximately triangular plan form that were investigated.
    Keywords: Aerodynamics
    Type: NACA-RM-L6L20a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-12
    Description: Attempts were made to alleviate the buffeting of external fuel tanks mounted under the wings of a twin-engine Navy fighter airplane. The Mach number at which buffeting began was increased from 0,529 to 0.640 by streamlining the sway braces and by increasing the lateral rigidity of the sway brace system. Further increase of the Mach number, at which buffeting began to 0.725, was obtained by moving the external fuel tank to a position under the fuselage.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SA7A07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-12
    Description: An analysis has been made of the lift-control effectiveness of a 20-percent-chord plain trailing-edge flap on the NACA 65-210 airfoil section from section lift-coefficient data obtained at Mach numbers from 0.3 to 0.875. In addition, the effectiveness of the plain flap as a lift-control device has been compared with the corresponding effectiveness of both a spoiler and a dive-recovery flag on the INCA 65-210 airfoil section.
    Keywords: Aerodynamics
    Type: NACA-RM-SA7A17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-15
    Description: With an approach of the velocity of flight of a ship to the velocity of sound, there occurs a considerable increase of the drag. The reason for this must be found in the boundary layer separation caused by formation of shock waves. It will be endeavored to reduce the drag increase by suction of the boundary layer. Experimental results showed that drag increase may be considerably reduced by this method. It was, also, observed that, by suction, the position of shock waves can be altered to a considerable extent.
    Keywords: Aerodynamics
    Type: NACA-TM-1168 , ZWB-1424
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: This paper gives an overview of equations for vibration and flutter affecting airplane wings in nonstationary flow.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1154 , Bulletin de L'Academie des Sciences de L'URSS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-15
    Description: Wind tunnel tests haved been made at low speed to various small-scale models of swept-back, swept-forward, and yawed wings. Tests covered changes in aspect ratio, taper ratio, and tip shape.
    Keywords: Aerodynamics
    Type: NACA-RM-L7D23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-15
    Description: The present report contains three-component forces and mass-flow measurements on a jet nacelle at small inlet-velocity ratios v(sub A)/v(sub o) 〈 1. The mass-flow measurement on two cross sections of the nacelle demonstrate the local-velocity distribution with varying flow and angle of attack.
    Keywords: Aerodynamics
    Type: NACA-TM-1149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-16
    Description: Two procedures for calculating the lift distribution along the span are given in which a better account is taken of the distribution of circulation over te area than in the Prandtl lifting-line theory. The methods are also applicable to wing sweepback. Calculated results for the two methods were in agreement.
    Keywords: Aerodynamics
    Type: NACA-TM-1120 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluftzeugmeisters; 1553
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: In the vicinity of a body in a wind tunnel the displacement effect of the wake, due to the finite dimensions of the stream, produces a pressure gradient which evokes a change of drag. In incompressible flow this change of drag is so small, in general, that one does not have to take it into account in wind-tunnel measurements; however, in compressible flow it beoomes considerably larger, so that a correction factor is necessary for measured values. Correction factors for a closed tunnel and an open jet with circular cross sections are calculated and compared with the drag - corrections already bown for high-speed tunnnels.
    Keywords: Aerodynamics
    Type: NACA-TM-1163 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluftzeugmeisters(ZWB) Berlln-Adershof
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: In the case of cones in axially symmetric flow of supersonic velocity, adiabatic compression takes place between shock wave and surface of the cone. Interpolation curves betwen shock polars and the surface are therefore necessary for the complete understanding of this type of flow. They are given in the present report by graphical-numerical integration of the differential equation for all cone angles and airspeeds.
    Keywords: Aerodynamics
    Type: NACA-TM-1157 , Jahrbuch 1942 der deutschen Luftfahrtforschung; 80-190
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: A compilation of free-spinning-airplane model data on the spin and recovery characteristics of 111 airplanes is presented. These data were previously published in separate memorandum reports and were obtained from free-spinning tests in the Langley 15-foot and the Langley 20-foot free-spinning tunnels. The model test data presented include the steady-spin and recovery characteristics of each model for various combinations of aileron and elevator deflections and for various loadings and dimensional configurations. Dimensional data, mass data, and a three-view drawing of the corresponding free-spinning tunnel model are also presented for each airplane. The data presented should be of value to designers and should facilitate the design of airplanes incorporating satisfactory spin-recovery characteristics.
    Keywords: Aerodynamics
    Type: NACA-RM-L7E15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: By use of the methods of thin airfoil theory, which include effects of compressibility, rela.tio^as are developed which permit the rapid determination of the pressure distribution over an unstaggered cascade of airfoils of a given profile, and the determination of the profile shape necessary to yield a given pressure distribution for small chord gap ratios, For incompressible flow the results of the theory are compared with available examples obtained by the more exact method of conformal transformation. Although the theory is developed for small chord/gap ratios, these comparisons show that it may be extended to chord/gap ratios of order unity, at least for low speed flows. Choking of cascades, a phenomenon of particular importance in compressor design, is considered.
    Keywords: Aerodynamics
    Type: NACA-RM-A7E29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: The present report contains the results of a series of observations obtained for a wing of symmetrical profile for different angles of yaw. The shock tunnel with 0.4m x 0.4m cross section, of the Institute for Gas Dynamics at L.F.A. - Braunchweig was available for this work. The profile used was a 9 percent, thick hyperbolic profile with maximum thickness 40 percent aft, which was calculated by the method of F. Ringleb (2). Since the conformal transformation of this profile is known, the theoretical pressure distribution could be determined exactly for the case of incompressible flow. Then by the use of the Prandtl rule one may extend the comparison of theory and experiment to the case of higher velocity of incident flow.
    Keywords: Aerodynamics
    Type: NACA-TM-1115 , Messerschmitt A.G.; 1669
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: The spanwise lift-distribution measurements in straight air flow on a straight and a 35 deg swept-back tapered wing (NACA airfoil section 0012) are compared with theory for two angles of attack each (alpha approx. 6 deg and alpha approx. 12 deg) in the unstalled range of flow. The complete pressure distribution for the greater of the two angles is indicated.
    Keywords: Aerodynamics
    Type: NACA-TM-1126 , Deutsche Luftfahrtforschung, Untersuchungen und Mitteilungen; 1293
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...