ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biogeochemistry  (1)
  • Climate variability  (1)
  • Cross-bridges
  • National Academy of Sciences  (2)
  • American Association for the Advancement of Science
  • American Institute of Physics (AIP)
  • 2015-2019  (2)
  • 2005-2009
  • 1990-1994
  • 1980-1984
  • 1945-1949
  • 1935-1939
  • 2019  (2)
  • 2005
  • 1982
  • 1980
  • 1965
  • 1947
Collection
Publisher
Years
  • 2015-2019  (2)
  • 2005-2009
  • 1990-1994
  • 1980-1984
  • 1945-1949
  • +
Year
  • 2019  (2)
  • 2005
  • 1982
  • 1980
  • 1965
  • +
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116 (24), (2019):11646-11651, doi:10.1073/pnas.1900371116.
    Description: Measurements show large decadal variability in the rate of CO2 accumulation in the atmosphere that is not driven by CO2 emissions. The decade of the 1990s experienced enhanced carbon accumulation in the atmosphere relative to emissions, while in the 2000s, the atmospheric growth rate slowed, even though emissions grew rapidly. These variations are driven by natural sources and sinks of CO2 due to the ocean and the terrestrial biosphere. In this study, we compare three independent methods for estimating oceanic CO2 uptake and find that the ocean carbon sink could be responsible for up to 40% of the observed decadal variability in atmospheric CO2 accumulation. Data-based estimates of the ocean carbon sink from pCO2 mapping methods and decadal ocean inverse models generally agree on the magnitude and sign of decadal variability in the ocean CO2 sink at both global and regional scales. Simulations with ocean biogeochemical models confirm that climate variability drove the observed decadal trends in ocean CO2 uptake, but also demonstrate that the sensitivity of ocean CO2 uptake to climate variability may be too weak in models. Furthermore, all estimates point toward coherent decadal variability in the oceanic and terrestrial CO2 sinks, and this variability is not well-matched by current global vegetation models. Reconciling these differences will help to constrain the sensitivity of oceanic and terrestrial CO2 uptake to climate variability and lead to improved climate projections and decadal climate predictions.
    Description: We thank Rebecca Wright and Erik Buitenhuis at University of East Anglia, Norwich, for providing updated runs from the NEMO-PlankTOM5 model. T.D. was supported by NSF Grant OCE-1658392. C.L.Q. thanks the UK Natural Environment Research Council for supporting the SONATA Project (Grant NE/P021417/1). P.L. was supported by the Max Planck Society for the Advancement of Science. J.H. was supported under Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System (MarESys) Grant VH-NG-1301. S.B. and R.S. were supported by the H2020 project CRESCENDO “Coordinated Research in Earth Systems and Climate: Experiments, Knowledge, Dissemination and Outreach,” which received funding from the European Union’s Horizon 2020 research and innovation program under Grant No 641816. SOCAT is an international effort, endorsed by the International Ocean Carbon Coordination Project, the Surface Ocean-Lower Atmosphere Study, and the Integrated Marine Biosphere Research program, to deliver a uniformly quality-controlled surface ocean CO2 database. The many researchers and funding agencies responsible for the collection of data and quality control are thanked for their contributions to SOCAT.
    Description: 2019-11-28
    Keywords: Carbon dioxide ; Ocean carbon sink ; Terrestrial carbon sink ; Climate variability ; Carbon budget
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Diaz, J. M., Plummer, S., Hansel, C. M., Andeer, P. F., Saito, M. A., & McIlvin, M. R. NADPH-dependent extracellular superoxide production is vital to photophysiology in the marine diatom Thalassiosira oceanica. Proceedings of the National Academy of Sciences of the United States of America, 116 (33), (2019): 16448-16453, doi: 10.1073/pnas.1821233116.
    Description: Reactive oxygen species (ROS) like superoxide drive rapid transformations of carbon and metals in aquatic systems and play dynamic roles in biological health, signaling, and defense across a diversity of cell types. In phytoplankton, however, the ecophysiological role(s) of extracellular superoxide production has remained elusive. Here, the mechanism and function of extracellular superoxide production by the marine diatom Thalassiosira oceanica are described. Extracellular superoxide production in T. oceanica exudates was coupled to the oxidation of NADPH. A putative NADPH-oxidizing flavoenzyme with predicted transmembrane domains and high sequence similarity to glutathione reductase (GR) was implicated in this process. GR was also linked to extracellular superoxide production by whole cells via quenching by the flavoenzyme inhibitor diphenylene iodonium (DPI) and oxidized glutathione, the preferred electron acceptor of GR. Extracellular superoxide production followed a typical photosynthesis-irradiance curve and increased by 30% above the saturation irradiance of photosynthesis, while DPI significantly impaired the efficiency of photosystem II under a wide range of light levels. Together, these results suggest that extracellular superoxide production is a byproduct of a transplasma membrane electron transport system that serves to balance the cellular redox state through the recycling of photosynthetic NADPH. This photoprotective function may be widespread, consistent with the presence of putative homologs to T. oceanica GR in other representative marine phytoplankton and ocean metagenomes. Given predicted climate-driven shifts in global surface ocean light regimes and phytoplankton community-level photoacclimation, these results provide implications for future ocean redox balance, ecological functioning, and coupled biogeochemical transformations of carbon and metals.
    Description: This work was supported by a postdoctoral fellowship from the Ford Foundation (to J.M.D.), the National Science Foundation (NSF) under grants OCE 1225801 (to J.M.D.) and OCE 1246174 (to C.M.H.), a Junior Faculty Seed Grant from the University of Georgia Research Foundation (to J.M.D.), and a National Science Foundation Graduate Research Fellowship (to S.P.). The FIRe was purchased through a NSF equipment improvement grant (1624593).The authors thank Melissa Soule for assistance with LC/MS/MS analysis of peptide samples.
    Keywords: Reactive oxygen species ; Photosynthesis ; Oxidative stress ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...