ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (16)
  • nitrous oxide  (16)
  • Springer  (16)
  • Blackwell Science Ltd
  • 1995-1999  (16)
  • 1945-1949
  • 1998  (16)
  • 1946
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (16)
Collection
  • Articles  (16)
Publisher
  • Springer  (16)
  • Blackwell Science Ltd
Years
  • 1995-1999  (16)
  • 1945-1949
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 269-276 
    ISSN: 1573-0867
    Keywords: agriculture ; material flows ; nitrogen budget ; nitrogen surplus ; nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Results of a study on the nitrogen flows in the Netherlands are presented for three different years. The details given for 1995 are preliminary. The data are derived from a material balance sheet investigation. The objective of the study is to present a complete, integrated and accurate overview of nitrogen losses from the anthropogenic nitrogen cycle in the country with respect to present and possible future nitrous oxide emissions. Losses are analyzed in terms of economic sources and the recipient environmental compartments. The nitrogen losses account for about 25% of the total nitrogen input in the anthropogenic nitrogen cycle. Most of the losses occur in agriculture (67%), whereas industry, traffic and households each contribute about 10% to the total nitrogen loss. About 15% of the total nitrogen input in the national economy ends up in the environment, where it gives rise to adverse effects as the eutrophication of fresh surface water and the contamination of ground water with nitrate. A comparison of the results for different years shows that little progress has been made in emission reductions so far. Ammonia emissions have been reduced, but at the expense of an increase of the nitrogen input to agricultural soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 141-149 
    ISSN: 1573-0867
    Keywords: controls ; grassland ; management ; modelling ; nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract There is growing awareness that grassland livestock production systems are major sources of nitrous oxide (N2O). Controlling these emissions requires a thorough understanding of all sources and controlling factors at the farm level. This paper examines the various controlling factors and proposes farm management measures to decrease N2O emissions from intensively managed grassland livestock farming systems. Two types of regulating mechanisms of N2O emissions can be distinguished, i.e. environmental regulators and farm management regulators. Both types of regulators may influence the number and size of N2O sources, and the timing of the emissions. At the field and farm scales, two clusters of environmental regulating factors have been identified, i.e. soil and climate, and three levels of management regulators, i.e. strategic, tactical and operational. Though the understanding of these controls is still incomplete, the available information suggests that there is large scope for diminishing N2O emissions at the farm scale, using strategies that have been identified already. For example, model calculations indicate that it may be possible to decrease total N2O emissions from intensively managed dairy farms in The Netherlands in the short term from a mean of about 19 to about 13 kg N per ha per year by more effective nutrient management, whilst maintaining productivity. There is scope for a further reduction to a level of about 6 kg N per ha per year. Advisory tools for controlling N2O emissions have to be developed for all three management levels, i.e. strategic, tactical and operational, to be able to effectively implement emission reduction options and strategies in practice. Some strategies and best management practices to decrease N2O emissions from grassland livestock farming systems are suggested.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 165-170 
    ISSN: 1573-0867
    Keywords: agriculture ; fertilizer ; nitrogen loss ; nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract N2O is emitted from agricultural soils due to microbial transformation of N from fertilizers, manures and soil N reserves. N2O also derives from N lost from agriculture to other ecosystems: as NH3 or through NO 3 - leaching. Increased efficiency in crop N uptake and reduction of N losses should in principle diminish the amount of N2O from agricultural sources. Precision in crop nutrient management is developing rapidly and should increase this efficiency. It should be possible to design guidelines on good agricultural practices for low N2O emissions in special situations, e.g. irrigated agriculture, and for special operations, e.g. deep placement of fertilizers and manures. However, current information is insufficient for such guidelines. Slow-release fertilizers and fertilizers with inhibitors of soil enzymatic processes show promise as products which give reduced N2O emissions, but they are expensive and have had little market penetration. Benefits and possible problems with their use needs further clarification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 289-301 
    ISSN: 1573-0867
    Keywords: food production and consumption ; mitigation strategies ; nitrogen ; nitrogen emission ; nitrous oxide ; sustainability of human N cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract During the past four decades the authors perceive that an increasing non-sustainability (Disintegration) within the agriculture , human nutrition, waste management complex has occurred both in Germany and the European Union. Compared to the basic needs of the population for nutritive energy, fat and protein, we estimate that the production and consumption of food and feed is more than 50% higher than necessary. Using nitrogen (N) input into German agriculture in 1991/92 as an example, we estimated that the N input of 191 kg ha-1 was 2 to 3 times too high. This high N input resulted in the net biomass production of 45 kg ha-1, a 25% efficiency. This inefficiency causes emissions of reactive N and other nutrient compounds into the hydrosphere and atmosphere that were 2 to 8 times too high. For example the contributions of agriculture to the total annual N2O–N emissions of Germany (during 1990–1992), Europe (1990) and of the world (1989) were 110, 691 Gg and 6.7 Tg or 52, 62 and 41%, respectively. The authors demonstrate that emissions of N and P from Germany and EU waste water management systems are also higher than necessary because nutrient recycling is not practiced extensively. Excessive food production and consumption has made the agriculture/human nutrition/waste and waste water complex, like the energy/transportation complex, a main cause of new transboundary environmental damage such as soil and water acidification, hypertrophication of near-natural terrestrial and aquatic ecosystems and climate change. We propose that a sustainable food production/consumption system can be developed that is based both on need-oriented production and consumption with no net exports and on recovery, recycling and more efficient use of nutrients. Using N as an example, the authors show which short and long term action aims must be set and realized by the year 2015, to meet environmental, economical and social sustainability requisites. The suggested, assumed sustainable N balance for German agriculture is characterized by a critical annual input and surplus maximum of 80 and 45 kg N ha-1 respectively, which should almost double biomass production efficiency for N utilization. This estimate is based on reducing animal stocking rates to 0.5 gross weight unit ha-1 to attain no net mineralization or immobilization of N in the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 195-212 
    ISSN: 1573-0867
    Keywords: aquatic emissions ; N2O ; nitrogen transport ; watersheds ; nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The purpose of the current paper is to estimate future trends (up to the year 2050) in the global geographical distribution of nitrous oxide (N2O) emissions in rivers, estuaries, and continental shelf regions due to biological processes, particularly as they are affected by anthropogenic nitrogen (N) inputs, and to compare these to 1990 emissions. The methodology used is from Seitzinger and Kroeze (1998) who estimated 1990 emissions assuming that N2O production in these systems is related to nitrification and denitrification. Nitrification and denitrification in rivers and estuaries were related to external inputs of nitrogen to those systems. The model results indicate that between 1990 and 2050 the dissolved inorganic nitrogen (DIN) export by rivers more than doubles to 47.2 Tg N in 2050. This increase results from a growing world population, associated with increases in fertilizer use and atmospheric deposition of nitrogen oxides (NOy). By 2050, 90% of river DIN export can be considered anthropogenic. N2O emissions from rivers, estuaries and continental shelves are calculated to amount to 4.9 (1.3 – 13.0) Tg N in 2050, of which two-thirds are from rivers. Aquatic emissions of N2O are calculated to increase faster than DIN export rates: between 1990 and 2050, estuarine and river emissions increase by a factor of 3 and 4, respectively. Emissions from continental shelves, on the other hand, are calculated to increase by only 12.5%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: cattle slurry ; denitrification ; mineral fertiliser ; nitrous oxide ; pasture soils ; slurryapplication technique
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Total denitrification and nitrous oxide (N2O) losses were measured from three contrasting dairy management systems representing good commercial practice (system 1), production maintained but with reduced N losses (system 2); and nitrate leaching less than 50 mg L-1 but with reduced production (system 3). Measurements were made following mineral fertiliser application and from two plot experiments where four treatments were applied: control, NH4NO3 at 60 kg N ha-1, cattle slurry applied to the surface (equivalent to 45 kg N ha-1), and cattle slurry injected. Despite low soil temperatures (〈6 °C) and low rainfall (〈3 mm), total denitrification and N2O losses peaked at 56 and 16 g N ha-1 d-1, respectively. Total denitrification losses decreased: system 1 ≥ system 2 〉 system 3, whereas N2O losses decreased: system 2 〉 system 3 〉 system 1. Total denitrification losses tended to decrease with decreasing fertiliser application rate, whereas fertiliser application rate was not the sole determinant of the N2O loss. The system 3 field was injected with cattle slurry for 2 yr, system 2 received some slurry by injection and system 1 received slurry to the surface. Thus, the amount, timing and method of previous cattle slurry application was important in determining the loss following subsequent fertiliser application. For the plot experiments, total denitrification and N2O losses decreased in the order: slurry injected 〉 mineral fertiliser 〉 slurry applied to the surface 〉 control for 5 days following application. However, 16 and 19 days after application, N2O losses above the control were measured from plots that had received cattle slurry. It was inferred that the application of cattle slurry to the pasture soil stimulated greater N2O production and increased losses over a longer time period compared with mineral fertiliser additions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5036
    Keywords: alder ; Alnus glutinosa ; methane ; nitrous oxide ; trace gas flux
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Three-year-old seedlings of black alder (Alnus glutinosa (L.) Gaertn.), a common European wetland tree species, were grown in native soil taken from an alder swamp. Fluxes of methane (CH4) and nitrous oxide (N2O) between the tree stem and the atmosphere were determined under controlled conditions. Both CH4 and N2O were emitted through the bark of the stem into the atmosphere when the root zone exhibited ‘higher-than-ambient’ CH4 and N2O gas mixing ratios. Flooding of the soil caused a decreased N2O emission but an increased CH4 efflux from the stem. Immediately after flooding of the soil, N2O was emitted from the seedlings' bark at a rate of 350 μmol N2O m-2 h-1 whereas CH4 flux could not be detected. After more than 40 days of flooding CH4 fluxes up to 3750 μmol CH4 m-2 h-1 from the stem were measured, while N2O emission had decreased below the limit of detection. Gas efflux decreased with increasing stem height and correlated with gas mixing ratios in the soil, indicating diffusion through the aerenchyma as the major path of gas transport. From these results it is assumed that woody species with aerenchyma can serve as conduits for soil-derived trace gases into the atmosphere, to date only shown for herbaceous plants. This, yet unidentified, ‘woody plant pathway’ contributes to the total greenhouse gas source strength of wetlands.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 203 (1998), S. 279-288 
    ISSN: 1573-5036
    Keywords: cucumber ; denitrification ; nitrous oxide ; pH ; soilless culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The influence of nutrient solution pH on the emission of N2O and N2 was investigated during cultivation of cucumbers in a closed-loop rockwool system. Between pH 4 and 7 these gaseous nitrogen losses increased from 1.6 to 21.1% of the N fertilizer input. This was equivalent to average flux rates of 0.06 and 0.85 kg nitrogen per hectare greenhouse area and day, respectively. The N2O/N2 ratio was inversely related to the total gaseous nitrogen losses. At neutral pH dinitrogen was the main emission product, whereas more acidic conditions favoured the emission of nitrous oxide. The pH effects were probably not indirectly affected by root respiration or exudation as much as by a direct inhibition of the activity of denitrifying microorganisms due to high H+ concentrations since similar results were obtained in unplanted nutrient solution systems with the addition of glucose as carbon source. Despite the low microbial denitrification activity under acidic conditions, nitrogen balance deficits of up to one-fifth of the N input still occurred. It is suggested these losses were predominantly caused by chemodenitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 179-186 
    ISSN: 1573-0867
    Keywords: denitrification ; groundwater ; nitrous oxide ; riparian
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper addresses the question of whether riparian zones and groundwater are ‘hotspots’ of nitrous oxide (N2O) flux in the landscape. First, we describe how riparian zones and groundwater function as transformers of N, with a particular emphasis on mechanisms of N2O production in these ecosystems. We then present specific data on N2O flux in these ecosystems and attempt to reconcile these data with existing regional scale estimates of N flux for Norway and with estimates of N2O flux for Norway produced using the OECD/IPCC/IEA Phase II methodology for calculation of regional and global N2O budgets. While the OECD/IPCC/IEA approach produces estimates of riparian and groundwater N2O flux that are reasonable, given what we know about regional scale N balances and actual data on N2O flux, it does not allow us to determine if riparian zones and groundwater are ‘hotspots’ of N2O production in the landscape. The approach fails to answer this question because it is unable to account for spatially explicit phenomena such as riparian and groundwater processing of excess agricultural N. Research needs that would allow us to address this question are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 131-139 
    ISSN: 1573-0867
    Keywords: denitrification ; di-nitrogen ; mass spectrometry ; nitrification ; 15N ; nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrous oxide can be produced during nitrification, denitrification, dissimilatory reduction of NO 3 - to NH 4 + and chemo-denitrification. Since soils are a mosaic of aerobic and anaerobic zones, it is likely that multiple processes are contributing simultaneously to N2O production in a soil profile. The N2O produced by all processes may mix to form one pool before being reduced to N2 by denitrification. Reliable methods are needed for measuring the fluxes of N2O and N2 simultaneously from agricultural soils. The C2H2 inhibition and 15N gas-flux methods are suitable for use in undisturbed soils in the field. The main disadvantage of C2H2 is that as well as blocking N2O reductase, it also blocks nitrification and dissimilatory reduction of NO 3 - to NH 4 + . Potentially the 15 N gas-flux method can give reliable measurements of the fluxes of N2O and N2 when all N transformation processes proceed naturally. The analysis of 15N in N2 and N2O is now fully automated by continuous-flow isotope-ratio mass spectrometry for 12-ml gas samples contained in septum-capped vials. Depending on the methodology, the limit of detection ranges from 4 to 11 g N ha-1day-1 for N2 and 4 to 15 g N ha-1day-1 for N2O. By measuring the 15N content and distribution of 15N atoms in the N2O molecules, information can also be obtained to help diagnose the sources of N2O and the processes producing it. Only a limited number of field studies have been done using the 15N gas-flux method on agricultural soils. The measured flux rates and mole fractions of N2O have been highly variable. In rain-fed agricultural soils, soil temperature and water-filled pore space change with the weather and so are difficult to modify. Soil organic C, NO 3 - and pH should be amenable to more control. The effect of organic C depends on the degree of anaerobiosis generated as a result of its metabolism. If conditions for denitrification are not limiting, split applications of organic C will produce more N2O than a single application because of the time lag in the synthesis of N2O reductase. Increasing the NO 3 - concentration above the K m value for NO 3 - reductase, or decreasing soil pH from 7 to 5, will have little effect on denitrification rate but will increase the mole fraction of N2O. The effect of NO 3 - concentration on the mole fraction of N2O is enhanced at low pH. Manipulating the interaction between NO 3 - supply and soil pH offers the best hope for minimising N2O and N2 fluxes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 187-194 
    ISSN: 1573-0867
    Keywords: chemo-denitrification ; denitrification ; nitrous oxide ; subsoil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Agricultural practices, soil characteristics and meteorological conditions are responsible for eventual nitrate accumulation in the subsoil. There is a lot of evidence that denitrification occurs in the subsoil and rates up to 60–70 kg ha-1 yr-1 might be possible. It has also been shown that in the presence of Fe2+ (formed through weathering of minerals) and an alkaline pH, nitrate can be chemically reduced. Another possible pathway of disappearance is through the formation of nitrite, which is unstable in acid conditions. With regard to the emission of N2O and N2, it can be stated that all conditions whereby the denitrification process becomes marginal are favourable for N2O formation rather than for N2. Because of its high solubility, however, an important amount of N2O might be transported with drainage water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1573-0867
    Keywords: models ; N2O ; nitrogen cycle ; nitrous oxide ; temperate agro-ecosystems ; TRAGNET
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrous oxide (N2O) flux simulations by four models were compared with year-round field measurements from five temperate agricultural sites in three countries. The field sites included an unfertilized, semi-arid rangeland with low N2O fluxes in eastern Colorado, USA; two fertilizer treatments (urea and nitrate) on a fertilized grass ley cut for silage in Scotland; and two fertilized, cultivated crop fields in Germany where N2O loss during the winter was quite high. The models used were daily trace gas versions of the CENTURY model, DNDC, ExpertN, and the NASA-Ames version of the CASA model. These models included similar components (soil physics, decomposition, plant growth, and nitrogen transformations), but in some cases used very different algorithms for these processes. All models generated similar results for the general cycling of nitrogen through the agro-ecosystems, but simulated nitrogen trace gas fluxes were quite different. In most cases the simulated N2O fluxes were within a factor of about 2 of the observed annual fluxes, but even when models produced similar N2O fluxes they often produced very different estimates of gaseous N loss as nitric oxide (NO), dinitrogen (N2), and ammonia (NH3). Accurate simulation of soil moisture appears to be a key requirement for reliable simulation of N2O emissions. All models simulated the general pattern of low background fluxes with high fluxes following fertilization at the Scottish sites, but they could not (or were not designed to) accurately capture the observed effects of different fertilizer types on N2O flux. None of the models were able to reliably generate large pulses of N2O during brief winter thaws that were observed at the two German sites. All models except DNDC simulated very low N2O fluxes for the dry site in Colorado. The US Trace Gas Network (TRAGNET) has provided a mechanism for this model and site intercomparison. Additional intercomparisons are needed with these and other models and additional data sets; these should include both tropical agro-ecosystems and new agricultural management techniques designed for sustainability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1573-0867
    Keywords: animal waste ; fertilizer ; greenhouse gas ; inventory ; nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In 1995 a working group was assembled at the request of OECD/IPCC/IEA to revise the methodology for N2O from agriculture for the National Greenhouse Gas Inventories Methodology. The basics of the methodology developed to calculate annual country level nitrous oxide (N2O) emissions from agricultural soils is presented herein. Three sources of N2O are distinguished in the new methodology: (i) direct emissions from agricultural soils, (ii) emissions from animal production, and (iii) N2O emissions indirectly induced by agricultural activities. The methodology is a simple approach which requires only input data that are available from FAO databases. The methodology attempts to relate N2O emissions to the agricultural nitrogen (N) cycle and to systems into which N is transported once it leaves agricultural systems. These estimates are made with the realization that increased utilization of crop nutrients, including N, will be required to meet rapidly growing needs for food and fiber production in our immediate future. Anthropogenic N input into agricultural systems include N from synthetic fertilizer, animal wastes, increased biological N-fixation, cultivation of mineral and organic soils through enhanced organic matter mineralization, and mineralization of crop residue returned to the field. Nitrous oxide may be emitted directly to the atmosphere in agricultural fields, animal confinements or pastoral systems or be transported from agricultural systems into ground and surface waters through surface runoff. Nitrate leaching and runoff and food consumption by humans and introduction into sewage systems transport the N ultimately into surface water (rivers and oceans) where additional N2O is produced. Ammonia and oxides of N (NOx) are also emitted from agricultural systems and may be transported off-site and serve to fertilize other systems which leads to enhanced production of N2O. Eventually, all N that moves through the soil system will be either terminally sequestered in buried sediments or denitrified in aquatic systems. We estimated global N2O–N emissions for the year 1989, using midpoint emission factors from our methodology and the FAO data for 1989. Direct emissions from agricultural soils totaled 2.1 Tg N, direct emissions from animal production totaled 2.1 Tg N and indirect emissions resulting from agricultural N input into the atmosphere and aquatic systems totaled 2.1 Tg N2O–N for an annual total of 6.3 Tg N2O–N. The N2O input to the atmosphere from agricultural production as a whole has apparently been previously underestimated. These new estimates suggest that the missing N2O sources discussed in earlier IPCC reports is likely a biogenic (agricultural) one.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 123-130 
    ISSN: 1573-0867
    Keywords: arable crops ; global warming ; grassland ; nitrogen fertilizer ; nitrous oxide ; soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Potato fields and cut (ungrazed) grassland in SE Scotland gave greater annual N2O emissions per ha (1.0–3.2 kg N2O–N ha-1) than spring barley or winter wheat fields (0.3–0.8 kg N2O–N ha-1), but in terms of emission per unit of N applied the order was potatoes 〉 barley 〉 grass 〉 wheat. On the arable land, especially the potato fields, a large part of the emissions occurred after harvest. When the grassland data were combined with those for 2 years' earlier work at the same site, the mean emission over 3 years, for fertilization with ammonium nitrate, was 2.24 kg N2O–N ha-1 (0.62% of the N applied). Also, a very strong relationship between N2O emission and soil nitrate content was found for the grassland, provided the water-filled pore space was 〉 70%. Significant relationships were also found between the emissions from potato fields and the soil mineral N content, with the added feature that the emission per unit of soil mineral N was an order of magnitude larger after harvest than before, possibly due to the effect of labile organic residues on denitrification. Generally the emissions measured were lower, as a function of the N applied, than those used as the basis for the current value adopted by IPCC, possibly because spring/early summer temperatures in SE Scotland are lower than those where the other data were obtained. The role of other factors contributing to emissions, e.g. winter freeze–thaw events and green manure inputs, are discussed, together with the possible implications of future increases in nitrogen fertilizer use in the tropics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1573-5036
    Keywords: carbon dioxide ; elevated CO2 ; FACE ; methane ; nitrous oxide ; trace gas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fluxes of nitrous oxide, methane and carbon dioxide were measured from soils under ambient (350 µL L-1) and enhanced (600 µL L-1) carbon dioxide partial pressures (pCO2) at the ‘Free Air Carbon Dioxide Enrichment’ (FACE) experiment, Eidgenössische Technische Hochschule (ETH), Eschikon, Switzerland in July 1995, using a GC housed in a mobile laboratory. Measurements were made in plots of Lolium perenne maintained under high N input. During the data collection period N fertiliser was applied at a rate of 14 g m-2 of N. Elevated pCO2 appeared to result in an increased (27%) output of N2O, thought to be the consequence of enhanced root-derived available soil C, acting as an energy source for denitrification. The climate, agricultural practices and soils at the FACE experiment combined to give rise to some of the largest N2O emissions recorded for any terrestrial ecosystem. The amount of CO2–C being lost from the control plot was higher (10%) than for the enhanced CO2 plot, and is the reverse of that predicted. The control plot oxidised consistently more CH4 than the enhanced plot, oxidising 25.5 ± 0.8 µg m-2 hr-1 of CH4 for the control plot, with an average of 8.5 ± 0.4 µg m-2 hr-1 of CH4 for the enhanced CO2 plot. This suggests that elevated pCO2 may lead to a feedback whereby less CH4 is removed from the atmosphere. Despite the limited nature of the current study (in time and space), the observations made here on the interactions of elevated pCO2 and soil trace gas release suggest that significant interactions are occurring. The feedbacks involved could have importance at the global scale.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 200 (1998), S. 265-277 
    ISSN: 1573-5036
    Keywords: compacted soil ; denitrification ; grassland ; mineralization ; nitrification ; nitrous oxide ; simultaneous
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The soils of mid-Wales in grazed permanent pasture usually exhibit stagnogley features in the top 4–10 cm even though on sloping sites, they are freely drained. Nitrogen is often poorly recovered under these conditions. Our previous studies suggest that continuing loss of available N through concurrent nitrification and denitrification might provide an explanation for poor response to fertilizer N. The work described was designated to further test this proposition. When NH 4 + –N was applied to the surface of intact cores, equilibrated at −5kPa matric potential, about 70% of NH 4 + –N initially present was lost within 56 days of incubation. Study of different sections of the cores showed a rise in NO 3 - level in the surface 0–2.5 cm soil layer but no significant changes below this depth. The imbalance between NO 3 - accumulation and NH 4 + disappearance during the study indicated a simultaneous nitrification and denitrification in the system. Furthermore, the denitrification potential of the soil was 3–4 times greater than nitrification potential so no major build-up of NO 3 - would be expected when two processes occur simultaneously in micro-scale. When nitrification was inhibited by nitrapyrin, a substantial amount of NH 4 + –N remained in the soil and persisted till the end of the incubation. The apparent recovery of applied N increased and of the total amount of N applied, 50% more was recovered relative to without nitrapyrin. It appears that addition of nitrapyrin inhibited nitrification, and consequently denitrification, by limiting the supply of NO 3 - for denitrifying organisms. Emission of N2O from the NH 4 + amended soil cores further confirmed that loss of applied N was the result of both nitrification and denitrification, which occurred simultaneously in adjacent sites at shallow depths. This N loss could account for the poor response to fertilizer N often observed in pastoral agriculture in western areas of the UK.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...