ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (76)
  • Aircraft Design, Testing and Performance  (76)
  • 1950-1954  (14)
  • 1945-1949  (62)
  • 1954  (14)
  • 1949  (27)
  • 1946  (35)
Collection
  • Other Sources  (76)
Years
  • 1950-1954  (14)
  • 1945-1949  (62)
Year
  • 1
    Publication Date: 2019-08-17
    Description: Measurement of average skin-friction coefficients have been made on six rocket-powered free-flight models by using the boundary-layer rake technique. The model configuration was the NACA RM-10, a 12.2-fineness-ratio parabolic body of revolution with a flat base. Measurements were made over a Mach number range from 1 to 3.7, a Reynolds number range 40 x 10(exp 6) to 170 x 10(exp 6) based on length to the measurement station, and with aerodynamic heating conditions varying from strong skin heating to strong skin cooling. The measurements show the same trends over the test ranges as Van Driest's theory for turbulent boundary layer on a flat plate. The measured values are approximately 7 percent higher than the values of the flat-plate theory. A comparison which takes into account the differences in Reynolds number is made between the present results and skin-friction measurements obtained on NACA RM-10 scale models in the Langley 4- by 4-foot supersonic pressure tunnel, the Lewis 8- by 6-foot supersonic tunnel, and the Langley 9-inch supersonic tunnel. Good agreement is shown at all but the lowest tunnel Reynolds number conditions. A simple empirical equation is developed which represents the measurements over the range of the tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L54G14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-17
    Description: As part of an investigation to increase the power output of the V-1710-93 engine at altitude, the engine-stage supercharger was combined with a constant-area vaneless diffuser designed to improve the performance of the engine-stage supercharger at the rated engine operating point. The performance of the modified supercharger was investigated in a variable-component supercharger test rig and compared with that of the standard supercharger with an 8-vaned diffuser. A separate evaluation of the component efficiencies and a study of the flow characteristics of the modified supercharger was made possible by internal diffuser instrumentation. At the volume flow required by the engine for rated operating conditions, the modified supercharger increased the over-all adiabatic efficiency 0.05 and the over-all pressure coefficient 0.035. Furthermore, the capacity of the engine-stage supercharger was increased by replacing the standard 8-vaned diffuser with the vaneless diffuser. The peak over-all adiabatic efficiency for the modified supercharger, however, was 0.05 to 0.07 lower than that of the standard unit over the range of tip speeds investigated. The improved performance of the modified supercharger at rated engine operating conditions resulted from a shift of the point of peak adiabatic efficiency and pressure coefficient of the standard supercharger to a higher flow. The energy loss through the vaneless diffuser was found to be small. Because of the restricted diffuser diameter, however, diffusion was inadequate, which resulted in a relatively small static-pressure rise through the diffuser, high diffuser-exit velocities, and excessive collector-case losses.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E6K22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: An investigation was made in the Cleveland Altitude wind tunnel to determine the performance of an Aeroproducts H20C-162-X11M2 four-blade propeller on a YP-47M airplane at high blade loadings and high engine powers. The propeller characteristics were obtained for a range of power coefficients from 0.30 to 1.00 at free-stream Mach numbers of 0.40 and 0.50. The results of the force measurements are indicative only of trends in propeller efficiency with changes in power coefficient and advance-diameter ratio because unknown interference effects existed during the investigation. At a free-stream Mach number of 0.40, the envelopes of the efficiency curves decreased about 11% between advance-diameter ratios of 2.40 and 4.40. An increase in power coefficient from 0.30 to 0.80 at an advance-diameter ratio of 2.40 had little effect on the propeller efficiency. A change in power coefficient from 0.40 to 1.00 at an advance-diameter ratio of 4.40 increased the propeller efficiency by about 40%. For conditions below the stall the thrust loading on the outboard blade sections increased more rapidly than on the inboard sections as the power coefficient was increased or as the advance-diameter ratio was decreased. For conditions beyond the stall, the thrust loading decreased on the outboard sections and increased on the inboard sections.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E6I24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: Three modifications of the auxiliary-stage supercharger for the V-1710-93 engine were designed and tested as part of an investigation to improve the power output and the altitude performance of the engine. A 12-vane diffuser was substituted for the standard 11-vane diffuser, and a vaneless discharge passage and a modified scroll were designed to increase the flow capacity of the supercharger and thereby to increase the performance at the high volume flows required by the engine. With the 12-vane diffuser installed and the carburetor replaced by an adapter, the equivalent volume flow at the peak efficiency point was increased 25 percent at the lowest speed investigated and 9.5 percent at the highest speed. When the carburetor was used, any increase in equivalent volume flow was masked by choking in the carburetor. A small decrease in the peak adiabatic efficiency resulted from using the 12-vane diffuser. At the high volume flows where the supercharger is required to operate, the performance was improved by the 12-vane diffuser. With the vaneless discharge passage, the surge-free range of the supercharger was increased 35 percent at the lowest tip speed investigated by increasing the maximum air flow. The maximum air flow at high tip speeds was again limited by choking in the carburetor, which masked the effect of the vaneless discharge passage on the maximum air flow. At the high volume flows near the operating point of the supercharger, the performance with the vaneless discharge passage was better than that with the standard 11-vane diffuser. At the low volume flows when the standard 11-vane diffuser gave better performance. The modified scroll gave performance characteristics that were practically the same as those of the standard scroll except at high tip speeds, where the peak performance was improved.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E6J18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-16
    Description: An investigation was conducted in the Cleveland altitude wind tunnel to determine the performance of a Curtiss propeller with four 838-lC2-lSRl blades on a YP-47M airplane at high blade loadings and engine powers. The study was made for a range of power coefficients between 0.30 and 1.00 at free-stream Mach numbers of 0.40 and 0.50. The results of the force measurements indicate primarily the trend of propeller efficiency for changes in power coefficient or advance-diameter ratio, inasmuch as corrections for the effects of tunnel-wall constriction on the installation have not been applied. Slip-stream pressure surveys across the propeller disk are presented to illustrate blade thrust load distribution for several operating conditions. At a free-stream Mach number of 0.40, nearly constant peak efficiencies were obtained at power coefficients from 0.30 to 0.70. A change in power coefficient from 0.70 to 0.90 reduced the peak efficiency about 5 percent. Blade stall at the tip sections became evident for a power coefficient of 0.91 when the advance-diameter ratio was reduced to 1.87. At a free-stream Mach number of 0.50, the highest propeller efficiencies were obtained for power coefficients from 0.80 to 1.00 at advance-diameter ratios above 2.90. At advance-diameter ratios below 2.90, the highest efficiencies were obtained for power coefficients of 0.60 and 0.70. The envelope of the efficiency curves decreased about 12 percent between advance-diameter ratios of 2.60 and 4.20. Local compressibility effects became evident for a power coefficient of 0.40 when the advance-diameter ratio was decreased to 1.75.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E6J14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: An altitude-wind-tunnel investigation has been made to determine the performance of Hamilton Standard 6507A-2 four-blade and three-blade propellers on a YP-47M airplane at high blade loadings and high engine powers. Characteristics of the four-blase propeller were obtained for a range of power coefficients from 0.10 to 1.00 at free-stream Mach numbers of 0.20, 0.30, 0.40. Characteristics of the three-blade propeller were obtained for a range of power coefficients from 0.30 to 1.00 at a free-stream Mach number of 0.40. Results of the force measurements indicate primarily the trend of propeller efficiency for changes in power coefficient or advance-diameter ratio because no corrections for the effects of tunnel-wall constriction on the installation were applied. Slipstream surveys are presented to illustrate blade thrust load distribution for certain operating conditions. Within the range of advance-diameter ratios investigated at each free-stream Mach number, the efficiency of the four-blade propeller decreased as the power coefficient was increased from 0.10 to 1.00. For the three-blade propeller, nearly constant maximum efficiencies were obtained for power coefficients from 0.32 to 0.63 at advance-diameter ratios between 1.90 and 3.00. In general, for conditions below the stall and critical tip Mach number, the maximum thrust load shifted from the inboard sections toward the tip sections as the power coefficient was increased or as the advance-diameter ratio was decreased. For conditions beyond the stall or critical tip Mach number, losses in thrust occurred on the outboard blade sections owing to flow break-down; the thrust load increased slightly on the inboard sections.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E6K26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: A preliminary analysis of the flying qualities of the Consolidated Vultee MX-813 delta-wing airplane configuration has been made based on the results obtained from the first two 1/8 scale models flown at the NACA Pilotless Aircraft Research Station, Wallop's Island, VA. The Mach number range covered in the tests was from 0.9 to 1.2. The analysis indicates adequate elevator control for trim in level flight over the speed range investigated. Through the transonic range there is a mild trim change with a slight tucking-under tendency. The elevator control effectiveness in the supersonic range is reduced to about one-half the subsonic value although sufficient control for maneuvering is available as indicated by the fact that 10 deg elevator deflection produced 5g acceleration at Mach number of 1.2 at 40,000 feet.The elevator control forces are high and indicate the power required of the boost system. The damping. of the short-period oscillation is adequate at sea-level but is reduced at 40,000 feet. The directional stability appears adequate for the speed range and angles of attack covered.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-Sl9E13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: An investigation of the performance of several propellers on the YP-47M airplane at high blade loadings has been conducted in the Cleveland altitude wind tunnel at the request of the Air Materiel Command, Army Air Forces. As part of the program, a study was made of a Curtiss 836-14C2-18R1 four-blade propeller. The investigation was made for a range of power coefficients from 0.10 to 1.00 at free-stream Mach numbers of 0.30, 0.40, and 0.50 for density altitudes from 10,000 to 45,000 feet, engine powers from 150 to 2500 brake horsepower, and for engine speeds from 1000 to 2900 rpm. The propeller efficiencies were obtained from force measurements and the blade thrust load distribution was obtained by two diametrically opposed slipstream survey rakes shown in this paper.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E6J31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-14
    Description: The lift, pitching-moment, and drag characteristics of a missile configuration having a body of fineness ratio 9.33 and a cruciform triangular wing and tail of aspect ratio 4 were measured at a Mach number of 1.99 and a Reynolds number of 6.0 million, based on the body length. The tests were performed through an angle-of-attack range of -5 deg to 28 deg to investigate the effects on the aerodynamic characteristics of roll angle, wing-tail interdigitation, wing deflection, and interference among the components (body, wing, and tail). Theoretical lift and moment characteristics of the configuration and its components were calculated by the use of existing theoretical methods which have been modified for application to high angles of attack, and these characteristics are compared with experiment. The lift and drag characteristics of all combinations of the body, wing, and tail were independent of roll angle throughout the angle-of-attack range. The pitching-moment characteristics of the body-wing and body-wing- tail combinations, however, were influenced significantly by the roll angle at large angles of attack (greater than 10 deg). A roll from 0 deg (one pair of wing panels horizontal) to 45 deg caused a forward shift in the center of pressure which was of the same magnitude for both of these combinations, indicating that this shift originated from body-wing interference effects. A favorable lift - interference effect (lift of the combination greater than the sum of the lifts of the components) and a rearward shift in the center of pressure from a position corresponding to that for the components occurred at small angles of attack when the body was combined with either the exposed wing or tail surfaces. These lift and center-of-pressure interference effects were gradually reduced to zero as the angle of attack was increased to large values. The effect of wing-tail interference, which influenced primarily the pitching-moment characteristics, is dependent on the distance between the wing trailing vortex wake and the tail surfaces and thus was a function of angle of attack, angle of roll, and wing- tail interdigitation. Although the configuration at zero roll with the wing and tail in line exhibited the least center-of-pressure travel, the configuration with the wing and tail interdigitated had the least change in wing- tail interference over the angle - of-attack range. The lift effectiveness of the variable-incidence wing was reduced by more than 70 percent as a result of an increase in the combined angle of attack and wing incidence from 0 deg to 40 deg center dot The wing- tail interference (effective downwash at the tail) due to wing deflection was nearly zero as a result of a region of negative vorticity shed from the inboard portion of the wing. The lift characteristics of the configuration and its components were satisfactorily predicted by the calculated results, but the pitching moments at large angles of attack were not because of the influence of factors for which no adequate theory is available, such as the variation of the cross flow drag coefficient along the body and the effect of the wing downwash field on the after body loading.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-A54H27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: An investigation was conducted in the Cleveland altitude wind tunnel to determine the aerodynamic characteristics and the oil delivery critical altitude of the oil-cooler installation of an XTB2D-1 airplane. The investigation was made with the propeller removed end with the engine operating at 1800 brake horsepower, an altitude of 15,000 feet (except for tests of oil-delivery critical altitude), oil-cooler flap deflections from -20 degrees to 20 degrees and inclinations of the thrust axis of 0 degrees, 1.5 degrees, and 6 degrees. At an inclination of the thrust axis of 0 degrees and with the propeller operating, the total-pressure recovery coefficient at the face of the oil cooler varied from 0.84 to 1.10 depending on the flap deflection. With the propeller removed, the best pressure recovery at the face of the oil cooler was obtained at an inclination of the thrust axis of 1.5 degrees. Air-flow separation occurred on the inner surface of the upper lip of the oil-cooler duct inlet at an inclination of the thrust axis of 0 degrees and on the inner surface of the lower lip at 6 degrees. Static pressure coefficients over the duct lips were sufficiently low that no trouble from compressibility would be encountered in level flight. The oil-delivery critical altitude at cruising power (2230 rpm, 1675 bhp) was approximately 18,500 feet for the oil system tested.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E6I04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...