ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (25,901)
  • American Physical Society (APS)  (19,037)
  • Tübingen : Mohr Siebeck
  • 2015-2019  (40,328)
  • 2005-2009  (4,614)
  • 1950-1954  (1)
  • 1930-1934  (1)
  • 2016  (40,328)
  • 2008  (2,693)
  • 2006  (1,922)
  • 1936
Collection
Language
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Tübingen : Mohr Siebeck
    Call number: IASS 16.90029
    Type of Medium: Monograph available for loan
    Pages: XII, 302 Seiten , 18.1 cm x 11.1 cm, 272 g
    ISBN: 3161546393 , 9783161546396
    Language: German
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Tübingen : Mohr Siebeck
    Call number: IASS 19.92988
    Type of Medium: Monograph available for loan
    Pages: XX, 413 Seiten , graphische Darstellungen
    ISBN: 9783161536465
    Series Statement: Recht der nachhaltigen Entwicklung 16
    Language: German
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Journal available for loan
    Journal available for loan
    Tübingen : Mohr Siebeck ; 1.1884 - 48.1931; N.F. 1.1932/33 - 10.1943/44(1945),3; 11.1948/49(1949) -
    Call number: ZS 22.95039
    Type of Medium: Journal available for loan
    Pages: Online-Ressource
    ISSN: 1614-0974 , 0015-2218 , 0015-2218
    Language: German , English
    Note: N.F. entfällt ab 57.2000. - Volltext auch als Teil einer Datenbank verfügbar , Ersch. ab 2000 in engl. Sprache mit dt. Hauptsacht.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3The Cryosphere, Copernicus, 10(5), pp. 2517-2532, ISSN: 1994-0424
    Publication Date: 2020-09-06
    Description: Permafrost temperatures are increasing in Alaska due to climate change and in some cases permafrost is thawing and degrading. In areas where degradation has already occurred the effects can be dramatic, resulting in changing ecosystems, carbon release, and damage to infrastructure. However, in many areas we lack baseline data, such as subsurface temperatures, needed to assess future changes and potential risk areas. Besides climate, the physical properties of the vegetation cover and subsurface material have a major influence on the thermal state of permafrost. These properties are often directly related to the type of ecosystem overlaying permafrost. In this paper we demonstrate that classifying the landscape into general ecotypes is an effective way to scale up permafrost thermal data collected from field monitoring sites. Additionally, we find that within some ecotypes the absence of a moss layer is indicative of the absence of near-surface permafrost. As a proof of concept, we used the ground temperature data collected from the field sites to recode an ecotype land cover map into a map of mean annual ground temperature ranges at 1 m depth based on analysis and clustering of observed thermal regimes. The map should be useful for decision making with respect to land use and understanding how the landscape might change under future climate scenarios.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-11-16
    Description: Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0°C. In this study, we document the presence of residual permafrost plateaus in the western Kenai Peninsula lowlands of south-central Alaska, a region with a MAAT of 1.5+/-1 °C (1981–2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (-0.04 to -0.08 °C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48m but at some locations was as shallow as 0.53 m. Late winter surveys (augering, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to 〉6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60.0 %, with lateral feature degradation accounting for 85.0% of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming. Further work should focus on reconstructing permafrost history in south-central Alaska as well as additional contemporary observations of these ecosystem-protected permafrost sites south of the regions with relatively stable permafrost.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Volcanoes represent an important natural source of several trace elements to the atmosphere. For some species (e.g., As, Cd, Pb and Se) they may be the main natural source and thereby strongly influencing geochemical cycles from the local to the global scale. Mount Etna is one of the most actively degassing volcanoes in the world, and it is considered to be, on the long-term average, the major atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. To estimate the environmental impact of magma-derived trace metals and their depositions processes, rainwater and snow samples were collected at Mount Etna area. Five bulk collectors have been deployed at various altitudes on the upper flanks around the summit craters of the volcano; samples were collected every two week for a period of one year and analyzed for the main chemical-physical parameters (electric conductivity and pH) and for major and trace elements concentrations. Chemical analysis of rainwater clearly shows that the volcanic contribution is always prevailing in the sampling site closest to the summit crater (about 1.5 km). In the distal sites (5.5-10 km from the summit) and downwind of the summit craters, the volcanic contribution is also detectable but often overwhelmed by anthropogenic or other natural (seawater spray, geogenic dust) contributions. Volcanic contribution may derive from both dry and wet deposition of gases and aerosols from the volcanic plume, but sometimes also from leaching of freshly emitted volcanic ashes. In fact, in our background site (7.5 km in the upwind direction) volcanic contribution has been detected only following an ash deposition event. About 30 samples of fresh snow were collected in the upper part of the volcano, during the winters 2006 and 2007 to estimate deposition processes at high altitude during cold periods. Some of the samples were collected immediately after a major explosive event from the summit craters to understand the interaction between snow and fresh erupted ash. Sulphur, Chlorine and Fluorine, are the major elements that prevailingly characterize the volcanic contribution in atmospheric precipitation on Mount Etna, but high concentrations of many trace elements are also detected in the studied samples. In particular, bulk deposition samples display high concentration of Al, Fe, Ti, Cu, As, Rb, Pb, Tl, Cd, Cr, U and Ag, in the site most exposed to the volcanic emissions: median concentration values are about two orders of magnitude higher than those measured in our background site. Also in the snow samples the volcanic signature is clearly detectable and decreases with distance from the summit craters. Some of the analysed elements display very high enrichment values with respect to the average crust and, in the closest site to the summit craters, also deposition values higher than those measured in polluted urban or industrial sites.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Degassamento naturale
    Description: open
    Keywords: Mt. Etna ; trace elements ; rainwater ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-26
    Description: Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0 °C. In this study, we document the presence of residual permafrost plateaus on the western Kenai Peninsula lowlands of southcentral Alaska, a region with a MAAT of 1.5 ± 1 °C (1981 to 2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (−0.04 to −0.08 °C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48 m but was as shallow as 0.53 m. Late winter surveys (drilling, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to 〉 6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60 %, with lateral feature degradation accounting for 85 % of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming. Further work should focus on reconstructing permafrost history in southcentral Alaska as well as additional contemporary observations of these ecosystem-protected permafrost sites lying south of the regions with relatively stable permafrost.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-29
    Description: Coastal erosion and flooding transform terrestrial landscapes into marine environments. In the Arctic, these processes inundate terrestrial permafrost with seawater and create submarine permafrost. Permafrost begins to warm under marine conditions, which can destabilize the sea floor and may release greenhouse gases. We report on the transition of terrestrial to submarine permafrost at a site where the timing of inundation can be inferred from the rate of coastline retreat. On Muostakh Island in the central Laptev Sea, East Siberia, changes in annual coastline position have been measured for decades and vary highly spatially. We hypothesize that these rates are inversely related to the inclination of the upper surface of submarine ice-bonded permafrost (IBP) based on the consequent duration of inundation with increasing distance from the shoreline. We compared rapidly eroding and stable coastal sections of Muostakh Island and find permafrost-table inclinations, determined using direct current resistivity, of 1 and 5 %, respectively. Determinations of submarine IBP depth from a drilling transect in the early 1980s were compared to resistivity profiles from 2011. Based on borehole observations, the thickness of unfrozen sediment overlying the IBP increased from 0 to 14m below sea level with increasing distance from the shoreline. The geoelectrical profiles showed thickening of the unfrozen sediment overlying ice-bonded permafrost over the 28 years since drilling took place. We use geoelectrical estimates of IBP depth to estimate permafrost degradation rates since inundation. Degradation rates decreased from over 0.4ma-1 following inundation to around 0.1ma-1 at the latest after 60 to 110 years and remained constant at this level as the duration of inundation increased to 250 years. We suggest that long-term rates are lower than these values, as the depth to the IBP increases and thermal and porewater solute concentration gradients over depth decrease. For the study region, recent increases in coastal erosion rate and changes in benthic temperature and salinity regimes are expected to affect the depth to submarine permafrost, leading to coastal regions with shallower IBP.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-12
    Description: Sources and Transformations of Anthropogenic Nitrogen along an Urban River-Estuarine Continuum Michael J. Pennino, Sujay S. Kaushal, Sudhir Murthy, Joel Blomquist, Jeff Cornwell, and Lora Harris Biogeosciences Discuss., doi:10.5194/bg-2016-264,2016 Manuscript under review for BG (discussion: open, 0 comments) The results of this manuscript report the analysis of the fate and transport of wastewater and anthropogenic nitrogen along the Potomac River Estuary, from Washington D.C. to the Chesapeake Bay. In conjunction with a mass balance approach, nitrate isotopes were used to estimate fluxes and trace the sources and transformations N along the estuary. This study shows that estuaries have a large capacity to transform N inputs, but with large seasonal variability due to hydrological extremes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-09
    Description: Author(s): Stefan Rex, Flavio S. Nogueira, and Asle Sudbø The magnetoelectric effect predicted in topological insulators makes heterostructures that combine magnetic materials and such insulators promising candidates for spintronics applications. Here, we theoretically consider a setup that exhibits two well-separated interfaces between a topological insul… [Phys. Rev. B 94, 020404(R)] Published Thu Jul 07, 2016
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...