ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics
  • 1960-1964  (8)
  • 1950-1954  (12)
  • 1935-1939  (2)
  • 1962  (8)
  • 1951  (12)
  • 1935  (2)
Collection
Years
  • 1960-1964  (8)
  • 1950-1954  (12)
  • 1935-1939  (2)
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Simultaneous air-flow photographs and pressure-distribution measurements have been made of the NACA 4412 airfoil at high speeds in order to determine the physical nature of the compressibility burble. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations on the 5-inch-chord wing by means of a multiple-tube photographic manometer. Pressure-measurement results and typical Schlieren photographs are presented. The general nature of the phenomenon called the "compressibility burble" is shown by these experiments. The source of the increased drag is the compression shock that occurs, the excess drag being due to the conversion of a considerable amount of the air-stream kinetic energy into heat at the compression shock.
    Keywords: Aerodynamics
    Type: NACA-TN-543
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A supersonic inlet with supersonic deceleration of the flow entirely outside of the inlet is considered. A particular arrangement with fixed geometry having a central body with a circular annular intake is analyzed, and it is shown theoretically that this arrangement gives high pressure recovery for a large range of Mach number and mass flow and therefore is practical for use on supersonic airplanes and missiles. For some Mach numbers the drag coefficient for this type of inlet is larger than the drag coefficient for the type of inlet with supersonic compression entirely inside, but the pressure recovery is larger for all flight conditions. The differences in drag can be eliminated for the design Mach number. Experimental results confirm the results of the theoretical analysis and show that pressure recoveries of 95 percent for Mach numbers of 1.33 and 1.52, 92 percent for a Mach number of 1.72, and 86 percent for a Mach number of 2.10 are possible, with the configurations considered. If the mass flow decreases, the total drag coefficient increases gradually and the pressure recovery does not change appreciably. The results of this work were first presented in a classified document issued in 1946.
    Keywords: Aerodynamics
    Type: NACA-TN-2286
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-11
    Description: Closed-form expressions and tables composed from these expressions are presented for complete and partial conic and spheric bodies at combined angles of attack and sideslip in Newtonian flow. Aerodynamic coefficients of these bodies are tabulated for various body segments over a range of angles of attack from 1 deg to 85 deg and angles of sideslip from 0 deg to 15 deg. Some comparisons between Newtonian predictions and hypersonic experimental aerodynamic characteristics were made for conic bodies hawing various surface slopes, nose bluntnesses, and body cross sections to indicate the range of validity of the theory. In general, the theory is shown to agree quite well with experimental results for sharp-nose complete cones and for configurations hawing large blunted noses and steep surface slopes. However, agreement between theory and experiment generally is poor for the more slender, slightly blunted complete or half conic bodies and also for sharp-nose half conic bodies where real-flow phenomena such as forebody interference, viscous forces, leeward surface contributions, or leading-edge pressure reductions may have significant effect. The agreement between theory and experiment for the bodies considered can be improved by using the stagnation pressure coefficient behind a normal shock rather than 2 as the Newtonian coefficient, although for the sharp-nose half conic bodies there i s no theoretical justification for this modification.
    Keywords: Aerodynamics
    Type: NASA-TR-R-127
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The performance of NACA 65-series compressor blade section in cascade has been investigated systematically in a low-speed cascade tunnel. Porous test-section side walls and for high-pressure-rise conditions, porous flexible end walls were employed to establish conditions closely simulating two-dimensional flow. Blade sections of design lift coefficients from 0 to 2.7 were tested over the usable angle-of-attack range for various combinations of inlet-flow angle. A sufficient number of combinations were tested to permit interpolation and extrapolation of the data to all conditions within the usual range of application. The results of this investigation indicate a continuous variation of blade-section performance as the major cascade parameters, blade camber, inlet angle, and solidity were varied over the test range. Summary curves of the results have been prepared to enable compressor designers to select the proper blade camber and angle of attack when the compressor velocity diagram and desired solidity have been determined.
    Keywords: Aerodynamics
    Type: NACA-TR-1368 , NACA-RM-L51G31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: An investigation has been conducted in the Langley 20-foot free spinning tunnel to study the relative behavior in descent of a number of homogeneous balsa bodies of revolution simulating anti-personnel bombs with a small cylindrical exploding device suspended approximately 10 feet below the bomb. The bodies of revolution included hemispherical, near-hemispherical, and near-paraboloid shapes. The ordinates of one near-paraboloid shape were specified by the Office of the Chief of Ordnance, U. S. Army. The behavior of the various bodies without the cylinder was also investigated. The results of the investigation indicated that several of the bodies descended vertically with their longitudinal axis, suspension line, and small cylinder in a vertical attitude,. However, the body, the ordinates of which had been specified by the Office of the Chief of Ordnance, U. S. Army, oscillated considerably from a vertical attitude while descending and therefore appeared unsuitable for its intended use. The behavior of this body became satisfactory when its center of gravity was moved well forward from its original position. In general, the results indicated that the descent characteristics of the bodies of revolution become more favorable as their shapes approached that of a hemisphere.
    Keywords: Aerodynamics
    Type: NACA-RM-SL51L13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: The performance and static stability and control characteristics of the Ryan Flex-Wing airplane were determined in an investigation conducted in the Langley full-scale tunnel through an angle-of-attack range of the keel from about 14 to 44 deg. for power-on and -off conditions. Comparisons of the wind-tunnel data with flight-test data obtained with the same airplane by the Ryan Aeronautical Company were made in a number of cases.
    Keywords: Aerodynamics
    Type: NASA-TM-SX-727 , L-3093
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-16
    Description: Dr. Chapman's lecture examines the physics behind spacecraft entry into planetary atmospheres. He explains how scientists determine if a planet has an atmosphere and how scientists can compute deceleration when the atmospheric conditions are unknown. Symbols and equations used for calculations for aerodynamic heating and deceleration are provided. He also explains heat transfer in bodies approaching an atmosphere, deceleration, and the use of ablation in protecting spacecraft from high temperatures during atmospheric entry.
    Keywords: Aerodynamics
    Type: L-713 , HQ-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-16
    Description: The subject of this paper is the drag of the nose section of bodies of revolution at zero angle of attack. The magnitude of the nose drag in relation to the total drag is very distinctly a function of the body design and the Mach number. It can range from a very small fraction of the total drag of the order of 10 percent to a very large fraction as high as 80 percent. The natural objective of nose design is to minimize the drag, but this objective is not always the primary one. Sometimes other factors overshadow the desire for minimum drag. The most conspicuous example of this is the proposal of guidance engineers that large-diameter spheres and other very blunt shapes be used at the nose tip. This paper will attempt to discuss both phases of the problem, noses for minimum drag and noses with very blunt tips. The state of the theory will also be reviewed and recent theoretical developments described, since the theory still remains a very valuable tool for assaying the effects of compromises in design and departure from shapes for which experimental data are available.
    Keywords: Aerodynamics
    Type: Aerodynamic Characteristics of Bodies at Supersonic Speeds: A Collection of Three Papers; 1-12; NACA-RM-A51J25|NACA Conference on Aerodynamic Design Problems of Supersonic Guided Missiles; Oct 02, 1951 - Oct 03, 1951; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-11
    Description: A wind-tunnel investigation of a 0.049-scale model of the Boeing XB-52 airplane was made at Mach numbers from 0.30 to 0.925 and at corresponding Reynolds numbers from about 2.3 x 10(exp 6) to 4.3 x 10(exp 6). The results of the investigation indicate satisfactory static longitudinal stability throughout the test Mach-number range and some loss in tail effectiveness beginning at about 0.80 Mach number. A comparison of the results of these tests with those of the same model in the Boeing Airplane Company's wind tunnel showed close agreement of lift- and drag-divergence Mach numbers. Slight differences were observed in tail effectiveness and the position of the stick-fixed neutral point.
    Keywords: Aerodynamics
    Type: NACA-RM-SA51C16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: A supplementary investigation has been conducted in the Langley 20-foot free-spinning tunnel of a 1/30 -scale model of the Grumman XFlOF-1 airplane to determine what effect full-span slats would have on the spin-recovery characteristics of the swept-wing version of the XFlOF-1 airplane, which had previously been indicated as possessing undesirable spin-recovery characteristics without slats. The effects of extended nose-wheel doors and of fairing the air-duct inlets were also determined. The results indicated that, with slats fully extended, satisfactory recovery could be obtained by rudder reversal provided it was accompanied by movement of the trimmer ailerons to full with the spin (only up-going spoiler operative), Extension of the nose-wheel doors or fairing of the air-duct inlets did not improve the recovery characteristics.
    Keywords: Aerodynamics
    Type: NACA-RM-SL51G19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-14
    Description: The damping-in-Toll stability derivatives of a missile configuration and its components were determined both experimentally and theoretically. The tests were conducted at a Mach number of 1.52 and at a Reynolds number, based on the mean aerodynamic chord of the wing, of 0.82 x 10(exp 6). The experimental damping derivative of the wing-body combination was 67 percent of the theoretical value. The difference is believed to have resulted mainly from the fact that the theory is not strictly applicable when the Mach number normal to the leading edge is almost unity, which was the case in the present investigation. For the tail-body combination the damping derivative was 86 percent of the theoretical value. In this case, the difference is believed to have been caused partially by mutual interference between the tail surfaces and partially by the low Reynolds number of the flow over the tail. It was found that the damping of the complete configuration was not equal to the sum of the damping derivatives of the components because of the effect of the wing downwash on the damping of the tail.
    Keywords: Aerodynamics
    Type: NACA-RM-A51A03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-14
    Description: Measurements have been made in air at two Mach numbers of the static stability, normal force, and drag of a version of the fifth-stage Scout entry vehicle. The most significant result was that the design center of gravity led to a condition of static instability at small angles of attack at Mach number 17. At this Mach number, the static stability was a highly nonlinear function of the angle of attack. A useful method for analyzing free-flight data having this nonlinear behavior is included in this report. Comparisons were made between the measured aerodynamic coefficients and those estimated by Newtonian impact theory and by a method developed by Seiff and Whiting. The latter method gave good estimates of the normal-force-curve slope at both Mach numbers and of the moment-curve slope at the lower Mach number. It resulted in an overestimation of the static stability at Mach number 17, although it gave results decidedly closer to the experimental value than did Newtonian impact theory.
    Keywords: Aerodynamics
    Type: NASA-TN-D-1425 , A-666
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-14
    Description: In order to incorporate the advantages of ballistic range testing with the convenience of wind tunnel testing, simplified techniques have been developed at the Jet Propulsion Laboratory (JPL) for free-flight testing of models in a conventional wind tunnel. So far, only a small number of the many possibilities have been investigated, but the preliminary results indicate that such techniques are both practical and useful. The model to be investigated is suspended on a single traverse wire at the upstream end of the test section window, then is released from this position by causing the wire to break within the model. High speed motion pictures taken of the model oscillating during its travel across the viewing area make it possible to determine various aerodynamic parameters such as drag, lift, pitching moment, and pitch damping in much the same manner as is done in ballistic range testing. Also, a spark schlieren photograph can be taken of the model in flight in order to observe details of an undisturbed (from support interference) wake.
    Keywords: Aerodynamics
    Type: JPL-TR-32-346
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-17
    Description: A wing-body combination having a plane triangular wing of aspect ratio 2 with NACA 0005-63 thickness distribution in streamwise planes, and twisted and cambered for a trapezoidal span load distribution has been investigated at both subsonic and supersonic Mach numbers. The lift, drag, and pitching moment of the model are presented for Mach numbers from 0.60 to 0.90 and 1.30 to 1.70 at a Reynolds number of 3.0 million. The variations of the characteristics with Reynolds number are also shown for several Mach numbers.
    Keywords: Aerodynamics
    Type: NACA-RM-A50K27a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-11
    Description: An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of a flying-boat hull of a length-beam ratio of 15 in the presence of a wing. The investigation was an extension of previous tests made on hulls of length-beam ratios of 6, 9, and 12; these hulls were designed to have approximately the same hydrodynamic performance with respect to spray and resistance characteristics. Comparison with the previous investigation at lower length-beam ratios indicated a reduction in minimum drag coefficients of 0.0006 (10 peroent)with fixed transition when the length-beam ratio was extended from 12 to 15. As with the hulls of lower length-beam ratio, the drag reduction with a length-beam ratio of 15 occurred throughout the range of angle of attack tested and the angle of attack for minimum drag was in the range from 2deg to 3deg. Increasing the length-beam ratio from 12 to 15 reduced the hull longitudinal instability by an mount corresponding to an aerodynamic-center shift of about 1/2 percent of the mean aerodynamic chord of the hypothetical flying boat. At an angle of attack of 2deg, the value of the variation of yawing-moment coefficient with angle of yaw for a length-beam ratio of 15 was 0.00144, which was 0.00007 larger than the value for a length-beam ratio of 12.
    Keywords: Aerodynamics
    Type: NACA-RM-L6J24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-11
    Description: A flight investigation was made at high subsonic, transonic, and supersonic speeds and at high Reynolds numbers to determine the zero-lift drag of a 1/10-scale model of the Northrop MX-775A missile and a scale model of the missile fuselage. The model of the complete configuration has a 45deg swept wing of aspect ratio 5.5 and a 33deg swept vertical fin. The body model was stabilized by three 45deg swept fins. The-drag-rise Mach number for the model of the complete configuration was approximately 0.96. The drag coefficient based on total wing area was 0.0330 at Mach number 1.39. The drag coefficient of the body model less fin drag was approximately 55 percent that of the complete model at the same Mach number. Addition of the wing to the fuselage apparently resulted in a favorable drag interference near Mach number 1.0.
    Keywords: Aerodynamics
    Type: NACA-RM-SL51K07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-12
    Description: Tests were made in the N.A.C.A. 20-foot wind tunnel on: (1) a wing, of 6.5-foot span, 5.5-foot chord, and 30 percent maximum thickness, fitted with large end plates and (2) a 16-foot span 2.67-foot chord wing of 15 percent maximum thickness to determine the increase in lift obtainable by removing the boundary layer and the power required for the blower. The results of the tests on the stub wing appeared more favorable than previous small-scale tests and indicated that: (1) the suction method was considerably superior to the pressure method, (2) single slots were more effective than multiple slots (where the same pressure was applied to all slots), the slot efficiency increased rapidly for increasing slot widths up to 2 percent of the wing chord and remained practically constant for all larger widths tested, (3) suction pressure and power requirements were quite low (a computation for a light airplane showed that a lift coefficient of 3.0 could be obtained with a suction as low as 2.3 times the dynamic pressure and a power expenditure less than 3 percent of the rated engine power), and (4) the volume of air required to be drawn off was quite high (approximately 0.5 cubic feet per second per unit wing area for an airplane landing at 40 miles per hour with a lift coefficient of 3,0), indicating that considerable duct area must be provided in order to prevent flow losses inside the wing and insure uniform distribution of suction along the span. The results from the tests of the large-span wing were less favorable than those on the stub wing. The reasons for this were, probably: (1) the uneven distribution of suction along the span, (2) the flow losses inside the wing, (3) the small radius of curvature of the leading edge of the wing section, and (4) the low Reynolds Number of these tests, which was about one half that of the stub wing. The results showed a large increase in the maximum lift coefficient with an increase in Reynolds Number in the range of the tests. The results of drag tests showed that the profile drag of the wing was reduced and the L/D ratio was increased throughout the range of lift coefficients corresponding to take-off and climb but that the minimum drag was increased. The slot arrangement that is best for low drag is not the same, however, as that for maximum lift.
    Keywords: Aerodynamics
    Type: NACA-SR-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-12
    Description: Multiple wind tunnel test trials were conducted on a 30 degree conical ribbon parachute with porosities of 30, 27, and 24 percent. Variables were Mach number, dynamic pressure, towline length, and coefficient of drag. A Rotofoil parachute having a porosity of approximately 24 percent was tested, but failed after about 30 seconds of operation at a Mach number of 1.8 All of the parachutes had a nominal diameter and shroud line length of 10 inches. Drag coefficients were based on the area of a circle having a diameter two-thirds of the nominal parachute diameter.
    Keywords: Aerodynamics
    Type: L-683
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-12
    Description: The film depicts two tests of a flat roof, conical inlet canopy parachute. The first test is a series of wind tunnel trials with a flat circular ribbon roof of 22 percent porosity. The second test is a single series of wind tunnel trials with a flat circular ribbon roof of 25 percent porosity. Variables for both trials include Mach number, dynamic pressure, longitudinal separation distances (x/d), and drag coefficient C(sub d).
    Keywords: Aerodynamics
    Type: L-729
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-15
    Description: At present there is no satisfactory theory for calculating the pressure which acts at the blunt base of an object traveling at supersonic velocity. In fact, the essential mechanism determining the base pressure is only imperfectly understood. As a result, the existing knowledge of base pressure is based almost entirely on experiments. The main object of this paper is to summarize the principal results of the many wind tunnel and free flight measurements of base pressure on both bodies of revolution and blunt trailing edge airfoils. A relatively simple method of estimating base pressure is presented, and an indication is given as to how the characteristics of base pressure play an essential role in determining the shape of an aerodynamically efficient object for supersonic flight.
    Keywords: Aerodynamics
    Type: Aerodynamic Characteristics of Bodies at Supersonic Speeds: A Collection of Three Papers; 13-30; NACA-RM-A51J25|NACA Conference on Aerodynamic Design Problems of Supersonic Guided Missiles; Oct 02, 1951 - Oct 03, 1951; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-08-15
    Description: The three papers collected here are: 'The Effect of Nose Shape on the Drag of Bodies of Revolution at Zero Angle of Attack.', 'Base Pressure on Wings and Bodies with Turbulent Boundary Layers', and 'Flow over Inclined Bodies'. The subject of the first paper is the drag of the nose section of bodies of revolution at zero angle of attack. The main object of the second paper is to summarize the prinicpal results of the many wind tunnel and free flight measurements of base pressure on both bodies of revolution and blunt trailing edge airfoils.
    Keywords: Aerodynamics
    Type: NACA-RM-A51J25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-16
    Description: An investigation was conducted in the Langley 16-foot transonic tunnel to determine the interference from four exhaust jets on the aerodynamic characteristics of a model of a V/STOL airplane. The single- engine four-jet turbofan power plant of the airplane was simulated by inducing tunnel airflow through two large side inlets and injecting the decomposition products of hydrogen peroxide into the internal flow. The heated gas mixture was exhausted through four nozzles located on the sides of the fuselage under the wing, two near the wing leading edge and two forward of the trailing edge; the nozzles were deflected downward 1.5 deg and outward 5.0 deg to simulate cruise conditions. The wing of the model was a clipped delta with leading-edge sweep of 40 deg, aspect ratio of 3.06, taper ratio of 0.218, thickness-chord ratio of 0.09 at the root and 0.07 at the tip, and 10 deg negative dihedral. Aerodynamic and longitudinal stability coefficients were obtained for the model with the tail removed, and for horizontal-tail incidences of 0 deg and -5 deg. Data were obtained at Mach numbers from 0.60 to 1.00, angles of attack from 0 deg to 12 deg, and with jet total-pressure ratios up to 3.1. Jet operation generally caused a decrease in lift, an increase in pitching-moment coefficient, and a decrease in longitudinal stability at subsonic speeds. The jet interference effects on drag were detrimental at a Mach number of 0.60 and favorable at higher speeds for cruising-flight attitudes.
    Keywords: Aerodynamics
    Type: NASA-TM-SX-685 , L-2043
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...