ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (516)
  • Aircraft Design, Testing and Performance  (17)
  • 2015-2019
  • 2005-2009
  • 1975-1979
  • 1950-1954  (530)
  • 1930-1934  (3)
  • 1954  (530)
  • 1933  (3)
Collection
Publisher
Years
  • 2015-2019
  • 2005-2009
  • 1975-1979
  • 1950-1954  (530)
  • 1930-1934  (3)
Year
  • 1
    Publication Date: 2019-05-25
    Description: An investigation was conducted on a 35 deg swept-wing fighter airplane to determine the effects of several blunt-trailing-edge modifications to the wing and tail on the high-speed stability and control characteristics and tracking performance. The results indicated significant improvement in the pitch-up characteristics for the blunt-aileron configuration at Mach numbers around 0.90. As a result of increased effectiveness of the blunt-trailing-edge aileron, the roll-off, customarily experienced with the unmodified airplane in wings-level flight between Mach numbers of about 0.9 and 1.0 was eliminated, The results also indicated that the increased effectiveness of the blunt aileron more than offset the large associated aileron hinge moment, resulting in significant improvement in the rolling performance at Mach numbers between 0.85 and 1.0. It appeared from these results that the tracking performance with the blunt-aileron configuration in the pitch-up and buffeting flight region at high Mach numbers was considerably improved over that of the unmodified airplane; however, the tracking errors of 8 to 15 mils were definitely unsatisfactory. A drag increment of about O.OOl5 due to the blunt ailerons was noted at Mach numbers to about 0.85. The drag increment was 0 at Mach numbers above 0.90.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-A54C31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Investigations with a view to increasing the lift coefficient of a wing, without greatly increasing the C(sub x min), are chiefly related to the important question of the maximum speed range.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA Misc. Paper No. 37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: Measurement of average skin-friction coefficients have been made on six rocket-powered free-flight models by using the boundary-layer rake technique. The model configuration was the NACA RM-10, a 12.2-fineness-ratio parabolic body of revolution with a flat base. Measurements were made over a Mach number range from 1 to 3.7, a Reynolds number range 40 x 10(exp 6) to 170 x 10(exp 6) based on length to the measurement station, and with aerodynamic heating conditions varying from strong skin heating to strong skin cooling. The measurements show the same trends over the test ranges as Van Driest's theory for turbulent boundary layer on a flat plate. The measured values are approximately 7 percent higher than the values of the flat-plate theory. A comparison which takes into account the differences in Reynolds number is made between the present results and skin-friction measurements obtained on NACA RM-10 scale models in the Langley 4- by 4-foot supersonic pressure tunnel, the Lewis 8- by 6-foot supersonic tunnel, and the Langley 9-inch supersonic tunnel. Good agreement is shown at all but the lowest tunnel Reynolds number conditions. A simple empirical equation is developed which represents the measurements over the range of the tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L54G14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: An investigation has been conducted to determine the static stability and control and damping in roll and yaw of a 0.13-scale model of the Convair XFY-1 airplane with propellers off from 0 deg to 90 deg angle of attack. The tests showed that a slightly unstable pitch-up tendency occurred simultaneously with a break in the normal-force curve in the angle-of-attack range from about 27 deg to 36 deg. The top vertical tail contributed positive values of static directional stability and effective dihedral up to an angle of attack of about 35 deg. The bottom tail contributed positive values of static directional stability but negative values of effective dihedral throughout the angle-of-attack range. Effectiveness of the control surfaces decreased to very low values at the high angles of attack, The model had positive damping in yaw and damping in roll about the body axes over the angle-of-attack range but the damping in yaw decreased to about zero at 90 deg angle of attack.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL54J04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Altitude performance characteristics of the J65-B3 turbojet engine and its components were obtained at engine-inlet conditions corresponding to Reynolds number indices from 0.2 to 0.8 over a range of corrected engine speeds from 70 to 110 percent of rated speed. Engine operational limits up to an altitude of 75,000 feet together with ignition and windmilling characteristics were also obtained. The engine and component data are presented both in graphical and in tabulated form. The operational characteristics are presented in graphical form.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SE54H18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: This note discusses the limitations of the conventional tank test of a seaplane model. The advantages of a complete test, giving the characteristics of the model at all speeds, loads, and trim angles in the useful range are pointed out. The data on N.A.C.A. Model No.11, obtained from a complete test, are presented and discussed. The results are analyzed to determine the best trim angle for each speed and load. The data for the best angles are reduced to non-dimensional form for ease of comparison and application. A practical problem using the characteristics of model no.11 is presented to show the method of calculating the take-off time and run of a seaplane from these data.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the Langley 20-foot free-spinning tunnel on a 1/23-scale model of the McDonnell F3H-1N airplane. The effects of control settings and movements upon the erect and inverted spin and recovery characteristics of the model were determined for the clean condition. Spin-recovery parachute tests were also performed. The results indicated that erect spins obtained on the airplane for the take-off or combat loadings should be satisfactorily terminated if full rudder reversal is accompanied by moving the ailerons to full with the spin (stick full right in a right spin). The spins obtained should be oscillatory in pitch, roll, and yaw. Recoveries from inverted spins should be satisfactory by full reversal of the rudder. A 16.7-foot- diameter tail parachute with a towline length of 30 feet and a drag coefficient of 0.734 should be adequate for emergency recovery from demonstration spins.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL55A10a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-14
    Description: The lift, pitching-moment, and drag characteristics of a missile configuration having a body of fineness ratio 9.33 and a cruciform triangular wing and tail of aspect ratio 4 were measured at a Mach number of 1.99 and a Reynolds number of 6.0 million, based on the body length. The tests were performed through an angle-of-attack range of -5 deg to 28 deg to investigate the effects on the aerodynamic characteristics of roll angle, wing-tail interdigitation, wing deflection, and interference among the components (body, wing, and tail). Theoretical lift and moment characteristics of the configuration and its components were calculated by the use of existing theoretical methods which have been modified for application to high angles of attack, and these characteristics are compared with experiment. The lift and drag characteristics of all combinations of the body, wing, and tail were independent of roll angle throughout the angle-of-attack range. The pitching-moment characteristics of the body-wing and body-wing- tail combinations, however, were influenced significantly by the roll angle at large angles of attack (greater than 10 deg). A roll from 0 deg (one pair of wing panels horizontal) to 45 deg caused a forward shift in the center of pressure which was of the same magnitude for both of these combinations, indicating that this shift originated from body-wing interference effects. A favorable lift - interference effect (lift of the combination greater than the sum of the lifts of the components) and a rearward shift in the center of pressure from a position corresponding to that for the components occurred at small angles of attack when the body was combined with either the exposed wing or tail surfaces. These lift and center-of-pressure interference effects were gradually reduced to zero as the angle of attack was increased to large values. The effect of wing-tail interference, which influenced primarily the pitching-moment characteristics, is dependent on the distance between the wing trailing vortex wake and the tail surfaces and thus was a function of angle of attack, angle of roll, and wing- tail interdigitation. Although the configuration at zero roll with the wing and tail in line exhibited the least center-of-pressure travel, the configuration with the wing and tail interdigitated had the least change in wing- tail interference over the angle - of-attack range. The lift effectiveness of the variable-incidence wing was reduced by more than 70 percent as a result of an increase in the combined angle of attack and wing incidence from 0 deg to 40 deg center dot The wing- tail interference (effective downwash at the tail) due to wing deflection was nearly zero as a result of a region of negative vorticity shed from the inboard portion of the wing. The lift characteristics of the configuration and its components were satisfactorily predicted by the calculated results, but the pitching moments at large angles of attack were not because of the influence of factors for which no adequate theory is available, such as the variation of the cross flow drag coefficient along the body and the effect of the wing downwash field on the after body loading.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-A54H27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: An investigation of the 1XP excitation of inclined single-rotation propellers has indicated a new concept for determining propeller shaft forces and moments of an inclined propeller. This report presents preliminary results, in particular to the counterrotating propeller.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-A54C30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: An investigation of a 1/14-scale dynamically similar model of a panto-base version of the Chase C-123 airplane was conducted to evaluate the hydrodynamic characteristics of the airplane. The resistance, longitudinal stability, and spray patterns during take-off and general behavior in calm- and rough-water landings were determined. Brief calm-water tests were made to compare the initial vertical impact accelerations of the model with and without hydro-skis. Take-off stability was satisfactory for calm-water operation. A ratio of gross load to maximum resistance of 3,6 was obtained. Heavy spray reached the propellers only during ski emergence. The landing behavior in calm water and in waves 3 feet by 150 feet (full scale) was satisfactory for a normal range of trim angles. Initial impacts in calmwater landings resulted in vertical accelerations of about 2 1/2 with the hydro-skis installed and about 4g with the hydro-skis removed,
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL54A28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...