ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mt. Etna
  • American Geophysical Union  (1)
  • Copernicus  (1)
  • American Chemical Society
  • American Physical Society
  • Annual Reviews
  • 2010-2014  (1)
  • 2005-2009  (1)
  • 1985-1989
  • 1980-1984
  • 1970-1974
  • 1930-1934
  • 2012  (1)
  • 2008  (1)
  • 1933
  • 1932
Collection
Years
  • 2010-2014  (1)
  • 2005-2009  (1)
  • 1985-1989
  • 1980-1984
  • 1970-1974
  • +
Year
  • 1
    Publication Date: 2017-04-04
    Description: Volcanoes represent an important natural source of several trace elements to the atmosphere. For some species (e.g., As, Cd, Pb and Se) they may be the main natural source and thereby strongly influencing geochemical cycles from the local to the global scale. Mount Etna is one of the most actively degassing volcanoes in the world, and it is considered to be, on the long-term average, the major atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. To estimate the environmental impact of magma-derived trace metals and their depositions processes, rainwater and snow samples were collected at Mount Etna area. Five bulk collectors have been deployed at various altitudes on the upper flanks around the summit craters of the volcano; samples were collected every two week for a period of one year and analyzed for the main chemical-physical parameters (electric conductivity and pH) and for major and trace elements concentrations. Chemical analysis of rainwater clearly shows that the volcanic contribution is always prevailing in the sampling site closest to the summit crater (about 1.5 km). In the distal sites (5.5-10 km from the summit) and downwind of the summit craters, the volcanic contribution is also detectable but often overwhelmed by anthropogenic or other natural (seawater spray, geogenic dust) contributions. Volcanic contribution may derive from both dry and wet deposition of gases and aerosols from the volcanic plume, but sometimes also from leaching of freshly emitted volcanic ashes. In fact, in our background site (7.5 km in the upwind direction) volcanic contribution has been detected only following an ash deposition event. About 30 samples of fresh snow were collected in the upper part of the volcano, during the winters 2006 and 2007 to estimate deposition processes at high altitude during cold periods. Some of the samples were collected immediately after a major explosive event from the summit craters to understand the interaction between snow and fresh erupted ash. Sulphur, Chlorine and Fluorine, are the major elements that prevailingly characterize the volcanic contribution in atmospheric precipitation on Mount Etna, but high concentrations of many trace elements are also detected in the studied samples. In particular, bulk deposition samples display high concentration of Al, Fe, Ti, Cu, As, Rb, Pb, Tl, Cd, Cr, U and Ag, in the site most exposed to the volcanic emissions: median concentration values are about two orders of magnitude higher than those measured in our background site. Also in the snow samples the volcanic signature is clearly detectable and decreases with distance from the summit craters. Some of the analysed elements display very high enrichment values with respect to the average crust and, in the closest site to the summit craters, also deposition values higher than those measured in polluted urban or industrial sites.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Degassamento naturale
    Description: open
    Keywords: Mt. Etna ; trace elements ; rainwater ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Geophysical (tilt, seismic tremor and gravity signals), geochemical (crater SO2 flux) and infrared satellite measurements are presented and discussed to track the temporal evolution of the lava fountain episode occurring at Mt Etna volcano on 10 April 2011. The multi-disciplinary approach provides insight into a gas-rich magma source trapped in a shallow storage zone inside the volcano edifice. This generated the fast ascending gas-magma dispersed flow feeding the lava fountain and causing the depressurization of a deeper magma storage. Satellite thermal data allowed estimation of the amount of erupted lava, which, summed to the tephra volume, yielded a total volume of erupted products of about 1 106 m3. Thanks to the daylight occurrence of this eruptive episode, the SO2 emission rate was also estimated, showing a degassing cycle reaching a peak of 15,000 Mg d 1 with a mean daily value of 5,700 Mg d 1. The SO2 data from the previous fountain episode on 17–18 February to 10 April 2011, yielded a cumulative degassed magma volume of about 10.5 106 m3, indicating a ratio of roughly 10:1 between degassed and erupted volumes. This volumetric balance, differently from those previously estimated during different styles of volcanic activities with long-term (years) recharging periods and middle-term (weeks to months) effusive eruptions, points toward the predominant role played by the gas phase in generating and driving this lava fountain episode.
    Description: Published
    Description: L24307
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; lava fountain ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...