ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics  (64)
  • 1990-1994
  • 1980-1984
  • 1955-1959  (44)
  • 1940-1944  (20)
  • 1925-1929
  • 1958  (32)
  • 1957  (12)
  • 1944  (20)
  • 1929
Collection
Years
  • 1990-1994
  • 1980-1984
  • 1955-1959  (44)
  • 1940-1944  (20)
  • 1925-1929
Year
  • 1
    Publication Date: 2019-05-31
    Description: A 1/13-scale model of the forebody of the Republic F-105 with twin-duct wing-root inlets was tested in the Langley 4- by 4-foot supersonic pressure tunnel through a range of angle of attack from -4 deg to 15 deg at a Mach number of 2.01 and a Reynolds number of approximately 3.4 x 10(exp 6) per foot. The tests were made with four configurations which incorporated varying amounts of sweep and stagger of the inlet leading edges, modifications to the areas of the boundary-layer diverter floor plate, and modifications to the area of the boundary-layer diverter bleed slots. The highest overall pressure recovery at an angle of attack of 0 deg (average total-pressure recovery, 0.84 mass-flow ratio, 0.98) was achieved with configuration having an inlet leading-edge sweep angle of 58 deg with no leading-edge stagger. Stagger was found to improve the angle-of- attack performance, but at a sacrifice in inlet efficiency for an angle of attack of 0 deg. The boundary-layer diverter floor height, of the order of one boundary-layer thickness, was satisfactory for bypassing the fuselage boundary layer. The boundary-layer diverter-plate bleed slots were effective in increasing the total-pressure recovery of the inlet. The total-pressure-recovery contour plots, taken at the compressor-face station, indicate the existence of high-velocity "cores" throughout the inlet operating range.
    Keywords: Aerodynamics
    Type: NACA-RM-SL56L12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: An exploratory wind-tunnel investigation has been made to determine the lift effects of blowing from nacelles over the upper surface of flaps on a model having a delta wing of aspect ratio 3. Several flap conditions were examined. High-pressure air was blown from an external-pipe arrangement supported above the wing to simulate jet-engine exhaust. The jet momentum- coefficient range was from 0 to 3.0 and the model angle of attack was 0 deg. The results of this limited investigation show that values of jet circulation lift coefficient larger than the Jet reaction were produced with blowing over flaps from nacelles mounted above the wing. 'I!heuse of double slotted flaps with the gap unsealed between the flaps and wing had a large detrimental effect on the lift capabilities. With these gaps sealed, larger lift coefficients were obtained when fantails were added to the nacelles. The longitudinal trim problems created by large diving moments were similar to those encountered with other jet-augmented-flap systems
    Keywords: Aerodynamics
    Type: NACA-TN-4298
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An analysis, based on the linearized thin-airfoil theory for supersonic speeds, of the wave drag at zero lift has been carried out for a simple two-body arrangement consisting of two wedgelike surfaces, each with a rhombic lateral cross section and emanating from a common apex. Such an arrangement could be used as two stores, either embedded within or mounted below a wing, or as auxiliary bodies wherein the upper halves could be used as stores and the lower halves for bomb or missile purposes. The complete range of supersonic Mach numbers has been considered and it was found that by orienting the axes of the bodies relative to each other a given volume may be redistributed in a manner which enables the wave drag to be reduced within the lower supersonic speed range (where the leading edge is substantially subsonic). At the higher Mach numbers, the wave drag is always increased. If, in addition to a constant volume, a given maximum thickness-chord ratio is imposed, then canting the two surfaces results in higher wave drag at all Mach numbers. For purposes of comparison, analogous drag calculations for the case of two parallel winglike bodies with the same cross-sectional shapes as the canted configuration have been included. Consideration is also given to the favorable (dragwise) interference pressures acting on the blunt bases of both arrangements.
    Keywords: Aerodynamics
    Type: NACA-TN-4120
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A simplified analysis of the velocity and deceleration history of missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.
    Keywords: Aerodynamics
    Type: NACA-TN-4047
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: An investigation was made of the flow downstream from a "two-dimensional" grid formed of parallel rods. In both two and three dimensional jet fields there is a critical range of grid density below which the downstream flow is stable and above which it is unstable. The flow can be completely stabilized by means of an adequate lateral contraction beginning immediately after the grid or by use of a fine-mesh damping screen parallel to the grid plane and within a definite range of positions downstream from the grid.
    Keywords: Aerodynamics
    Type: NACA-WR-W-90 , NACA-ACR-4H24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Pressure distribution measurements were made over an airfoil with slotted Frise aileron up to 0.76 Mach at various angles of attack and aileron defections. Section characteristics were determined from these pressure data. Results indicated loss of aileron rolling power for deflections ranging from -12 Degrees to -19 Degrees. High stick forces for non-differential deflections incurred at high speed, which were due to overbalancing tendency of up-moving aileron, may precipitate serious control difficulties. Detailed results are presented graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-266 , NACA-ACR-L4G12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Methods are given of determining the potential flow plast an arbitrary cascade of airfoils and the inverse problem of determining an airfoil having a prescribed velocity distribution in cascade. Results indicated that Cartesian mapping function method may be satisfactorily extended to include cascades. Numerical calculation for computing cascades by Cartesian mapping function method is considerably greater than for single airfoils but much less than hitherto required for cascades. Detailed results are presented graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-81 , NACA-ARR-L4K22B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Flight tests were conducted on the OS2U-2 seaplane with simple circular-arc-type ailerons directly connected to the actuating torque tube. Two aileron test installations were made, differing only in the inclination of the projecting surface with the wing's upper surface. The lateral-control characteristics of the airplane were determined from data obtained in stalls and rudder-fixed aileron rolls. The revised ailerons were deficient in maximum rolling effectiveness, but were capable of controlling the rolling tendencies of the airplane near the stall.
    Keywords: Aerodynamics
    Type: NACA-WR-A-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Skin-temperature measurements have been made at several locations on a flat-faced cone-cylinder nose which was flight tested on a fivestage rocket-propeller model to a Mach number of 14.64 and a free-stream Reynolds number of 2.0 x 10(exp 6), based on flat-face diameter, at an altitude of 66,300 feet. The copper nose had a 29 deg total-angle conical section which was 1.6 flat-face diameters long. The aerodynamic-heating rates determined from the temperature measurements reached 1,440 Btu/( sec) (sq ft) on the flat face. The heating rates near the center of the flat face agreed well at Mach numbers up to 13.6 with those obtained by a theory for laminar stagnation-point heating in equilibrium dissociated air (Avco Res. Rep. 1). At Mach numbers above 13.6, the heating rates at locations near the center of the flat face became progressively lower than stagnation-point theory and. were 29 percent lower at Mach number 14.6 at the end. of the test. The reason for this behavior of the heating on the central part of the flat face was not determined. Excluding the relatively low heating rates that occurred on the central part of the nose at the highest Mach numbers, the distribution of experimental heating along the innermost 0.79 of the flat-face radius, expressed as a percentage of stagnation-point heating, was in fair agreement with the distribution predicted by laminar theory. At a location of 0.71 radii from the stagnation point, the experimental heating was very near 130 percent of the theoretical stagnation-point rate at Mach numbers from 11 to 14.5. The experimental beating rates on the conical section of the nose were in good agreement with laminar-cone theory using the assumption of theoretical sharp-cone static pressure on the conical section.
    Keywords: Aerodynamics
    Type: NACA-RM-L57L03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Ice was formed on a full-scale unheated supersonic nose inlet in the NACA Lewis icing tunnel to determine its effect on compressor-face total-pressure distortion and recovery.Inlet angle of attack was varied from 0degrees to 12 degrees, free-stream Mach number from 0.17 to 0.28, and compressor-face Mach number from 0.10 to 0.47. Icing-cloud liquid-water content was varied from 0.65 to 1.8 grams per cubic meter at free-stream static air temperatures of 15 degrees and 0 degrees F. The addition of ice to the inlet components increased total-pressure-distortion levels and decreased recovery values compared withclear0air results, the losses increasing with time in ice. The combination of glaze ice, high corrected weight flow, and high angle of attack yielded the highest levels of distortion and lowest values of recovery. The general character of compressor-face distortion with an iced inlet was the same as that for the clean inlet, the total-pressure gradients being predominantly radial, with circumferential gradients occurring at angle of attack. At zero angle of attack, free-stream Mach number of 0.27, and a constant corrected weight flow of 150 pounds per second (compressor-face Mach number of 0.43), compressor-face total-pressure-distortion level increased from about 6 percent in clear air to 12 percent after 21 minutes of heavy glaze icing; concurrently, total-pressure recovery decreased from about 0.98 to 0.945. For the same operating conditions but with the inlet at 12 deg angle of attack, a change in distortion level occurred from about 9 percent in clear air to 14 percent after 2-1/4 minutes of icing, with a decrease in recovery from about 0.97 to 0.94.
    Keywords: Aerodynamics
    Type: NACA-RM-E57G09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Description: Tank tests were made of a hull model of the Hughes-Kaiser cargo airplane for estimates of take-off performance and maximum gross load for take-off. At hump speeds, with the model free to trim, the trim and resistance were high, which resulted in a load-resistance ratio of approximately 4.0 for a gross load coefficient of 0.75. With a 4000,000-lb load, the full size craft may take off in 69 sec over a distance of 5600 ft.
    Keywords: Aerodynamics
    Type: NACA-WR-L-683
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Description: Results of flight tests indicate that profile-drag coefficients which were obtained with the low-drag airfoils were lower than with the conventional types over the range of light coefficients tested. For comparable conditions of the lift coefficient and Reynolds Number, the low-drag airfoils have profile-drag coefficients which may be 27 percent lower than the profile drag of the conventional airfoils tested. Detailed results are presented graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-139 , NACA-ACR-L4E31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-05-11
    Description: The flow about slender flat-top wing-body configurations traveling at high supersonic speeds and small angles of attack is investigated analytically. In the case of conical configurations, approximate algebraic solutions to the flow field are obtained. In the case of configurations which are conical at the vertex but curved in the stream direction, these solutions are combined with a slender-body approximation to the generalized shock-expansion method to obtain the flow downstream of the vertex. Surface pressures were obtained experimentally at Mach numbers from 3.0 to 6.0 and angles of attack up to 6 deg for several flat-top wing-body configurations. These configurations consisted of half-bodies of revolution mounted beneath thin highly swept wings. Three different bodies were employed. The two conical bodies consisted of one-half of a fineness-ratio-5 cone and one-half of a fineness-ratio-2-1/2 cone. The body of the third configuration consisted of one-half of a fineness-ratio-5 ogive. For the ogive configuration, the leading edges of the wing were curved and designed to just maintain the theoretically determined bow shock along the leading edge at a Mach number of 5.0 and an angle of attack of 3 deg. The predictions of the conical flow theory of this paper for the surface pressures are found to be in good agreement with experiment at Mach numbers of 5.0 and 6.0 up to angles of attack of approximately 3 deg. Estimated lift, drag, and pitching-moment coefficients, as well as maximum lift-drag ratio, are also in good agreement with existing experimental data at a Mach number of 5.0 for a conical configuration having an arrow plan-form wing. It is also found that the generalized shock-expansion method yields reasonable good agreement with experiment for the surface pressures on the half-ogive configuration at a Mach number of 5.0 and an angle of attack of 3 deg.
    Keywords: Aerodynamics
    Type: NACA-RM-A58F02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-05-11
    Description: A pressure-distribution investigation of a wing-body combination has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01. The model configuration consisted of an ogive-circular-cylinder body (fineness ratio of approximately ii) and a wing with 45 deg of sweepback at the quarter-chord line, an aspect ratio of 4, and a taper ratio of 0.2. Data were obtained on high-, mid-, and low-wing configurations and for the body and wing alone for a range of angles of attack and yaw from 0 deg to 15 deg. The tabulated pressure coefficients are presented in this report.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-15-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-05-11
    Description: Heat-transfer measurements were made on a simulated glide-rocket shape in free flight at Mach numbers up to 10 and free-stream Reynolds numbers of 2 x 10 based on distance along surface from apex and 3 x 10 based on nominal leading-edge diameter. The model simulated the bottom of a 75 deg delta wing at 8O deg angle of attack. The data indicated that for the test conditions a modified three-dimensional stagnation-point theory will predict to reasonable engineering accuracy the heating on a highly swept wing leading edge, the heating being reduced by sweep by the 3/2 power of the cosine of the sweep angle. The data also indicate that laminar heating rates over the windward surface of a highly swept flat glider wing at moderate angles of attack can be predicted with reasonable engineering accuracy by flat-plate theory using wedge local flow conditions and basing Reynolds numbers on lengths from the wing leading edge parallel to the surface center line.
    Keywords: Aerodynamics
    Type: NACA-RM-L58G03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-05-11
    Description: Chemical sublimation has been employed for boundary-layer-flow visualization on the wings of a supersonic fighter airplane in level flight at speeds near a Mach number of 2.0. The tests have shown that laminar flow can be obtained over extensive areas of the wing with practical wing-surface conditions. In addition to the flow visualization tests, a method of continuously monitoring the conditions of the boundary layer has been applied to flight testing, using heated temperature resistance gages installed in a Fiberglas "glove" installation on one wing. Tests were conducted at speeds from a Mach number of 1.2 to a Mach number of 2.0, at altitudes from 35,000 feet to 56,000 feet. Data obtained at all angles of attack, from near 0 deg to near 10 deg, have shown that the maximum transition Reynolds number on the upper surface of the wing varies from about 2.5 x 10(exp 6) at a Mach number of 1.2 to about 4 x 10(exp 6) at a Mach number of 2.0. On the lower surface, the maximum transition Reynolds number varies from about 2 x 10(exp 6) at a Mach number of 1.2 to about 8 x 10(exp 6) at a Mach number of 2.0.
    Keywords: Aerodynamics
    Type: NACA-RM-H58E28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-06-28
    Description: Rough conventional, smooth conventional, and laminar-flow or low-drag sections were tested. The items covered are rotor thrust for fixed power in hovering, range and endurance at cruising speed, and power required at high-forward speed. Calculations indicated that a smooth conventional section gives marked performance gains. Smaller gains are obtainable by using a low-drag section. At high speeds or loads the low-drag section is inferior to the smooth conventional section.
    Keywords: Aerodynamics
    Type: NACA-WR-L-26 , NACA-ACR-L4H05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-06-28
    Description: An investigation was made of the cooling characteristics of a P and W R-2800 engine with NACA short-nose high inlet-velocity cowling. The internal aerodynamics of the cowling were studied for ranges of propeller-advance ratio and inlet-velocity ratio obtained by deflection of cowling flaps. Tests included variations of engine power, fuel/air ratio and cooling-air pressure drop. Engine cooling data are presented in the form of cooling correlation curves, and an example for calculation of cooling requirements in flight is included.
    Keywords: Aerodynamics
    Type: NACA-WR-L-207 , NACA-ACR-L4F06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-WR-L-318 , NACA-ARR-4A26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-06-28
    Description: Results are presented for tests of two wings, an NACA 230-series wing and a highly-cambered NACA 66-series wing on a twin-engine pursuit airplane. Auxiliary control flaps were tested in combinations with each wing. Data showing comparison of high-speed aerodynamic characteristics of the model when equipped with each wing, the effect of the auxiliary control flaps on aerodynamic characteristics, and elevator effectiveness for the model with the 66-series wing are presented. High-speed aerodynamic characteristics of the model were improved with the 66-series wing.
    Keywords: Aerodynamics
    Type: NACA-WR-A-90
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-06-28
    Description: Correlation is established between aerodynamic characteristics of control surfaces in two-dimensional and three-dimensional flow. Slope of lift curve was affected little by overhang and balance-nose shape, but increased by sealing flap-nose gap. Effectiveness of balancing tab was same for sealed plain flap and unsealed overhang flap. Changes in hinge-moment coefficient were diminished by sealing gap. Values measured by three-dimensional flow disagreed with two-dimensional flow values until aspect ratio corrections were made.
    Keywords: Aerodynamics
    Type: NACA-WR-L-186 , NACA-ARR-L4I11F
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-06-28
    Description: An investigation was made in the LMAL 7- by 10-foot wind tunnel of a NACA 23021 airfoil with a double slotted flap having a chord 32 percent of the airfoil chord (0.32c) to determine the aerodynamic section characteristics with the flaps deflected at various positions. The effects of moving the fore flap and rear flap as a unit and of deflecting or removing the lower lip of the slot were also determined. Three positions were selected for the fore flap and at each position the maximum lift of the airfoil was obtained with the rear flap at the maximum deflection used at that fore-flap position. The section lift of the airfoil increased as the fore flap was extended and maximum lift was obtained with the fore flap deflected 30 deg in the most extended position. This arrangement provided a maximum section lift coefficient of 3.31, which was higher than the value obtained with either a 0.2566c or a 0.40c single-slotted-flap arrangement and 0.25 less than the value obtained with a 0.4c double-slotted-flap arrangement on the same airfoil. The values of the profile-drag coefficient obtained with the 0.32c double slotted flap were larger than those for the 0.2566c or 0.40c single slotted flaps for section lift coefficients between 1.0 and approximately 2.7. At all values of the section lift coefficient above 1.0, the 0.40c double slotted flap had a lower profile drag than the 0.32c double slotted flap. At various values of the maximum section lift coefficient produced by various flap defections, the 0.32c double slotted flap gave negative section pitching-moment coefficients that were higher than those of other slotted flaps on the same airfoil. The 0.32c double slotted flap gave approximately the same maximum section lift coefficient as, but higher profile-drag coefficients over the entire lift range than, a similar arrangement of a 0.30c double slotted flap on an NACA 23012 airfoil.
    Keywords: Aerodynamics
    Type: NACA-WR-L-7 , NACA-ARR-L4J05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-06-28
    Description: Results of subject tests indicate the difficulty of obtaining closely balanced rudder surfaces for most tail assemblies with shielded horns and maintaining a near zero rate-of-change of hinge-moment coefficient without an additional balancing device. A comparison is made between shielded and unshielded horn test results. Pressure distribution and tuft tests of flow over different shaped horns showed higher critical speed for medium-taper nosed horn. The trim tab nose shape had little effect on tab test results.
    Keywords: Aerodynamics
    Type: NACA-WR-L-516 , NACA-ACR-4C11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-06-28
    Description: Wind-tunnel tests, investigating low drag wing performance in small-scale tests, showed a large increase in minimum drag coefficient, and a decrease of maximum lift coefficient occurred with decreasing Reynolds Number above certain designated values. The lift-curve slope varied up to 6% between high and low turbulence levels. Low Reynolds Number test data are unreliable for low drag airfoils either to estimate full-scale characteristics or to determine merits of airfoils for higher Reynolds numbers.
    Keywords: Aerodynamics
    Type: NACA-WR-L-138 , NACA-ACR-L4H11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-06-28
    Description: Tests were conducted at dynamic pressure of 50 lb per square foot with lift drag and pitch moment measurements throughout useful angle of attack range for constant flap deflection and position of a low-drag airfoil. Two slots were investigated and practical flap paths were selected for each Slot shape had a negligible effect on the maximum lift coefficient flap deflected, the rounded-entry slot had lower profile drag.
    Keywords: Aerodynamics
    Type: NACA-WR-A-80 , NACA-MR-A4L28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-12
    Description: This report gives the results of tests on a rectangular wing model with a 20% full spun split flap, conducted on the whirling arm at the Daniel Guggenheim Airship Institute in Akron, Ohio. The effect of a ground board on the lift and pitching moment was measured. The ground board consisted of an inclined ramp rising up in the test channel to a level floor extending for some distance parallel to the model path. The path of the wing model with respect to the ground board accordingly represented with comparative exactness an airplane coming in for a landing. The ground clearances over the level portion of the board varied from 0 6 to 1,6 chord lengths. Results are given in the standard dimensionless coefficients plotted versus angle of attack for a particular ground clearance. The effect of the ground board is to increase the lift coefficient for a given angle of attack all the way up the stall. The magnitude of the increase varies both with the ground clearance and the angle of attack. The effect on the pitching moment coefficient is not so readily apparent due to experimental difficulties but, in general, the diving moment increases over the ground board. This effect is apparent principally at the high angles of attack. An exception to this effect occurs with flaps deflected at the lowest ground clearance (0.6 chords). Here the diving moment decreases over the ground board.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: Of the various unsteady flows that occur in axial turbomachines certain asymmetric disturbances, of wave length large in comparison with blade spacing, have become understood to a certain extent. These disturbances divide themselves into two categories: self-induced oscillations and force disturbances. A special type of propagating stall appears as a self-induced disturbance; an asymmetric velocity profile introduced at the compressor inlet constitutes a forced disturbance. Both phenomena have been treated from a unified theoretical point of view in which the asymmetric disturbances are linearized and the blade characteristics are assumed quasi-steady. Experimental results are in essential agreement with this theory wherever the limitations of the theory are satisfied. For the self-induced disturbances and the more interesting examples of the forced disturbances, the dominant blade characteristic is the dependence of total pressure loss, rather than the turning angle, upon the local blade inlet angle.
    Keywords: Aerodynamics
    Type: O.N.E.R.A. PAPERS PRESENTED AT THE JOURNEES INTERN. DE SCI. AERON., PT. 2 〈1957〈 (SEE N68-81276) P 1-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-27
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-L56I18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-08-17
    Description: The influence of the deflected flow caused by the fuselage (especially by unsymmetrical attitudes) on the lift and the rolling moment due to sideslip has been discussed for infinitely long fuselages with circular and elliptical cross section. The aim of this work is to add rectangular cross sections and, primarily, to give a principle by which one can get practically usable contours through simple conformal mapping. In a few examples, the velocity field in the wing region and the induced flow produced are calculated and are compared with corresponding results from elliptical and strictly rectangular cross sections.
    Keywords: Aerodynamics
    Type: NACA-TM-1414 , Jahrbuch 1942 der Deutschen Luftfahrtforschung; 263-279
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-12
    Description: In this report a method is presented for the calculation of the profile drag of airfoil sections. The method requlres only a knowledge of the theoretical velocity distribution and can be applied readily once this dlstribution is ascertained. Comparison of calculated and experimental drag characteristics for several airfoils shows a satisfactory agreement. Sample calculatlons are included.
    Keywords: Aerodynamics
    Type: NACA ACR No. 4B05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-08-17
    Description: An investigation was made of the effects of body shape on the drag of a 45 deg sweptback-wing-body combination at Mach numbers from 0.90 to 1.43. Both the expansion and compression fields induced by body indentation were swept back as the stream Mach number increased from 0.94. The line of zero pressure change was generally tangent to the Mach lines associated with the local velocities over the wing and body. The strength of the induced pressure fields over the wing were attenuated with spanwise distance and the major effects were limited to the inboard 60 percent of the wing semispan. Asymmetrical body indentation tended to increase the lift on the forward portion of the wing and reduce the lift on the rearward portion. This redistribution of lift had a favorable effect on the wave drag due to lift. Symmetrical body indentation reduced the drag loading near the wing-body juncture at all Mach numbers. The reduction in drag loading increased in spanwise extent as the Mach number increased and the line of zero induced pressure became more nearly aligned with the line of maximum wing thickness. Calculations of the wave drag due to thickness, the wave drag due to lift, and the vortex drag of the basic and symmetrical M = 1.2 body and wing combinations at an angle of attack of 0 deg predicted the effects of indentation within 11 percent of the wing-basic-body drag throughout the Mach number range from 1.0 to 1.43. Calculations of the wave drag due to thickness, the wave drag due to lift, and the vortex drag for the basic, symmetrical M = 1.2, and asymmetrical M = 1.4 body and wing combinations predicted the total pressure drag to within 8 percent of the experimental value at M = 1.43.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-23-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-17
    Description: The results of an experimental wind-tunnel investigation of the damping in pitch of two wing-body combinations are presented. The tests were conducted in the Ames 14-foot transonic wind tunnel over a Mach number range from 0.60 to 1.18. Reynolds numbers varied from 2.3 million to 5.5 million. One model with a triangular wing of aspect ratio 2 having NACA 0003-63 sections was oscillated at an amplitude of 1.5 and a frequency of 17 cycles per second. The second model with a straight, tapered wing of aspect ratio 3 having 3-percent biconvex circular-arc sections was oscillated at an amplitude of 1.0 deg and a frequency of 21 cycles per second. The tests were made with the models at a mean angle of attack of 0 deg. The models were oscillated with a dynamic balance that was actuated by an electrohydraulic servo valve. The results of this investigation indicate the usefulness of this new apparatus. The experimental results of a previous damping-in-pitch investigation conducted in the Ames 6- by 6-foot supersonic wind tunnel at Mach numbers from 1.2 to 1.7 are included along with the theoretical results for this Mach number range. In the region of Mach numbers available for comparison, good agreement is shown to exist between the data obtained in the two facilities, except for some inconsistency in the slopes of the curves at M = 1.2 for the triangular wing. The results of this investigation clearly show that for the models tested the maximum values of the damping in pitch occur at Mach numbers very close to 1.0, and that abrupt changes in the pitch damping are encountered near sonic velocity.
    Keywords: Aerodynamics
    Type: NASA-MEMO-11-30-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-16
    Description: A series of flight tests were conducted to determine the lift and drag characteristics of an F4D-1 airplane over a Mach number range of 0.80 to 1.10 at an altitude of 40,000 feet. Apparently satisfactory agreement was obtained between the flight data and results from wind-tunnel tests of an 0.055-scale model of the airplane. Further tests show the apparent agreement was a consequence of the altitude at which the first tests were made.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-8-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-14
    Description: Resilts have been obtained from an investigation in the Langley Unitary Plan wind tunnel at Mach numbers from 2.5 to 3.5 of a canard-type configuration designed for supersonic cruise flight. Tests extended over an angle-of-attack range from about -4 deg to 11 deg and an angle-of-sideslip range from -4 deg to 6 deg. For the present tests, the results indicate that forebody deflection was an efficient means of providing a sizable positive pitching-moment shift with little or no increase in drag. The test configuration had a trimmed lift-drag ratio of approximately 6.0 at Mach numbers near 3.0 and at a Reynolds number of 2.52 X 10(exp 6). The configuration was both longitudinally and directionally stable. The lift-drag ratios are believed to be somewhat low in as much as the models used for the present tests had large-grain size transition strips fixed to the various surfaces and these strips added wave drag. Also, the model boundary-layer diverter is oversized with respect to a full-scale configuration and therefore contributes additional drag.
    Keywords: Aerodynamics
    Type: NACA-RM-L58G16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-13
    Description: Tests were performed in the high. Mach number test section of the Langley Unitary Plan wind tunnel to determine the static lateral stability. and aileron characteristics of a 0.067-scale model of the Bell X-2 airplane at Mach numbers of 2.29, 2. 78, 3.22, and. 3.71. The results of this investigation indicated that the directional stability of the model was low with directional instability occurring at Mach numbers higher than 3.1 and. angles of attack higher than about 5.0 deg (equivalent lift coefficient of about 0.18). The yaw due to aileron deflection was adverse and, with 10 deg of differential aileron deflection, large enough to overbalance the available directional restoring moment at all angles of attack higher than about 5.0 deg (equivalent lift coefficient of about 0.21) and Mach numbers higher than 2. 5. The model also had positive effective dihedral for all test attitudes and. Mach numbers. A combination of the lateral-stability parameters with the aileron characteristics to form a lateral-stability criterion for a maneuver using ailerons alone indicated that the model has characteristics which would. give unstable aperiodic behavior (divergence) over a large part of the test Mach number and angle-of-attack range.
    Keywords: Aerodynamics
    Type: NACA-RM-L57J28a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-15
    Description: An investigation has been made in the Langley high-speed 7- by 10-foot tunnel of some effects of horizontal-tail position on the vertical-tail pressure distributions of a complete model in sideslip at high subsonic speeds. The wing of the model was swept back 28.82 deg at the quarter-chord line and had an aspect ratio of 3.50, a taper ratio of 0.067, and NACA 65A004 airfoil sections parallel to the model plane of symmetry. Tests were made with the horizontal tail off, on the wing-chord plane extended, and in T-tail arrangements in forward and rearward locations. The test Mach numbers ranged from 0.60 to 0.92, which corresponds to a Reynolds number range from approximately 2.93 x 10(exp 6) to 3.69 x 10(exp 6), based on the wing mean aerodynamic chord. The sideslip angles varied from -3.9 deg to 12.7 deg at several selected angles of attack. The results indicated that, for a given angle of sideslip, increases in angle of attack caused reductions in the vertical-tail loads in the vicinity of the root chord and increases at the midspan and tip locations, with rearward movements in the local chordwise centers of pressure for the midspan locations and forward movements near the tip of the vertical tail. At the higher angles of attack all configurations investigated experienced outboard and rearward shifts in the center of pressure of the total vertical-tail load. Location of the horizontal tail on the wing- chord plane extended produced only small effects on the vertical-tail loads and centers of pressure. Locating the horizontal tail at the tip of the vertical tail in the forward position caused increases in the vertical-tail loads; this configuration, however, experienced considerable reduction in loads with increasing Mach number. Location of the horizontal tail at the tip of the vertical tail in the rearward position produced the largest increases in vertical-tail loads per degree sideslip angle; this configuration experienced the smallest variations of loads with Mach number of any of the configurations investigated.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-5-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-15
    Description: Pressure distributions are presented for a thin highly tapered untwisted 45 deg sweptback wing in combination with a body. These tests were made in the Langley 8-foot transonic pressure tunnel at both 1.0 and 0.5 atmosphere stagnation pressures at Mach numbers from 0.800 to 1.200 through an angle-of-attack range of -4 deg to 12 deg.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-20-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-10
    Description: For a number of years now, experimenters have been making measurements of skin friction. Formerly, the main interest was at low Mach numbers; later, measurements were made at supersonic Mach numbers. However, almost all of these measurements were over a limited range of Reynolds numbers. On the other hand, these measurements fairly well determined the effects of Mach number and heat transfer on skin friction. The purpose of this paper is to give the results of skin-friction measurements in turbulent boundary layers at high Mach numbers and high Reynolds numbers where data have not previously existed. The equipment used was expressly designed to provide these conditions. As is well known, it is difficult to obtain high Mach numbers and high Reynolds numbers simultaneously with air in a wind tunnel. In order to avoid condensation, it is necessary to heat the air, with a resulting loss in density and Reynolds number. It is desirable, then, to use a gas that does not condense at high Mach numbers. This suggested helium, which was used as a working fluid in some of the tests. At high Mach numbers in a given wind tunnel, higher Reynolds numbers can be obtained with helium than with air, principally because no heating of the helium is required. The different ratios of specific heats also contribute to the increase. In using helium as a working fluid, it is, of course, necessary to determine the equivalence of air and helium in the turbulent boundary layer.
    Keywords: Aerodynamics
    Type: NACA-RM-A58D28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-14
    Description: An investigation has been made to determine the aerodynamic characteristics in pitch at a Mach number of 6.8 of hypersonic missile configurations with cruciform trailing-edge flaps and with all-movable control surfaces. The flaps were tested on a configuration having low-aspect-ratio cruciform fins with an apex angle of 5 degrees; the all-movable controls were mounted at the 46.7-percent body station on a configuration having a 10 degrees flared afterbody. The tests were made through an angle-of-attack range of -2 degrees to 20 degrees at zero sideslip in the Langley 11-inch hypersonic tunnel. The results indicated that the all-movable controls on the flared-afterbody model should be capable of producing much larger values of trim lift and of normal acceleration than the trailing-edge-flap configuration. The flared-afterbody configuration had considerably higher drag than the cruciform-fin model but only slightly lower values of lift-drag ratio.
    Keywords: Aerodynamics
    Type: NACA-RM-L58D24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-14
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-TM-X-67369
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-14
    Description: An investigation was performed in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a model of a 45 deg swept-wing fighter airplane, and to determine the loads on attached stores and detached missiles in the presence of the model. Also included was a determination of aileron-spoiler effectiveness, aileron hinge moments, and the effects of wing modifications on model aerodynamic characteristics. Tests were performed at Mach numbers of 1.57, 1.87, 2.16, and 2.53. The Reynolds numbers for the tests, based on the mean aerodynamic chord of the wing, varied from about 0.9 x 10(exp 6) to 5 x 10(exp 6). The results are presented with minimum analysis.
    Keywords: Aerodynamics
    Type: NACA-RM-L58C17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-14
    Description: A full-scale rocket-powered model of a cruciform canard missile configuration with a low-aspect-ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed-control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift-curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift-curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta = -0.3 deg. The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic-center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number. The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.
    Keywords: Aerodynamics
    Type: NACA-RM-L55K16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-13
    Description: Experiments have been made to determine the nature of turbulence in the wake of a two-dimensional airfoil at low speeds. The experiments were motivated by the need for data which can be used for analysis of the tail-buffeting problem in aircraft design. Turbulent intensity and power spectra of the velocity fluctuations were measured at a Reynolds number of 1.6 x 10(exp 5) for several angles of attack. Total-head measurements were also obtained in an attempt to relate steady and fluctuating wake properties. Mean-square downwash was found to have nearly the same dependence on vertical position in the wake as that shown by total-head loss. For this particular wing, turbulent intensity, integrated across the wake, increased roughly as the 3/2 power of the drag coefficient. Power-spectrum measurements indicated a decrease in frequency as wing angle of attack was increased. The average frequency in the wake was proportional to the ratio of mean wake velocity to wake width.
    Keywords: Aerodynamics
    Type: NACA-TM-1427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-13
    Description: It seems possible that, in supersonic flight, unconventional arrangements of wings and bodies may offer advantages in the form of drag reduction. It is the purpose of this report to consider the methods for determining the pressure drag for such unconventional configurations, and to consider a few of the possibilities for drag reduction in highly idealized aircraft. The idealized aircraft are defined by distributions of lift and volume in three-dimensional space, and Hayes' method of drag evaluation, which is well adapted to such problems, is the fundamental tool employed. Other methods of drag evaluation are considered also wherever they appear to offer amplifications. The basic singularities such as sources, dipoles, lifting elements and volume elements are discussed, and some of the useful inter-relations between these elements are presented. Hayes' method of drag evaluation is derived in detail starting with the general momentum theorem. In going from planar systems to spatial systems certain new problems arise. For example, interference between lift and thickness distributions generally appears, and such effects are used to explain the difference between the non-zero wave drag of Sears-Haack bodies and the zero wave drag of Ferrari's ring wing plus central body. Another new feature of the spatial systems is that optimum configurations generally are not unique, there being an infinite family of lift or thickness distributions producing the same minimum drag. However it is shown that all members of an optimum family produce the same flow field in a certain region external to the singularity distribution. Other results of the study indicate that certain spatial distributions may produce materially less wave drag and vortex drag than comparable planar systems. It is not at all certain that such advantages can be realized in practical aircraft designs, but further investigation seems to be warranted.
    Keywords: Aerodynamics
    Type: NACA-TM-1421
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-13
    Description: A modified 1/10-power nose shape has been tested in free flight at Mach numbers up to 6.7 and free - stream Reynolds numbers based on diameter up to 16 X 10(exp 6). Measured heating rates were presented and compared with calculated values. Agreement ranges from poor on the forward portion of the nose to good on the rearward portion. The local Reynolds numbers of transition based on calculated momentum thickness varied between 1, 600 and 350. Laminar flow was maintained at momentum thickness Reynolds numbers of about 1,000 until the free-stream Reynolds number based on a length of 1 foot reached about 27 X 10(exp 6). At slightly higher free-stream Reynolds numbers transition occurred at momentum thickness Reynolds numbers as low as 250.
    Keywords: Aerodynamics
    Type: NACA-RM-L57E14a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.
    Keywords: Aerodynamics
    Type: NACA-TM-1065 , Luftwissen; 5; 8; 297-298
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The wall interference is obtained for a wind tunnel of elliptic section for the two cases of closed and open working sections. The approximate and exact methods used gave results in practically good agreement. Corresponding to the result given by Glauert for the case of the closed rectangular section, the interference is found to be a minimum for a ratio of minor to major axis of 1:square root of 6 This, however, is true only for the case where the span of the airfoil is small in comparison with the width of the tunnel. For a longer airfoil the favorable ellipse is flatter. In the case of the open working section the circular shape gives the minimum interference.
    Keywords: Aerodynamics
    Type: NACA-TM-1075 , Journal of the Society of Mechanical Engineers; 36; 190; 123-127
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-11
    Description: The wide use of diffusers, in various fields of technology, has resulted in several experimental projects to study the action and design of diffusers. Most of the projects dealt with steam (steam turbine nozzles). But diffusers have other applications - that is, ventilators, smoke ducts, air coolers, refrigeration, drying, and so forth. At present there is another application for diffusers in wind-tunnel design. Because of higher requirements and increased power of such installations more attention must be paid to the correctness of work and the decrease in losses due to every section of the tunnel. A diffuser, being one of the component parts of a tunnel , can in the event of faulty construction introduce considerable losses. Therefore, in the design of the new CAHI wind tunnel, it was suggested that an experimental study of diffusers be made, with a view to applying the results to wind tunnels. The experiments conducted by K. K. Baulin in the laboratories of CAHI upon models of diffusers of different cross sections, lengths, and angles of divergence, were a valuable source of experimental data. They were of no help, however, in reaching any conclusion regarding the optimum shape because of the complexity and diversity of the factors which all appeared simultaneously, thereby precluding the.study of the effects of any one factor separately. On the suggestion of the director of the CAHI,Prof. B. N. Ureff, it was decided to experiment on a two-dimensional diffuser model and determine the effect, of the angle of divergence. The author is acquainted with two experimental projects of like nature: the first was conducted with water, the other with air. The first of these works, although containing a wealth of experimental data, does not indicate the nature of flow or its relation to the angle of divergence. The second work is limited to four angles - that is, 12 deg, 24 deg, 45 deg, 90 deg. The study of this diffuser did not supply any information about the effect of smaller angles which, because of their advantages, are more commonly used, The author was able to acquaint himself with the second work only after the experiments were started. For these reasons, as well as because on the basis of those works no conclusion can be reached regarding the nature of flow distribution, of eddies, and so forth, experimental work was continued. The need for determining flow patterns follows from the fact that from them are determined methods of measurement - that is, the determination of velocities by means of the pitot tube, which, as is well known, gives correct indications only when placed with its axis parallel to the axis of flow. The data contained in this report were obtained from experiments conducted by the Aerodynamical Laboratories of the CAHI. The solutions to some. of the mathematical problems connected with the experiments are due to Prof. S. A, Chapligin.
    Keywords: Aerodynamics
    Type: NACA-TM-1059 , Report of the Central Aero-Hydrodynamical Inst., Moscow; Rept-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-10
    Description: A flight investigation was conducted to determine the effects of inlet modification and rocket-rack extension on the longitudinal trim and low-lift drag of the Douglas F5D-1 airplane. The investigation was conducted with a 0.125-scale rocket-boosted model between Mach Numbers of 0.81 and 1.64. This paper presents the changes in trim angle of attack, trim lift coefficient, and low-lift drag caused by the modified inlets alone over a small part of the test Mach number range and by a combination of the modified inlets and extended rocket racks throughout the remainder of the test.
    Keywords: Aerodynamics
    Type: NACA-RM-SL57D30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-12
    Description: Tests were performed in the Langley Unitary Plan wind tunnel to determine the drag and static longitudinal and lateral stability and control characteristics of a 1/20-scale model of the McDonnell F4H-1 airplane at Mach numbers of 1 57, 1 87, 2.16, and 2.53. This is the second phase in a series of tests performed on this model. The Reynolds numbers for these tests, based on the mean aerodynamic chord of the wing, are 1.446 x 10 (exp 6), 1.269 x 10 (exp 6), 1.116 x 10 (exp 6), and 0.714 x 10 (exp 6) at Mach numbers of 1.57, 1.87, 2.16, and 2.53, respectively. The model had a 12 deg. wing tip dihedral, a larger vertical tail, and a modified duct.
    Keywords: Aerodynamics
    Type: NACA-RM-SL7A14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: Results are presented from investigations of the aerodynamic heating rates of blunt nose shapes at Mach numbers up to 14. The wind-tunnel tests examined flat-faced cylinder stagnation-point heating rates over the Mach number range. The tests also examined heat transfer and angle of attack.
    Keywords: Aerodynamics
    Type: L-316
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-12
    Description: Canopy Model IV was tested in four different configuration series. Shroud lines were used in the first three series of tests; none were used in the fourth series. Other variables were Mach number (1.77, 2.17, 2.76), dynamic pressure (290, 250, 155 lb per sq ft), camera speed, and attitude.
    Keywords: Aerodynamics
    Type: L-396
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-15
    Description: Analysis is presented on the possible similarity solutions of the three-dimensional, laminar, incompressible, boundary-layer equations referred to orthogonal, curvilinear coordinate systems. Requirements of the existence of similarity solutions are obtained for the following: flow over developable surface and flow over non-developable surfaces with proportional mainstream velocity components.
    Keywords: Aerodynamics
    Type: NACA-TM-1437
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-15
    Description: A single-line correlation of both the heat-transfer and pressure- drop data for electrically heated unfinned tubes is obtained by evaluating the density in the Reynolds number, specific heat, thermal conductivity, and viscosity at the film temperature, and the density in the friction coefficient at the bulk temperature. The heat-transfer data for finned tubes also exhibit an effect of physical-property variation which is removed by evaluating all properties, including density, at the primary surface temperature, and using k* = 0.015 square root of T/530 for the thermal conductivity of air where T is the absolute temperature. The pressure drop for finned tubes is correlated by the use of bulk density in both the Reynolds number and friction coefficient. The data reported are for Reynolds numbers from 2000 to 35,000, surface temperatures from 600 to 1400 R, and an air inlet temperature of 530 R.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-9-58E , L-4880
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-15
    Description: An investigation was made to determine the lifting effectiveness and flow requirements of blowing over the trailing-edge flaps and ailerons on a large-scale model of a twin-engine, propeller-driven airplane having a high-aspect-ratio, thick, straight wing. With sufficient blowing jet momentum to prevent flow separation on the flap, the lift increment increased for flap deflections up to 80 deg (the maximum tested). This lift increment also increased with increasing propeller thrust coefficient. The blowing jet momentum coefficient required for attached flow on the flaps was not significantly affected by thrust coefficient, angle of attack, or blowing nozzle height.
    Keywords: Aerodynamics
    Type: NASA-MEMO-12-3-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-15
    Description: The low-speed aerodynamic and hydrodynamic characteristics of a proposed multijet water-based aircraft configuration for supersonic operation have been investigated. The design features include upward-rotating engines, body indentation, a single hydro-ski, and a wing with an aspect ratio of 3.0, a taper ratio of 0.143, 36.90 sweepback of the quarter-chord line, and NACA 65AO04 airfoil sections. For the aerodynamic investigation, with the flaps retracted, the model was longitudinally and directionally stable up to the stall. The all-movable horizontal tail was capable of trimming the model up to a lift coefficient of approximately 0.87. All flap configurations investigated had a tendency to become longitudinally unstable at stall. The effectiveness of the all-movable horizontal tail increased with increasing lift coefficient for all flap configurations investigated; however, with the large static margin of the configuration with the center of gravity at 0.25 mean aerodynamic chord, the all-movable horizontal tail was not powerful enough to trim all the various flapped configurations investigated throughout the angle-of-attack range. For the hydrodynamic investigation, longitudinal stability during take-offs and landings was satisfactory. Decreasing the area of the hydro-ski 60 percent increased the maximum resistance and emergence speed 40 and 70 percent, respectively. Without the jet exhaust, the resistance was reduced by simulating the vertical-lift component of the forward engines rotated upward. However, the jet exhaust of the forward engines increased the maximum resistance approximately 60 percent. The engine inlets and horizontal tail were free from spray for all loads investigated and for both hydro-ski sizes.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-13-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-15
    Description: An investigation has been made of the effects of nose length, fuselage length, and nose fineness ratio on the static longitudinal aerodynamic characteristics of an airplane model with a swept wing and low tail and of a second model with a highly tapered wing of moderate sweep and a T-tail. The tests were conducted in the Langley high-speed 7- by 10-foot tunnel at Mach numbers from 0.60 to 0.92. The nose and body cross sections were circular. For either the model with the swept wing and low tail or the model with the highly tapered wing of moderate sweep and the T-tail, the effects of forebody changes amounted primarily to rotations of the pitching-moment curves (changes in static margin) over the test ranges of angle of attack and Mach number. For the range of body shapes investigated the longitudinal stability at low lift is decreased by an increase in nose length or in fuselage length or by a reduction in nose fineness ratio when the fuselage length is held constant. In general, the stability for all model configurations showed substantially the same variation with changes in forebody area moment. The forebody changes did not alter the angle of attack at which an unstable break occurred in the moment contribution of the T-tail but did alter somewhat the magnitude of the instability.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-10-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-15
    Description: Results of an investigation of a dynamic model in the Langley 20-foot free-spinning tunnel are presented. Erect spin and recovery characteristics were determined for a range of mass distributions and center-of-gravity positions. The effects of lateral displacement of the center of gravity, engine rotation, nose strakes, and increased rudder area were investigated.
    Keywords: Aerodynamics
    Type: NASA-MEMO-3-1-59L , AF-AM-42 , L-237
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-15
    Description: An investigation was conducted to determine the effectiveness of leading-edge flaps in reducing the drag at lifting conditions of a triangular wing of aspect ratio 2.0. The flaps, deflected to simulate conically cambered wings having a wide range of design lift coefficients, were tested over a Mach number range of 0.70 to 2.22 through an angle-of-attack variation from -6 deg to +18 deg at a constant Reynolds number of 3.68 million based on the wing mean aerodynamic chord. A symmetrical wing of the same plan form and aspect ratio was also tested to provide a basis for comparison. The experimental results showed that with the flaps in the undeflected position, a small amount of fixed leading-edge droop incorporated over the outboard 5 percent of the wing semispan was as effective at high subsonic speeds as conical camber in improving the maximum lift-drag ratio above that of the symmetrical wing. At supersonic speeds, the penalty in minimum drag above that of the symmetrical wing was less than that incurred by conical camber. Deflecting the leading-edge flaps about the hinge line through 80 percent of the wing semispan resulted in further improvements of the drag characteristics at lift coefficients above 0.20 throughout the Mach number range investigated. The lift and pitching-moment characteristics were not significantly affected by the leading-edge flaps.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-5-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-12
    Description: Transition data on highly cooled blunt bodies are correlated in terms of the ratio of wall to local-stream enthalpy, Reynolds number based on displacement thickness, and location of transition. The proposed correlation, although not sensitive enough to predict the exact location of transition does predict the enthalpy ratio below which very early transition on blunt bodies is expected. The correlation is not altered by moderate amounts of surface roughness; however, the location of transition may well be affected by roughness.
    Keywords: Aerodynamics
    Type: NACA-RM-E-57J14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.
    Keywords: Aerodynamics
    Type: NACA-RM-L55L14a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-26
    Description: A comprehensive discussion of the various factors affecting the determination of stability and control derivatives from flight data is presented based on the experience of the NASA High-Speed Flight Station. Factors relating to test techniques, determination of mass characteristics, instrumentation, and methods of analysis are discussed. For most longitudinal-stability-derivative analyses simple equations utilizing period and damping have been found to be as satisfactory as more comprehensive methods. The graphical time-vector method has been the basis of lateral-derivative analysis, although simple approximate methods can be useful If applied with caution. Control effectiveness has been generally obtained by relating the peak acceleration to the rapid control input, and consideration must be given to aerodynamic contributions if reasonable accuracy is to be realized.. Because of the many factors involved In the determination of stability derivatives, It is believed that the primary stability and control derivatives are probably accurate to within 10 to 25 percent, depending upon the specific derivative. Static-stability derivatives at low angle of attack show the greatest accuracy.
    Keywords: Aerodynamics
    Type: Flight Test Panel of the Advisory Group for Aeronautical Research and Development Meeting; Oct 20, 1958 - Oct 25, 1958; Copenhagen; Denmark
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-16
    Description: A research model of an airplane with a configuration suitable for supersonic flight was tested at transonic speeds in order to establish the effects on longitudinal and lateral stability of certain changes in both wing sweep and height of the horizontal tail. Two wings of aspect ratio 3 and taper ratio 0.15, one having the quarter-chord line swept back 30 deg and the other 45 deg, were each tested with the horizontal tail of the model in a low and in a high position. One configuration was also tested with fuselage strakes. The tests were made at Mach numbers from 0.60 to 1.17 and Reynolds numbers from 1.9 x 10(exp 6) to 2.6 x 10(exp 6). The results indicated that a low horizontal-tail position (below the wing-chord plane) gave positive longitudinal stability for the model for all angles of attack used (angles of attack up to 24 deg); whereas, a higher tail position (above the wing-chord plane) resulted in a large reduction in stability at moderate angles of attack. With the higher horizontal tail, the 30 deg-swept-wing model had somewhat more stability than the 45 deg-swept-wing model at subsonic Mach numbers. With the lower tail, the 45 deg-swept-wing model had slightly more stability at all Mach numbers. The model with the 30 deg swept wing had greater directional stability with the tail in the higher rather than the lower position, but the opposite was true for the 45 deg-swept-wing model. The directional stability decreased sharply at high angles of attack; this characteristic was alleviated by the use of fuselage strakes which, however, proved to be detrimental to the longitudinal stability of the model tested.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-3-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-16
    Description: An investigation has been conducted in the Langley full-scale tunnel to determine the aerodynamic characteristics in sideslip of a large-scale 490 sweptback wing-body-tail configuration having wing leading- edge and flap-blowing boundary-layer control. The wing and tails had an aspect ratio of 3.5, a taper ratio of 0.3, and NACA 65AO06 airfoil sections parallel to the plane of symmetry. The tests were conducted over a range of angles of attack of about -5 deg to 28 deg for sideslip angles of 0 deg, -5.06 deg, -10.15 deg, and -15.18 deg. Lateral and longitudinal stability and control characteristics were obtained for6a minimized blowing rate. The Reynolds number of the tests was 5.2 x 10(exp 6), corresponding to a Mach number of 0.08. The results of the investigation showed that sideslip to angles of about -15 deg did not require, from a consideration of the longitudinal characteristics, blowing rates over the wing leading edge or flap greater than that established as minimum at zero sideslip. The optimum configuration was laterally and directionally stable through the complete lift-coefficient range including the stall; however, maximum lift for sideslip angles greater than about 50 was seriously limited by a deficiency of lateral control. Blowing over the leading edge of the retreating wing in sideslip at a rate greater than that established as minimum at zero sideslip was ineffective in improving the lateral control characteristics. The optimum configuration at zero sideslip had no hysteresis of the aerodynamic parameters upon recovery from stall.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-11-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...