ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (95)
  • Spacecraft Propulsion and Power  (95)
  • 2015-2019  (95)
  • 1980-1984
  • 1960-1964
  • 1925-1929
  • 2017  (95)
  • 1926
  • 1
    Publication Date: 2019-05-18
    Description: Thermionic energy conversion (TEC) is the direct conversion of heat into electricity by the mechanism of thermionic emission, the spontaneous ejection of hot electrons from a surface. Although the physical mechanism has been known for over a century, it has yet to be consistently realized in a manner practical for large-scale deployment. This perspective article provides an assessment of the potential of TEC systems for space and terrestrial applications in the twenty-first century, overviewing recent advances in the field and identifying key research challenges. Recent developments as well as persisting research needs in materials, device design, fundamental understanding, and testing and validation are discussed.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-E-DAA-TN48527 , Frontiers in Mechanical Engineering (e-ISSN 2297-3079); 3; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Hollow dispenser cathode inserts are a critical element of electric propulsion systems, and should therefore be well understood during long term operation to ensure reliable system performance. This work destructively investigated cathode inserts from the NEXT long-duration test which demonstrated 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The characterization methods used include scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Microscopy analysis has been performed on fractured surfaces, emission surfaces, and metallographically polished cross-sections of post-test inserts and unused inserts. Impregnate distribution, etch region thickness, impregnate chemical content, emission surface topography, and emission surface phase identification are the primary factors investigated.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2017-219713 , IEPC-2017-304 , E-19441 , GRC-E-DAA-TN48807
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: The Attitude Control System (ACS) is developed for a Near Earth Asteroid (NEA) Scout mission using a solar sail. The NEA-Scout spacecraft is a 6U cubesat with an 86 square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2018. The spacecraft will rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The solar sail spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Adjustable Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. Because the sail is a flexible structure, care must be taken in designing a control system to avoid exciting the structural modes of the sail. This is especially true for the RCS, which uses pulse actuated, cold-gas jets to control the spacecraft's attitude. While the reaction wheels can be commanded smoothly, the RCS jets are simple on-off actuators. Long duration firing of the RCS jets - firings greater than one second - can be thought of as step inputs to the spacecraft's torque. On the other hand, short duration firings - pulses on the order of 0.1 seconds - can be thought of as impulses in the spacecraft's torque. These types of inputs will excite the structural modes of the spacecraft, causing the sail to oscillate. Sail oscillations are undesirable for many reasons. Mainly, these oscillations will feed into the spacecraft attitude sensors and pointing accuracy, and long term oscillations may be undesirable over the lifetime of the solar sail. In order to limit the sail oscillations, an RCS control scheme is being developed to minimize sail excitations. Specifically, an input shaping scheme similar to the method described in Reference 1 will be employed. A detailed description of the RCS control scheme will be provided with particular emphasis on flexible body excitation. The RCS performance will be provided to show that sail and boom excitation is minimized.
    Keywords: Spacecraft Propulsion and Power
    Type: M16-5500 , International Symposium on Solar Sailing (ISSS 2017); Jan 17, 2017 - Jan 20, 2017; Kyoto; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micoN- to mN-level thrust and microNs-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with the implementation of hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN53330 , Journal of Propulsion and Power (ISSN 0748-4658) (e-ISSN 1533-3876); 33; 3; 539-555
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A unique single degree-of-freedom approximation technique has been developed to enable rapid application of a temporally-defined multi-spectral semi-narrow-band loading for generation of realistic stress/cycle values compared to a resonant analysis. The technique uses the harmonic analysis at resonance of a high-fidelity finite element model to produce a transfer function, which is then used to calibrate the response of the SDOF model. A standard numerical ordinary differential equation solver is then used to obtain the temporal response, and its histogram is used in a fatigue/fracture model. This technique is related to other SDOF methods used widely in industry, such as Miles' Equation and the Shock Response Spectra, but it is unique in that it produces a realistic time history of the response. The most obvious error in the process, which is the effect of closely-spaced modes, was also assessed using the parallel application of several SDOF models, and the error is shown to be small. The application of this unique and tractable reduced-order methodology has enabled the SLS program to avoid substantial cost and schedule penalties if a redesign or change of material were required. It has also enabled quick analysis of a number of other structures undergoing the same or similar excitation fields, and quick assessment when the excitation and structural configuration has been altered due to design changes in the system.
    Keywords: Spacecraft Propulsion and Power
    Type: M18-6723 , SciTech Forum; Jan 09, 2017 - Jan 13, 2017; Grapevine, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The inductive pulsed plasma thruster (IPPT) is an electromagnetic plasma accelerator that has been identified in NASA roadmaps as an enabling propulsion technology for some niche low-power missions and for high-power in-space propulsion needs. The IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. Thrusters of this type possess many demonstrated and potential benefits that make them worthy of continued investigation. The electrodeless nature of these thrusters eliminates the lifetime and contamination issues associated with electrode erosion in conventional electric thrusters. Also, a wider variety of propellants are accessible when compatibility with metallic electrodes in no longer an issue. IPPTs have been successfully operated using propellants like ammonia, hydrazine, and CO2, and there is no fundamental reason why they would not operate on other in situ propellants like H2O. It is well-known that pulsed accelerators can maintain constant specific impulse (I(sub sp)) and thrust efficiency (eta(sub t)) over a wide range of input power levels by adjusting the pulse rate to hold the discharge energy per pulse constant. It has also been demonstrated that an inductive pulsed plasma thruster can operate in a regime where eta(sub t) is relatively constant over a wide range of I(sub sp) values (3000-8000 s). Finally, thrusters in this class have operated in single-pulse mode at high energy per pulse, and by increasing the pulse rate they offer the potential to process very high levels of power using a single thruster. There has been significant previous research on IPPTs designed around a planar-coil (flat-plate) geometry. The most notable of these was the Pulsed Inductive Thruster (PIT), with the PIT MkV presently representing the state-of- the-art in pulsed high-power IPPT technological development. In this paper, we focus on two planar-geometry devices that operate at significantly different power levels. Most work performed at NASA-Marshall Space Flight Center (MSFC) has, to date, focused on lower power thruster operation (approx. = 10s to 100s of J/pulse, up to 2-2.5 kW average power throughput) and previously described. The most recent work aimed to assemble a device that could be tested in cyclic mode on a thrust-stand, and which could augment the existing data set for IPPTs. In addition, the thruster was designed to serve as a test-bed for solid state switching circuitry and pulsed gas valves, with the modular design of the device allowing for variation in or upgrades to test configuration. Recently, MSFC obtained on loan from the Georgia Institute of Technology (Atlanta, GA) the PIT MkVI, successor to the PIT MkV. The MkV and MkVI are similar in design with much of the hardware from the former, specifically the capacitors and spark-gap switches, being reused in the latter. The coil is similar in geometry but has bent copper rods used in the latest iteration in place of the Litz wire windings found in the MkV. The MkVI master switch for the spark gaps is located in the vacuum chamber contained within a sealed, pressurized vessel fastened to the back of the thruster. This is different from the MkV where many capacitor charging lines and spark gap-triggering delay lines ran to the thruster from a master trigger located outside the vacuum chamber. The MkVI was damaged during testing soon after its fabrication was completed. The thruster arrived at MSFC still-damaged and mostly disassembled into many individual pieces. The device has been repaired, with a few additional design changes implemented after discussions with the late Prof. Lovberg regarding the initial testing results and issues encountered. In the present work, we present results from testing of both the small IPPT and the larger MkVI thruster. The smaller device (Fig. 1) is tested on a thrust stand on multiple gases to demonstrate its capability to operate in a repetition-rate mode and serve as a IPPT technology-development testbed. The larger MkVI (Fig. 2) is operated for the first time in its newly reconstituted state, demonstrating full-power pulsed operation and, for the first time, repetition-rate operation of a high-power IPPT. The additional upgrades required for synchronous operation of all the pulsed systems in single-pulse and repetition-rate mode are described in detail.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5796 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The discovery of 2016 HO3 and its classification as a quasi-satellite has sparked a stronger interest towards Near Earth Asteroids (NEAs). This work presents low-thrust low-power mission designs to various NEAs using an EELV Secondary Payload Adapter (ESPA). A global trajectory optimizer (EMTG) was used to generate mission solutions to a select 13 NEAs using a 200 watt BHT-200 thruster as a proof of concept. The missions presented here demonstrate that a low-cost electric propulsion ESPA mission to NEAs is a feasible concept for many asteroids.
    Keywords: Spacecraft Propulsion and Power
    Type: GSFC-E-DAA-TN46575 , 2017 International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN45147 , Annual AIAA/USU Conference on Small Satellites; Aug 05, 2017 - Aug 10, 2017; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TP-2017-219555 , SEAT-MTP-FINAL-B , ARC-E-DAA-TN41572
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A 1722-hour wear test campaign of NASAs 12.5 kilowatt Hall Effect Rocket with Magnetic Shielding was completed. This wear test campaign, completed in 2016, was divided into four segments including an electrical configuration characterization test, two short duration tests, and one long wear test. During the electrical configuration characterization test, the plasma plume was examined to provide data to support the down select of the electrical configuration for further testing. During the long wear tests, the plasma plume was periodically examined for indications of changes in thruster behavior. Examination of the plasma plume data from the electrical configuration characterization test revealed a correlation between the plume properties and the presence of a conduction path through the front poles. Examination of the long wear test plasma plume data revealed that the plume characteristics remained unchanged during testing to within the measurement uncertainty.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-307 , GRC-E-DAA-TN45412 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN43840 , 2017 AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. As part of the efforts in Lander Technologies, NASA Marshall Space Flight Center (MSFC) is developing liquid oxygen (LOX) and liquid methane (LCH4) engine technology to share with the Lunar CATALYST partners. Liquid oxygen and liquid methane propellants are attractive owing to their relatively high specific impulse for chemical propulsion systems, modest storage requirements, and adaptability to NASA's Journey to Mars plans. Methane has also been viewed as a possible propellant choice for lunar missions, owing to the performance benefits and as a technology development stepping stone to Martian missions. However, in the development of methane propulsion, methane ignition has historically been viewed as a high risk area in the development of such an engine. A great deal of work has been conducted in the past decade devoted to risk reduction in LOX/CH4 ignition. This paper will review and summarize the history and results of LOX/CH4 ignition programs conducted at NASA. More recently, a NASA-developed Augmented Spark Impinging (ASI) igniter body, which utilizes a conventional spark exciter system, is being tested with LOX/CH4 to help support internal and commercial engine development programs, such as those in Lunar CATALYST. One challenge with spark exciter systems, especially at altitude conditions, is the ignition lead that transmits the high voltage pulse from the exciter to the spark igniter (spark plug). The ignition lead can be prone to corona discharge, reducing the energy delivered by the spark and potentially causing non-ignition events. For the current work, a commercial compact exciter system, which eliminates this high voltage cabling, was tested at altitude conditions. A modified, conventional exciter system with an improved ignition lead was also recently tested at altitude conditions. This test program demonstrated the capability of these exciter systems to operate at altitude. While more extensive testing may be required, these systems or similar ones may be used for future NASA and commercial engine programs.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN43341 , AIAA Propulsion and Energy Forum 2017; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: To satisfy the Nuclear Cryogenic Propulsion Stage (NCPS) testing milestone, a graphite composite fuel element using a uranium simulant was received from the Oakridge National Lab and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) at various operating conditions. The nominal operating conditions required to satisfy the milestone consisted of running the fuel element for a few minutes at a temperature of at least 2000 K with flowing hydrogen. This milestone test was successfully accomplished without incident.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5774 , 2017 AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in order to advance the state of the practice. The full participation of the entire U.S. rocket propulsion industrial base is invited and expected at this opportune moment in the continuing advancement of spaceflight technology.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6082 , 2017 AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). Last year NTREES was successfully used to satisfy a testing milestone for the Nuclear Cryogenic Propulsion Stage (NCPS) project and met or exceeded all required objectives.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6107 , 2017 AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2017-4670 , M17-6113 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6123 , AIAA Propulsion and Energy Forum 2017; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6132 , AIAA Propulsion and Energy Forum 2017; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Advanced robotic and human missions to Mars require landed masses well in excess of current capabilities. One approach to safely land these large payloads on the Martian surface is to extend the propulsive capability currently required during subsonic descent to supersonic initiation velocities. However, until recently, no rocket engine had ever been fired into an opposing supersonic freestream. In September 2013, SpaceX performed the first supersonic retropropulsion (SRP) maneuver to decelerate the entry of the first stage of their Falcon 9 rocket. Since that flight, SpaceX has continued to perform SRP for the reentry of their vehicle first stage, having completed multiple SRP events in Mars-relevant conditions in July 2017. In FY 2014, NASA and SpaceX formed a three-year public-private partnership centered upon SRP data analysis. These activities focused on flight reconstruction, CFD analysis, a visual and infrared imagery campaign, and Mars EDL design analysis. This paper provides an overview of these activities undertaken to advance the technology readiness of Mars SRP.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-40423 , AIAA Space 2017 Conference; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: NASA's Evolutionary Xenon Thruster (NEXT) is a 7-kW class gridded ion thruster-based propulsion system that was initially developed from 2002 to 2012 under NASAs In-Space Propulsion Technology Program to meet future science mission requirements. In 2015, a contract was awarded to Aerojet Rocketdyne, with subcontractor ZIN Technologies, to design, build and test two NEXT flight thrusters and two power processing units that would be available for use on future NASA science missions. Because an additional goal of this contract is to take steps towards offering NEXT as a commercialized system, it is called the NEXT-Commercial project, or NEXT-C. This paper reviews the capabilities of the NEXT-C system, status of the NEXT-C project, and the forward plan to build, test, and deliver flight hardware in support of future NASA and commercial applications. It also briefly addresses some of the potential applications that could utilize the hardware developed and built by the project.
    Keywords: Spacecraft Propulsion and Power
    Type: IAC-17.C4.4.3 , GRC-E-DAA-TN46431 , International Astronautical Congress; Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: A 1722-hr wear test campaign of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding was completed. This wear test campaign, completed in 2016, was divided into four segments including an electrical configuration characterization test, two short duration tests, and one long wear test. During the electrical configuration characterization test, the plasma plume was examined to provide data to support the down select of the electrical configuration for further testing. During the long wear tests, the plasma plume was periodically examined for indications of changes in thruster behavior. Examination of the plasma plume data from the electrical configuration characterization test revealed a correlation between the plume properties and the presence of a conduction path through the front poles. Examination of the long wear test plasma plume data revealed that the plume characteristics remained unchanged during testing to within the measurement uncertainty.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2017-219726 , IEPC-2017-307 , E-19453 , GRC-E-DAA-TN48797 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry-operated, privately financed venture, with NASA as its initial customer, might provide a possible blueprint for future development and operation With industry interested in developing cislunar space and commerce, and competitive forces at work, the timeline for developing this capability could well be accelerated, quicker than any of us can imagine, and just the beginning of things to come.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2017-5272 , GRC-E-DAA-TN46402 , American Institute of Aeronautics and Astronautics (AIAA) Space Forum and Exposition - Space 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration continues to develop and refine various transportation options to successfully field a human Mars campaign. One of these transportation options is the Hybrid Transportation System which utilizes both solar electric propulsion and chemical propulsion. The Hybrid propulsion system utilizes chemical propulsion to perform high thrust maneuvers, where the delta-V is most optimal when ap- plied to save time and to leverage the Oberth effect. It then utilizes solar electric propulsion to augment the chemical burns throughout the interplanetary trajectory. This eliminates the need for the development of two separate vehicles for crew and cargo missions. Previous studies considered single point designs of the architecture, with fixed payload mass and propulsion system performance parameters. As the architecture matures, it is inevitable that the payload mass and the performance of the propulsion system will change. It is desirable to understand how these changes will impact the in-space transportation system's mass and power requirements. This study presents an in-depth sensitivity analysis of the Hybrid crew transportation system to payload mass growth and solar electric propulsion performance. This analysis is used to identify the breakpoints of the current architecture and to inform future architecture and campaign design decisions.
    Keywords: Spacecraft Propulsion and Power
    Type: NF1676L-26515 , AIAA SPACE 2017 Conference; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-40336 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6092 , National Space & Missile Materials Symposium / Commercial and Government Responsive Access to Space Technology Exchange; Jun 26, 2017 - Jun 29, 2017; Indian Wells, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: A hybrid propulsion system is being considered for a potential Mars Ascent Vehicle (MAV) based on its low temperature capability, ability to restart and high performance. The hybrids ability to survive in low and variable temperatures reduces power requirements and therefore system mass. Its ability to restart enables a Single Stage to Orbit (SSTO) design, minimizing system complexity. The hybrids high-performance (approximately 314 s Isp (I (sub sp)) (specific impulse in seconds) leads to a low total Gross Lift Off Mass (GLOM). These advantages set the hybrid design above the alternatives in the system studies completed at JPL (Jet Propulsion Laboratory). However, this solution has the lowest Technology Readiness Level (TRL) of the propulsion options. Therefore, a technology development effort has been undertaken to raise the TRL of the hybrid option and potentially enable its infusion into a future MAV or other in-space application. The culmination of this technology development is a flight demonstration, which is currently in the planning phases for launch in the early 2020s.
    Keywords: Spacecraft Propulsion and Power
    Type: JPL-CL-CL#17-2811 , AIAA Propulsion and Energy Forum and Exposition 2017; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: Non-intrusive optical diagnostic imaging was used for the first time to visualize multi-rocket plume-induced reacting base flows to simulate launch vehicle ascent from sea-level to 250,000 ft. In particular, planar laser induced florescence (PLIF) and infrared (IR) imaging were implemented for the first time to visualize and quantify base flow and rocket plume environments from sub-scale, short-duration propulsion models within a shock tunnel facility. This report discusses the successful imaging diagnostic methods for capturing base flow features and dynamics as a function of altitude. Important base flow and plume features were captured with PLIF and IR diagnostics to develop a conceptual base flow physics model. This imaging data specifically provides insight into the Space Launch System vehicle core-stage and Exploration Upper Stage base environments and further validates short-duration ground test techniques and computational modeling.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6080 , Aviation Conference (2017); Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: A number of valuable conclusions can be drawn from this study. First, knockdown factors for a specific fluid are not constant but instead are dependent on the mode shape, although the largest this variability gets is about 10% for LOX, the densest fluid. The factors decrease the most for lower frequency shapes and less for higher ones. It follows, therefore, that mode number mismatch between air and fluid operation becomes not only possible, but common, as a knockdown factor for a particular mode shape may be higher than for another mode shape. Since this is a function of added mass, the mismatch is more prevalent for higher density fluids, but it initiates even for very low density ones. Another important conclusion reached is that it appears that the basic mode shapes of a structure do not change if it is fully symmetric, which includes its geometry and boundary conditions. There is some indication of small changes in the relative magnitudes within the mode shape. This conclusion is evident in the results from the cantilever rectangular plate and the inducer, which are not symmetric, and the fixed-fixed plate and the annular disk, which are. For non-symmetric structures, though, the mode shapes almost universally change for dense fluids, as shown by the very low MAC calculations. For the inducer in particular, the changes follow a trend of reduced parabolic and sine wavelengths with increasing density. It is critical to recognize the change in mode shape for several reasons. First, model updating with modal test becomes problematic if the shapes change. Second, design to avoid resonance is highly critical on the mode shape for modes other than the primary ones, as resonance is only a factor when the excitation shape matches the mode shape. Finally, application of the modal superposition method of forced response analysis is dependent on the use of accurate mode shapes. A more-refined assessment of the "knockdown" factor values and ranges than any previously reported in the literature for a realistic engineering structure is also presented in this paper. This data is of tremendous benefit for preliminary analysis and design, where a quick estimate is necessary. These results are important not just for rocket engine turbomachinery, but for water pumps and turbines, propellers, and any other structure operating in a heavy fluid with dynamic excitation. The clear avenue for future work for this endeavor is to expand the analytical techniques discussed in the literature to develop analytical expressions and justification for the mode shape changes and associated frequency knockdowns. These expressions must be able to accurately predict the functional relationship to the shapes, which will enable accurate tracing of the mode number from vacuum analysis (or testing in air) to analysis and operation in the intended fluid environment.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5696 , ASME Turbo Expo 2017; Jun 26, 2017 - Jun 30, 2017; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN44353 , AIAA Propulsion and Energy Forum: International Energy Conversion Engineering Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-24
    Description: As one of just a few bodies identified in the solar system with a liquid ocean, Europa has become a top priority in the search for life outside of Earth. However, cost estimates for exploring Europa have been prohibitively expensive, with estimates of a NASA Flagship class orbiter and lander approaching $5 billion. ExoTerra's NIMPH offers an affordable solution that can not only land, but return a sample from the surface to Earth. NIMPH combines solar electric propulsion (SEP) technologies being developed for the asteroid redirect mission and microsatellite electronics to reduce the cost of a full sample return mission below $500 million. A key to achieving this order-of-magnitude cost reduction is minimizing the initial mass of the system. The cost of any mission is directly proportional to its mass. By keeping the mission within the constraints of an Atlas V 551 launch vehicle versus an SLS, we can significantly reduce launch costs. To achieve this we reduce the landed mass of the sample return lander, which is the largest multiplier of mission mass, and shrink propellant mass through high efficiency SEP and gravity assists. The NIMPH projects first step in reducing landed mass focuses on development of a micro-In Situ Resource Utilization (micro-ISRU) system. ISRU allows us to minimize landed mass of a sample return mission by converting local ice into propellants. The project reduces the ISRU system to a CubeSat-scale package that weighs just 1.74 kg and consumes just 242 W of power. We estimate that use of this ISRU vs. an identical micro-lander without ISRU reduces fuel mass by 45 kg. As the dry mass of the lander grows for larger missions, these savings scale exponentially. Taking full advantage of the micro-ISRU system requires the development of a micro-liquid oxygen-liquid hydrogen engine. The micro-liquid oxygen-liquid hydrogen engine is tailored for the mission by scaling it to match the scale of the micro-lander and the low gravity of the target moon. We also tailor the engine for a near stoichiometric mixture ratio of 7.5. Most high-performance liquid oxygen-liquid hydrogen engines inject extra liquid hydrogen to lower the average molecular weight of the exhaust, which improves specific impulse. However, this extra liquid hydroden requires additional power and processing time on the surface for the ISRU to create. This increases mission cost, and on missions within high radiation environments such as Europa, increases radiation shielding mass. The resulting engine weighs just 1.36 kg and produces 71.5 newton of thrust at 364 s specific impulse. Finally, the mission reduces landed mass by taking advantage of the SEP modules solar power to beam energy to the surface using a collimated laser. This allows us to replace an 45 kg MMRTG with a 2.5 kg resonant array. By using the combination of ISRU, a liquid oxygen-liquid hydrogen engine, and beamed power, we reduce the initial mass of the lander to just 51.5 kg. When combined with an SEP module to ferry the lander to Europa the initial mission mass is just 6397 kg - low enough to be placed on an Earth escape trajectory using an Atlas V 551 launch vehicle. By comparison, we estimate a duplicate lander using an MMRTG and semi-storable propellants such as liquid oxygen-methane would result in an order of magnitude increase in initial lander mass to 445 kg. Attempting to perform the trajectory with a 450 s liquid oxygen-liquid hydrogen engine would increase initial mass to approximately 135,000 kg. Using an Atlas V 1 U.S. Dollar per kg rate to Earth escape value of $27.7k per kg, just the launch savings are over $3.5 billion.
    Keywords: Spacecraft Propulsion and Power
    Type: HQ-E-DAA-TN39204
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6425 , JANNAF Joint Subcommittee Meeting Programmatic and Industrial Base Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Propulsion Systems Hazards; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Exhaust Plume and Signatures; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Combustion; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-13
    Description: NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5kW Technology Demonstration Unit-3 (TDU-3) has been the subject of extensive technology maturation in preparation for flight system development. Detailed performance, stability, and plume characterization tests of the thruster were performed at NASA GRC's Vacuum Facility 5 (VF-5). The TDU-3 thruster implements a magnetic topology that is identical to TDU-1. The TDU-3 boron nitride silica composite discharge channel material is different than the TDU-1 heritage boron nitride discharge channel material. Performance and stability characterization of the TDU-3 thruster was performed at discharge voltages between 300V and 600V and at discharge currents between 5A and 21.8A. The thruster performance and stability were assessed for varying magnetic field strength, cathode flow fractions between 5% and 9%, varying harness inductance, and for reverse magnet polarity. Performance characterization test results indicate that the TDU-3 thruster performance is in family with the TDU-1 levels. TDU-3's thrust efficiency of 65% and specific impulse of 2,800sec at 600V and 12.5kW exceed performance levels of SOA Hall thrusters. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations (discharge current peak-to-peak and root mean square magnitudes), discharge current waveform power spectral density analysis, and maps of the current-voltage-magnetic field. Stability characterization test results indicate a stability profile similar to TDU-1. Finally, comparison of the TDU-1 and TDU-3 plume profiles found that there were negligible differences in the plasma plume characteristics between the TDU with heritage boron nitride versus the boron nitride silica composite discharge channel.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-392 , GRC-E-DAA-TN46397 , International Electric Propulsion Conference (IEPC 2017); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-13
    Description: In order to reduce the cost and complexity associated with fuel injection and mixing experiments for high-speed flows, and to further enable optical access to the test section for nonintrusive diagnostics, the Enhanced Injection and Mixing Project (EIMP) utilizes an open flat plate configuration to characterize inert mixing properties of various fuel injectors for hypervelocity applications. The experiments also utilize reduced total temperature conditions to alleviate the need for hardware cooling. The use of "cold" flows and non-reacting mixtures for mixing experiments is not new, and has been extensively utilized as a screening technique for scramjet fuel injectors. The impact of reduced facility-air total temperature, and the use of inert fuel simulants, such as helium, on the mixing character of the flow has been assessed in previous numerical studies by the authors. Mixing performance was characterized for three different injectors: a strut, a ramp, and a flushwall. The present study focuses on the impact of using an open plate to approximate mixing in the duct. Toward this end, Reynolds-averaged simulations (RAS) were performed for the three fuel injectors in an open plate configuration and in a duct. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared for the two configurations. In addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also computed for the reacting simulations.
    Keywords: Spacecraft Propulsion and Power
    Type: NF1676L-27197 , Joint Army-Navy-NASA-Air Force (JANNAF) December 2017 Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Programmatic and Industrial Base (PIB) Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Exhaust Plume and Signatures (EPSS) Joint Subcommittee Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Systems Hazards (PSHS) Joint Subcommittee Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Airbreathing Propulsion (APS) Joint Subcommittee Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Combustion (CS) Joint Subcommittee Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-13
    Description: The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville with channel walls and a propellant distributor manufactured using 3D printing. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. An overview of the thruster design and transient performance measurements are presented here. Measured thrust ranged from 17.2 millinewtons to 30.4 millinewtons over a discharge power of 280 watts to 520 watts with an anode I (sub SP)(Specific Impulse) range of 870 seconds to 1450 seconds. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-119 , GRC-E-DAA-TN46543 , International Electric Propulsion Conference 2017; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-13
    Description: The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-223 , GRC-E-DAA-TN47185 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-13
    Description: Electric Sail (E-Sail) propulsion systems will enable scientific spacecraft to obtain velocities of up to 10 astronomical units per year without expending any on-board propellant. The E-Sail propulsion is created from the interaction of a spacecraft's positively charged multi-kilometer-length conductor/s with protons that are present in the naturally occurring hypersonic solar wind. The protons are deflected via natural electrostatic repulsion forces from the Debye sheath that is formed around a charged wire in space, and this deflection of protons creates thrust or propulsion in the opposite direction. It is envisioned that this E-Sail propulsion system can provide propulsion throughout the solar system and to the heliosphere and beyond. Consistent with the concept of a "sail," no propellant is needed as electrostatic repulsion interactions between the naturally occurring solar wind protons and a positively charged wire creates the propulsion. The basic principle on which the Electric Sail operates is the exchange of momentum between an "electric sail" and solar wind, which continually flows radially away from the sun at speeds ranging from 300 to 700 kilometers per second. The "sail" consists of an array of long, charged wires which extend radially outward 10 to 30 kilometers from a slowly rotating spacecraft. Momentum is transferred from the solar wind to the array through the deflection of the positively charged solar wind protons by a high voltage potential applied to the wires. The thrust generated by an E-Sail is proportional to the area of the sail, which is given by the product of the total length of the wires and the effective wire diameter. The wire is approximately 0.1 millimeters in diameter. However, the effective diameter is determined by the distance the applied electric potential penetrates into space around the wire (on the order of 10 meters at 1 astronomical unit). As a result, the effective area over which protons are repelled is proportional to the size of the region of electric potential, or the plasma sheath region, surround the wires of the array. A large sheath is, therefore, beneficial to the generation of thrust. However, this benefit must be balanced with the additional fact that electron collection is proportional to sheath size. Electrons collected by the wire array must be injected back into the solar wind in order to maintain the potential on the wires - which requires power. The primary power requirement for E-Sail operation is, therefore, also proportional to sheath size.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5802 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-13
    Description: Space Technology 7 Disturbance Reduction System (ST7-DRS) is a NASA technology demonstration payload as part of the ESA LISA Pathfinder (LPF) mission, which launched on December 3, 2015. The ST7-DRS payload includes colloid microthrusters as part of a drag-free dynamic control system (DCS) hosted on an integrated avionics unit (IAU) with spacecraft attitude and test mass position provided by the LPF spacecraft computer and the highly sensitive gravitational reference sensor (GRS) as part of the LISA Technology Package (LTP). The objective of the DRS was to validate two technologies: colloid micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free flight control. The CMNT were developed by Busek Co., Inc., in a partnership with NASA Jet Propulsion Laboratory (JPL), and the DCS algorithms and flight software were developed at NASA Goddard Space Flight Center (GSFC). ST7-DRS demonstrated drag-free operation with 10nmHz level precision spacecraft position control along the primary axis of the LTP using eight CMNTs that provided 5-30 N each with 0.1 N precision. The DCS and CMNTs performed as required and as expected from ground test results, meeting all Level 1 requirements based on on-orbit data and analysis. DRS microthrusters operated for 2400 hours in flight during commissioning activities, a 90-day experiment and the extended mission. This mission represents the first validated demonstration of electrospray thrusters in space, providing precision spacecraft control and drag-free operation in a flight environment with applications to future gravitational wave observatories like LISA.
    Keywords: Spacecraft Propulsion and Power
    Type: GSFC-E-DAA-TN47585 , International Electric Propulsion Conference (IEPC) 2017; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN46955 , NASA Innovative Advanced Concepts Symposium; Sep 25, 2017 - Sep 27, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-13
    Description: Hollow dispenser cathode inserts are a critical element of electric propulsion systems, and should therefore be well understood during long term operation to ensure reliable system performance. This work destructively investigated cathode inserts from the NEXT long-duration test which demonstrated 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The characterization methods used include scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Microscopy analysis has been performed on fractured surfaces, emission surfaces, and metallographically polished cross-sections of post-test inserts and unused inserts. Impregnate distribution, etch region thickness, impregnate chemical content, emission surface topography, and emission surface phase identification are the primary factors investigated.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-304 , GRC-E-DAA-TN45524 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-13
    Description: The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kilowatt Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate and is intended to be used as the electric propulsion system on the Power and Propulsion Element of the recently announced Deep Space Gateway. The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU) 1 and TDU-3 Hall thrusters are also included.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-028 , GRC-E-DAA-TN45530 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-13
    Description: Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-397 , GRC-E-DAA-TN45510 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-13
    Description: A series of short-duration (200 hour) wear tests were conducted with two Hall Effect Rocket with Magnetic Shielding (HERMeS) technology demonstration units (TDU). Front pole covers, cathode keeper, and discharge channel wear were characterized as a function of discharge voltage, magnetic field strength, and chamber pressure. No discharge channel erosion was observed. Inner pole cover erosion was shown to be a weak function of discharge voltage with most erosion occurring at the lowest value, 300 volts. The TDU-3 keeper electrode eroded with each operating condition, with high magnetic field yielding the greatest erosion rate. The TDU-1 keeper electrode exhibited net deposition suggesting its configuration is more consistent with meeting overall HERMeS service life requirements. Ratios of molybdenum to graphite erosion rates suggests, with high uncertainty, that the sputtering ions are originating downstream of the thruster exit plane, striking the surface with small angles of incidence.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN45507 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-13
    Description: Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for AEPS thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-537 , GRC-E-DAA-TN45504 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-13
    Description: NASA formed the Constellation Program in 2005 to achieve the objectives of maintaining American presence in low-Earth orbit, returning to the moon for purposes of establishing an outpost, and laying the foundation to explore Mars and beyond in the first half of the 21st century. The Exploration Technology Development Program (ETDP) was formulated to address the technology needs to address Constellation architecture decisions. The Propellants and Cryogenic Advanced Development (PCAD) project was tasked with risk mitigation of specific propulsion related technologies to support ETDP. Propulsion systems were identified as critical technologies owing to the high gear-ratio of lunar Mars landers Cryogenic propellants offer performance advantage over storables (NTOMMH) Mass savings translate to greater payload capacity In-situ production of propellant an attractive feature; methane and oxygen identified as possible Martian in-situ propellants New technologies were required to meet more difficult missions High performance LOX/LH2 deep throttle descent engines High performance LOX/LCH4 ascent main and reaction control system (RCS) engines The PCAD project sought to provide those technologies through Reliable ignition pulse RCS Fast start High efficiency engines Stable deep throttling.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN40374 , JANNAF In-Space Chemical Propulsion Technical Interchange (TIM) Meeting; Apr 04, 2017 - Apr 06, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-13
    Description: Magneto-inertial fusion concepts often use a pulsed high current discharge in a cylindrical coil to generate a rapidly changing axial magnetic field, inducing a counter-propagating current in the conducting outer liner of a centrally aligned cylindrical fusion target. The Lorentz force arising from the axial field and azimuthal liner current rapidly implodes the target radially inward, compressing the fuel to reach fusion conditions.
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN43016 , 2017 NIAC Orientation Meeting; Jun 06, 2017 - Jun 08, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN42920 , 2017 NIAC Orientation Meeting; Jun 06, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-13
    Description: An all-new sounding rocket was designed at NASA's Marshall Space Flight Center that featured an aft finocyl, aluminized solid propellant grain and silica-filled ethylene-propylene-diene monomer (SFEPDM) internal insulation. Upon the initial static firing of the first of this new design, the solid rocket motor (SRM) case failed thermally just upstream of the aft closure early in the burn time. Subsequent fluid modeling indicated that the high-velocity combustion-product jets emanating from the fin-slots in the propellant grain were likely inducing a strongly swirling flow, thus substantially increasing the severity of the convective environment on the exposed portion of the SFEPDM insulation in this region. The aft portion of the fin-slots in another of the motors were filled with propellant to eliminate the possibility of both direct jet impingement on the exposed SFEPDM and the appearance of strongly swirling flow in the aft region of the motor. When static-fired, this motor's case still failed in the same axial location, and, though somewhat later than for the first static firing, still in less than 1/3rd of the desired burn duration. These results indicate that the extreme material decomposition rates of the SFEPDM in this application are not due to gas-phase convection or shear but rather to interactions with burning aluminum or alumina slag. Further comparisons with between SFEPDM performance in this design and that in other hot-fire tests provide insight into the mechanisms of SFEPDM decomposition in SRM aft domes that can guide the upcoming redesign effort, as well as other future SRM designs. These data also highlight the current limitations of modeling elastomeric insulators solely with diffusion-controlled, gas-phase thermochemistry in SRM regions with significant viscous shear and/or condense-phase impingement or flow.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5819 , JANNAF Rocket Nozzle Technology (RNTS); May 22, 2017 - May 25, 2017; Kansas City, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-13
    Description: Analytical Mechanics Associates (AMA), in cooperation with NASA Marshall Space Flight Center's (MSFC's) Spacecraft Propulsion Systems Branch, developed and tested a novel propellant tank design that employs an internal piston pressurized with an inert gas to expel propellant to thrusters. During the course of this activity, AMA designed, oversaw fabrication, and delivered to MSFC for testing, a piston propellant tank sized for 3U or larger CubeSats. MSFC conducted liquid expulsion testing using ethylene glycol as a referee fluid to map the tank's performance at different pressures and piston positions. Following the expulsion test campaign, the tank is planned to be integrated into a propulsion system test bed for hot fire tests with a 100mN monopropellant thruster to evaluate the tank's influence on thruster performance when operated in a flight like manner. Described in this paper is a comprehensive summary of how the tanks were designed, built, and tested. The fundamental knowledge gained through the fabrication and testing of these tanks gives evidence that the piston tank design may be scalable to meet the requirements and constraints of other small satellites.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5826 , JANNAF Propulsion Meeting (JPM); May 22, 2017 - May 25, 2017; Kansas City, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5845 , Nuclear Emerging Technologies in Space Conference; Feb 27, 2017 - Mar 02, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5824 , Huntsville Comic - Con 2017; Feb 10, 2017 - Feb 11, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-13
    Description: NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5752 , Planetary Science Vision 2050 Workshop; Feb 27, 2017 - Mar 01, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-13
    Description: Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail for future scientific missions of exploration. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two year follow-on Phase II NIAC award. This paper documents the findings from this three year investigation. An Electric sail propulsion system is a propellant-less and extremely fast propulsion system that takes advantage of the ions that are present in the solar wind to provide very rapid transit speeds whether to deep space or to the inner solar system. Scientific spacecraft could arrive to Pluto in ~5 years, to the boundary of the solar system in ten to twelve years vs. thirty five plus years it took the Voyager spacecraft. The team's recent focused activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers/tethers to enable successful deployment of multiple, multi km length bare tethers, 3) Determining the different missions that can be captured from this revolutionary propulsion system 4) Conceptual designs of spacecraft to reach various destinations whether to the edge of the solar system, or as Heliophysics sentinels around the sun, or to trips to examine a multitude of asteroids These above activities, once demonstrated analytically, will require a technology demonstration mission (~2021 to 2023) to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) could be given the go-ahead. The proposed demonstration mission will require that a small spacecraft must first travel to cis-lunar space as the Electric Sail must be outside of Earth's Magnetic fields to produce thrust. The paper will outline what was done over the past three years from performing various plasma chamber tests to obtain data for the PIC model development, investigation of tether material trades, and conceptual designs of proposed spacecraft.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6054 , Applied Space Environments Conference (2017); May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6061 , 2017 JANNAF/WSE Energetics Research Group Conference; May 22, 2017 - May 26, 2017; Kansas City, MO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-13
    Description: Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure-density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK does not provide the thermodynamic properties of Monomethylhydrazine (MMH). This paper will illustrate the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight. Rigorous code validation of this approach will be done and reported at a future date.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5832 , In-Space Chemical Propulsion Technical Interchange Meeting; Apr 04, 2017 - Apr 06, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN45971 , Thermal and Fluid Analysis Workshop (TFAWS); Aug 21, 2017 - Aug 25, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission (SEP TDM), in conjunction with PC Krause and Associates, has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power capability to 150 kW is an intermediate step to the anticipated power requirements for Mars and other deep space applications. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents four versions of a 150 kW architecture, simulation results, and a discussion of their merits.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN43147 , AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: The Advanced Electric Propulsion System (AEPS) program will develop a flight 13kW Hall thruster propulsion system based on NASA's HERMeS thruster. The AEPS system includes the Hall Thruster, the Power Processing Unit (PPU) and the Xenon Flow Controller (XFC). These three primary components must operate together to ensure that the system generates the required combinations of thrust and specific impulse at the required system efficiencies for the desired system lifetime. At the highest level, the AEPS system will be integrated into the spacecraft and will receive power, propellant, and commands from the spacecraft. Power and propellant flow rates will be determined by the throttle set points commanded by the spacecraft. Within the system, the major control loop is between the mass flow rate and thruster current, with time-dependencies required to handle all expected transients, and additional, much slower interactions between the thruster and cathode temperatures, flow controller and PPU. The internal system interactions generally occur on shorter timescales than the spacecraft interactions, though certain failure modes may require rapid responses from the spacecraft. The AEPS system performance model is designed to account for all these interactions in a way that allows evaluation of the sensitivity of the system to expected changes over the planned mission as well as to assess the impacts of normal component and assembly variability during the production phase of the program. This effort describes the plan for the system performance model development, correlation to NASA test data, and how the model will be used to evaluate the critical internal and external interactions. The results will ensure the component requirements do not unnecessarily drive the system cost or overly constrain the development program. Finally, the model will be available to quickly troubleshoot any future unforeseen development challenges.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN43531 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: The Triton Hopper is a concept for a vehicle to explore the surface of Neptunes moon Triton, which uses a radioisotope heated rocket engine and in-situ propellant acquisition. The initial Triton Hopper conceptual design stores pressurized Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through a thermal block during engine operation, as opposed to storing gas at a high temperature.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN38020 , AIAA Science and Technology Forum and Expo 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: A liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under simulated altitude and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA) and was initially developed under Project Morpheus. Composed of two 28 lbf-thrust and two 7 lbf-thrust engines, the RCS is fed in parallel with the ICPTA main engine from four propellant tanks. 40 tests consisting of 1,010 individual thruster pulses were performed across 6 different test days. Major test objectives were focused on system dynamics, and included characterization of fluid transients, manifold priming, manifold thermal conditioning, thermodynamic vent system (TVS) performance, and main engine/RCS interaction. Peak surge pressures from valve opening and closing events were examined. It was determined that these events were impacted significantly by vapor cavity formation and collapse. In most cases the valve opening transient was more severe than the valve closing. Under thermal vacuum conditions it was shown that TVS operation is unnecessary to maintain liquid conditions at the thruster inlets. However, under higher heat leak environments the RCS can still be operated in a self-conditioning mode without overboard TVS venting, contingent upon the engines managing a range of potentially severe thermal transients. Lastly, during testing under cold thermal conditions the engines experienced significant ignition problems. Only after warming the thruster bodies with a gaseous nitrogen purge to an intermediate temperature was successful ignition demonstrated.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-39751 , 2017 AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN43609 , Foundations of Interstellar Studies Workshop; Jun 13, 2017 - Jun 15, 2017; Brooklyn, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: There is great interest in examining the outer planets of our solar system and Heliopause region (edge of Solar System) and beyond regions of interstellar space by both the Planetary and Heliophysics communities. These needs are well docu-mented in the recent National Academy of Sciences Decadal Surveys. There is significant interest in developing revolutionary propulsion techniques that will enable such Heliopause scientific missions to be completed within 10 to15 years of the launch date. One such enabling propulsion technique commonly known as Electric Sail (E-Sail) propulsion employs positively charged bare wire tethers that extend radially outward from a rotating spacecraft spinning at a rate of one revolution per hour. Around the positively charged bare-wire tethers, a Debye Sheath is created once positive voltage is applied. This sheath stands off of the bare wire tether at a sheath diameter that is proportional to the voltage in the wire coupled with the flux density of solar wind ions within the solar system (or the location of spacecraft in the solar system. The protons that are expended from the sun (solar wind) at 400 to 800 km/sec are electrostatically repelled away from these positively charged Debye sheaths and propulsive thrust is produced via the resulting momentum transfer. The amount of thrust produced is directly proportional to the total wire length. The Marshall Space Flight Center (MSFC) Electric Sail team is currently funded via a two year Phase II NASA Innovative Advanced Concepts (NIAC) awarded in July 2015. The team's current activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers and tethers to enable successful de-ployment of multiple, multi km length bare tethers, 3) Controllability of the space-craft via a voltage bias to steer itself through the solar system to destinations of discovery. These activities once demonstrated analytically, will require a technology demonstration mission (TDM) around the year2020 to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) mission could be initiated. A notional TDM spacecraft that meets the requirements of such a mission will be showcased in this paper.
    Keywords: Spacecraft Propulsion and Power
    Type: AAS 17-142 , M17-5804 , Annual AAS Guidance & Control Conference; Feb 03, 2017 - Feb 08, 2017; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-38592 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Planetary science cubesats are being built. Insight (2018) will carry 2 cubesats to provide communication links to Mars. EM-1 (2019) will carry 13 cubesat-class missions to further smallsat science and exploration capabilities. Planetary science cubesats have more in common with large planetary science missions than LEO cubesats- need to work closely with people who have deep-space mission experience
    Keywords: Spacecraft Propulsion and Power
    Type: GSFC-E-DAA-TN43631 , Annual Summer Skills Series; Jun 15, 2017; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Human exploration architecture studies have identified liquid oxygen (LOX)Methane (LCH4) as a strong candidate for both interplanetary and descent ascent propulsion solutions. Significant research efforts into methane propulsion have been conducted for over 50 years, ranging from fundamental combustion mixing efforts to rocket chamber and system level demonstrations. Over the past 15 years NASA and its partners have built upon these early activities that have demonstrated practical components and sub-systems needed to field future methane space transportation elements. These advanced development efforts have formed a foundation of LOXLCH4 propulsion knowledge that has significantly reduced the development risks of future methane based space transportation elements for human exploration beyond earth orbit. As a bipropellant propulsion system, LOXLCH4 has some favorable characteristics for long life and reusability, which are critical to lunar and Mars missions. Non-toxic, non-corrosive, self-venting, and simple to purge. No extensive decontamination process required as with toxic propellants. High vapor pressure provides for excellent vacuum ignition characteristics. Performance is better than current earth storable propellants for human scale spacecraft. Provides the capability for future Mars exploration missions to use propellants that are produced in-situ on Mars Liquid Methane is thermally similar to O2 as a cryogenic propellant, 90,111 K (LO2, LCH4 respectively) instead of the 23 K of LH2. Allows for common components and thus providing cost savings as compared to liquid hydrogen (LH2). Due to liquid methane having a 6x higher density than hydrogen, it can be stored in much smaller volumes. Cryogenic storage aspect of these propellants needs to be addressed. Passive techniques using shielding and orientations to deep space Refrigeration may be required to maintain both oxygen and methane in liquid forms
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN40702 , Southwest Emerging Technology Symposium (SETS) 2017; Apr 01, 2017; El Paso, Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN41207 , In Space Chemical Propulsion Technical Interchange Meeting (TIM); Apr 06, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: The Annular Ion Engine concept represents an evolutionary development in gridded ion thruster technology with the potential for delivering revolutionary capabilities.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN31928 , Space Tech Conference; May 23, 2017 - May 25, 2017; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5782 , International Symposium on Solar Sailing (ISSS 2017); Jan 17, 2017 - Jan 20, 2017; Kyoto; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5793 , International Symposium on Solar Sailing (ISSS 2017); Jan 17, 2017 - Jan 20, 2017; Kyoto; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-12
    Description: The thermal and venting transient experienced by tank-applied multilayer insulation (MLI) in the Earth-to-orbit environment is very dynamic and not well characterized. This new predictive code is a first principles-based engineering model which tracks the time history of the mass and temperature (internal energy) of the gas in each MLI layer. A continuum-based model is used for early portions of the trajectory while a kinetic theory-based model is used for the later portions of the trajectory, and the models are blended based on a reference mean free path. This new capability should improve understanding of the Earth-to-orbit transient and enable better insulation system designs for in-space cryogenic propellant systems.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2017-219844 , M-1447
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-12
    Description: Orbital ATK, in partnership with Mark ONeill LLC (MOLLC), has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 125th the size of the lens. CTA stands for Compact Telescoping Array, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018.The NASA Game Changing Development Extreme Environment Solar Power (EESP) Base Phase study has enabled Orbital ATK to refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL 4. Key performance metrics currently projected are as follows: Scalability from 5 kW to 300 kW per wing (AM0); Specific Power 500 Wkg (AM0); Stowage Efficiency 100 kWm3; 5:1 margin on pointing tolerance vs. capability; 50 launched cost savings; Wide range of operability between Venus and Saturn by active andor passive thermal management.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/CR-2017-219712 , E-19440 , GRC-E-DAA-TN46881
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-12
    Description: Vacuum and thermal vacuum testing of the Integrated Cryogenic Propulsion Test Article (ICPTA) was performed at the Plum Brook B-2 facility as a part of a system checkout and facility characterization effort. Multiple test objectives included: integrated Reaction Control System (RCS) characterization, cold helium pressurization system characterization, modal propellant gaging experiment (Orion), CFM propellant loading experiments, main engine characterization. The ICPTA is a test bed for LOX/LCH4 technologies built in 2016 using new components and hardware from the former Morpheus vehicle and other projects.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-39093
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-12
    Description: Science mission studies require spacecraft propulsion systems that are high-performance, lightweight, and compact. Highly matured technology and low-cost, short development time of the propulsion system are also very desirable. The Deep Space Engine (DSE) 100-lbf thruster is being developed to meet these needs. The overall goal of this game changing technology project is to qualify the DSE thrusters along with 5-lbf attitude control thrusters for space flight and for inclusion in science and exploration missions. The aim is to perform qualification tests representative of mission duty cycles. Most exploration missions are constrained by mass, power and cost. As major propulsion components, thrusters are identified as high-risk, long-lead development items. NASA spacecraft primarily rely on 1960s' heritage in-space thruster designs and opportunities exist for reducing size, weight, power, and cost through the utilization of modern materials and advanced manufacturing techniques. Advancements in MON-25/MMH hypergolic bipropellant thrusters represent a promising avenue for addressing these deficiencies with tremendous mission enhancing benefits. DSE is much lighter and costs less than currently available thrusters in comparable thrust classes. Because MON-25 propellants operate at lower temperatures, less power is needed for propellant conditioning for in-space propulsion applications, especially long duration and/or deep-space missions. Reduced power results in reduced mass for batteries and solar panels. DSE is capable of operating at a wide propellant temperature range (between -22 F and 122 F) while a similar existing thruster operates between 45 F and 70 F. Such a capability offers robust propulsion operation as well as flexibility in design. NASA's Marshall Space Flight Center evaluated available operational Missile Defense Agency heritage thrusters suitable for the science and lunar lander propulsion systems.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA FS-2017-07-78-MSFC , M17-6167
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: The attached edited and compressed video shows the final ground test of the Peregrine hybrid rocketflight-weight motor that took place at NASA Ames on March 15, 2017.
    Keywords: Spacecraft Propulsion and Power
    Type: ARC-E-DAA-TN41975
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5677 , IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: Solar sails can be classified into two groups based on their method of stabilization: 1) truss supported, and 2) centrifugally (spin) supported. The truss configuration requires masts or booms to deploy, support, and rigidize the sails whereas the spin type uses the spacecrafts centrifugal force to deploy and stabilize the sails. The truss-supported type sail has a scaling limitation because as the sail area gets larger, the sail is increasingly more difficult to make and stow: the masts and booms get heavier, occupying more volume, and have increased risk during deployment. This major disadvantage limits the size of the sail area. The spin type comes in two configurations: 1) spinning square/disk sail and 2) heliogyro sail. This spinning square/disk sail architecture suffers the same sail area limitation as the truss-supported sail.
    Keywords: Spacecraft Propulsion and Power
    Type: NF1676L-24944 , International Symposium on Solar Sailing; Jan 17, 2017 - Jan 20, 2017; Kyoto; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: International Space Station Lithium-Ion Battery Start-Up.The International Space Station (ISS) primary Electric Power System (EPS) was originally designed to use Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. As the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. The first set of 6 Li-ion battery replacements were launched in December 2016 and deployed in January 2017. This paper will discuss the Li-ion battery on-orbit start-up and the status of the Li-Ion cell and ORU life cycle testing.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN40800 , Space Power Workshop; Apr 24, 2017 - Apr 27, 2017; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: Human exploration beyond LEO relies on a suite of propulsive elements to: (1) Launch elements into space, (2) Transport crew and cargo to and from various destinations, (3) Provide access to the surface of Mars, (4) Launch crew from the surface of Mars. Oxygen/Methane propulsion systems meet the unique requirements of Mars surface access. A common Oxygen/Methane propulsion system is being considered to reduce development costs and support a wide range of primary & alternative applications.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5956 , Pathways Beyond Low Earth Orbit In-Space Chemical Propulsion Technical Interchange Meeting (TIM); Apr 04, 2017 - Apr 06, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: An integrated cryogenic liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA), a pressure-fed LOX/LCH4 propulsion system composed of a single 2,800 lbf main engine, two 28 lbf RCS engines, and two 7 lbf RCS engines. Propellants are stored in four 48 inch diameter 5083 aluminum tanks that feed both the main engine and RCS engines in parallel. Helium stored cryogenically in a composite overwrapped pressure vessel (COPV) flows through a heat exchanger on the main engine before being used to pressurize the propellant tanks to a design operating pressure of 325 psi. The ICPTA is capable of simultaneous main engine and RCS operation. The RCS engines utilize a coil-on-plug (COP) ignition system designed for operation in a vacuum environment, eliminating corona discharge issues associated with a high voltage lead. There are two RCS pods on the ICPTA, with two engines on each pod. One of these two engines is a heritage flight engine from Project Morpheus. Its sea level nozzle was removed and replaced by an 85:1 nozzle machined using Inconel 718, resulting in a maximum thrust of 28 lbf under altitude conditions. The other engine is a scaled down version of the 28 lbf engine, designed to match the core and overall mixture ratios as well as other injector characteristics. This engine can produce a maximum thrust of 7 lbf with an 85:1 nozzle that was additively manufactured using Inconel 718. Both engines are film-cooled and capable of limited duration gas-gas and gas-liquid operation, as well as steady-state liquid-liquid operation. Each pod contains one of each version, such that two engines of the same thrust level can be fired as a couple on opposite pods. The RCS feed system is composed of symmetrical 3/8 inch lines that tap off of the main propellant manifold to send LOX and LCH4 outboard to the RCS pods. A Thermodynamic Vent System (TVS) is used to condition propellants at each pod by venting through an orifice and then routing the cold expansion products back through tubing that is welded along a large portion of the main RCS feed lines. Prior to final installation on the ICPTA, the RCS engines were tested in a small vacuum chamber at the Johnson Space Center (JSC) Energy Systems Test Area (ESTA) to verify functionality of the new COP ignition system and check out operation of the vacuum nozzles. After engine-level testing, the RCS engines were installed on the vehicle and a series of integrated hot-fire tests were performed at JSC consisting of various pulsing and steady-state firings as well as integrated main engine/RCS operation. The ICPTA was then integrated into the Plum Brook B-2 facility for vacuum and thermal/vacuum testing. Testing in the B-2 facility was composed of multiple thermal and pressure environments. The first set of tests were performed under ambient temperature and altitude pressure conditions. These tests consisted of a range of minimum impulse bit (MIB) pulsing sequences with low duty cycle, analogous to a coast phase in which the RCS is primarily used for station keeping. The primary goal of this sequence is to understand how propellant conditions were effected without an active TVS. In this scenario, consistent gas-gas operation is desirable since it results in a smaller MIB and more efficient propellant consumption. Multiple skin thermocouples are mounted on the feedlines, in addition to a submerged thermocouple on each commodity, in order to gather thermal data on the system. Higher duty cycle pulsing tests were then performed, analogous to an ascent or landing mission phase. The primary goal of this sequence was to examine how well the engines self-conditioned without active TVS when starting from a quiescent state. The TVS was then activated during some tests to demonstrate the capability to quickly condition the engines for higher pulsing demand scenarios. A thermocouple at the TVS outlet allows for the calculation of energy absorbed by the vented propellant. Lastly, tests with longer pulses and multiple engines firing either in sequence or simultaneously were run in order to gather transient system response data on waterhammer. Six total high-speed pressure transducers are installed on the RCS system, one sensor at the end of each propellant manifold line on the pods, and one at the tap-off location for each commodity. This will allow for the accurate characterization of waterhammer in the system under various propellant conditions and firing sequences. Other instrumentation for this test series includes nozzle throat thermocouples, chamber pressure measurement, heat soakback measurement, and tank wall plume impingement temperature measurement. The next set of tests were performed to demonstrate simultaneous main engine and RCS operation. Data from this test will be used to examine if there is any change to nominal operation of the RCS as a result of feed system interaction or other phenomenon. Some of these tests began under high vacuum conditions (target ambient pressure less than 1x10(exp -3) torr) and others began at altitude conditions. The last set of tests were performed with the B-2 cold wall active. Under these tests, many of the same low duty cycle MIB tests were repeated in order to characterize how propellant conditions changed with the lower heat leak. In this scenario the RCS manifold experiences much less heat leak, resulting in a change to how well the engines self-condition. As a result, an increase in maximum waterhammer pressures and a change in natural frequency of the system was expected due to higher density propellants. The lower heat leak should also result in a change to the MIB pulse profile, and data will be examined to understand how MIB repeatability is affected in the different operating environments. Parallel to the test efforts, a set of transient model development efforts were made to predict RCS performance. The primary effort was aimed at producing a SINDA/FLUINT model to predict propellant conditioning up to the engine inlet as a function of different environmental and operating parameters, with the goal of predicting chamber pressure, TVS performance, and propellant consumption over time. Preliminary results for this effort will be presented in comparison with test data. Additional modeling efforts were made using SINDA/FLUINT to predict waterhammer in the system since the software is capable of handling multiphase transient fluid dynamics. These results will be compared with the high-speed pressure transducer test data for validation purposes.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-38497 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-38593 , AIAA Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN36554 , IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: This team is exploring a modified Z-pinch geometry as a propulsion system, imploding a liner of liquid lithium onto a pellet containing both fission and fusion fuel. The plasma resulting from the fission and fusion burn expands against a magnetic nozzle, for propulsion, or a magnetic confinement system, for terrestrial power generation. There is considerable synergy in the concept; the lithium acts as a temporary virtual cathode, and adds reaction mass for propulsion. Further, the lithium acts as a radiation shield against generated neutrons and gamma rays. Finally, the density profile of the column can be tailored using the lithium sheath. Recent theoretical and experimental developments (e.g. tailored density profile in the fuel injection, shear stabilization, and magnetic shear stabilization) have had great success in mitigating instabilities that have plagued previous fusion efforts. This paper will review the work in evaluating the pellet sizes and z-pinch conditions for optimal PuFF propulsion. Trades of pellet size and composition with z-pinch power levels and conditions for the tamper and lithium implosion are evaluated. Current models, both theoretical and computational, show that a z-pinch can ignite a small (~1 cm radius) fission-fusion target with significant yield. Comparison is made between pure fission and boosted fission targets. Performance is shown for crewed spacecraft for high speed Mars round trip missions and near interstellar robotic missions. The PuFF concept also offers a solution for terrestrial power production. PuFF can, with recycling of the effluent, achieve near 100% burnup of fission fuel, providing a very attractive power source with minimal waste. The small size of PuFF relative to today's plants enables a more distributed power network and less exposure to natural or man-made disruptions.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6035 , DZP2017 International Conference; Aug 13, 2017 - Aug 17, 2017; Lake Tahoe, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-19
    Description: Charger 1 is a multipurpose pulsed power laboratory located on Redstone Arsenal, with a focus on fusion propulsion relevant experiments involving testing z-pinch diodes, pulsed magnetic nozzle and other related physics experiments. UAH and its team of pulsed power researchers are investigating ways to increase and optimize fusion production from Charger 1. Currently the team has reached high-power testing. Due to the unique safety issues related to high power operations the UAH/MSFC team has slowed repair efforts to develop safety and operations protocols. The facility is expected to be operational by the time DZP 2017 convenes. Charger 1 began life as the Decade Module 2, an experimental prototype built to prove the Decade Quad pinch configuration. The system was donated to UAH by the Defense Threat Reduction Agency (DRTA) in 2012. For the past 5 years a UAH/MSFC/Boeing team has worked to refurbish, assemble and test the system. With completion of high power testing in summer 2017 Charger 1 will become operational for experimentation. Charger 1 utilizes a Marx Bank of 72 100-kV capacitors that are charged in parallel and discharged in series. The Marx output is compressed to a pulse width of approximately 200 ns via a pulse forming network of 32 coaxial stainless steel tubes using water as a dielectric. After pulse compression a set of SF6 switches are triggered, allowing the wave front to propagate through the output line to the load. Charger 1 is capable of storing 572-kJ of energy and time compressing discharge to less than 250 ns discharge time producing a discharge of about 1 TW of discharge with 1 MV and 1 MA peak voltage and current, respectively. This capability will be used to study energy yield scaling and physics from solid density target as applied to advanced propulsion research.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6037 , International Conference on Dense Z-Pinches; Aug 13, 2017 - Aug 17, 2017; Stateline, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-19
    Description: Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and Department of Defense (DOD) requirements, as well as those of the broader Commercial Space industry. For NASA, C-C nozzle extension technology development primarily supports the NASA Space Launch System (SLS) and NASA's Commercial Space partners. Marshall Space Flight Center (MSFC) efforts are aimed at both (a) further developing the technology and databases needed to enable the use of composite nozzle extensions on cryogenic upper stage engines, and (b) developing and demonstrating low-cost capabilities for testing and qualifying composite nozzle extensions. Recent, on-going, and potential future work supporting NASA, DOD, and Commercial Space needs will be discussed. Information to be presented will include (a) recent and on-going mechanical, thermal, and hot-fire testing, as well as (b) potential future efforts to further develop and qualify domestic C-C nozzle extension solutions for the various upper stage engines under development.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5757 , 2017 National Space & Missile Materials Symposium (NSMMS) & the Commercial and Government Responsive Access to Space Technology Exchange (CRASTE); Jun 26, 2017 - Jun 29, 2017; Indian Wells, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-19
    Description: NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept to the NEA Scout solar sail, the LISA-T array is designed to fit into a very small volume and provide abundant power and omnidirectional communications in just about any deployment configuration. The technology is being proposed for flight validation as early as 2019 in a low earth orbit demonstration using a 3U cubesat, of which less than 1U will be devoted to the LISA-T power and propulsion system. By leveraging recent advancements in thin films, photovoltaics and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions.
    Keywords: Spacecraft Propulsion and Power
    Type: M16-5495 , IEEE Aerospace Sciences Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-19
    Description: Nuclear thermal propulsion (NTP) can potentially enable routine human exploration of Mars and the solar system. By using nuclear fission instead of a chemical combustion process, and using hydrogen as the propellant, NTP systems promise rocket efficiencies roughly twice that of the best chemical rocket engines currently available. The most recent major Mars architecture study featuring NTP was the Design Reference Architecture 5.0 (DRA 5.0), performed in 2009. Currently, the predominant transportation options being considered are solar electric propulsion (SEP) and chemical propulsion; however, given NTP's capabilities, an updated architectural analysis is needed. This paper provides a top-level overview of several different architectures featuring updated NTP performance data. New architectures presented include a proposed update to the DRA 5.0 as well as an investigation of architectures based on the current Evolvable Mars Campaign, which is the focus of NASA's current analyses for the Journey to Mars. Architectures investigated leverage the latest information relating to NTP performance and design considerations and address new support elements not available at the time of DRA 5.0, most notably the Orion crew module and the Space Launch System (SLS). The paper provides a top level quantitative comparison of key performance metrics as well as a qualitative discussion of improvements and key challenges still to be addressed. Preliminary results indicate that the updated NTP architectures can significantly reduce the campaign mass and subsequently the costs for assembly and number of launches.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5644 , 2017 Nuclear and Emerging Technologies for Space (NETS); Feb 27, 2017 - Mar 02, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The performance of a three-channel, 100-kW class nested Hall thruster was evaluated on xenon propellant for total powers up to 102 kW at NASA Glenn Research Center. The thruster demonstrated stable operation in all seven available channel combinations at discharge voltages from 300 V to 500 V and three different current densities. The resulting test matrix contained forty-six unique conditions ranging from 5 to 102 kW total power and 16 to 247 A discharge current. At each operating condition, thruster performance was measured, and from these measurements specific impulse and efficiency were calculated. All seven channel combinations showed similar performance at a given discharge voltage and current density. The largest thrust recorded was 5.4 N 0.1 N at 99 kW, 400 V discharge voltage. Total efficiency and specific impulse ranged from 0.54 to 0.67 0.03 and 1800 seconds to 2650 seconds 60 seconds, respectively. It was found that the thrust of the three channels firing together was not larger than the sum of each channel firing individually. Discharge current oscillations were also characterized with peak-to-peak and root-mean-square values and with power spectral density analysis. The implications of these results are discussed in the context of operation beyond 100 kW, as well as the general viability of NHT technology for future mission applications.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-228 , GRC-E-DAA-TN47082 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: The higher energy content (265 Wh/kg, 725 Wh/L) of the newer cell designs from LG, Panasonic, and Samsung have made them susceptible to side wall ruptures (SWR) during thermal runaway, rather than venting through the intended vent path in the cell header. This is also due to higher reaction kinetics of the electrochemistry, thinner can walls, tight crimp enclosure of the cell header, and inadequate flow rate through the header vent. This effort determined that bottom vents and thicker cell can walls both are necessary for reducing the risk of SWR. Compelling evidence was obtained using novel test methods that included an on-demand internal short circuit device, high speed X-ray videography, and cell thermal runaway calorimetry.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-E-DAA-TN48548 , JSC Technology Poster Showcase; Nov 13, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: In-space propulsion begins where the launch vehicle upper stage leaves off, performing the functions of primary propulsion, reaction control, station keeping, precision pointing, and orbital maneuvering. The main engines used in space provide the primary propulsive force for orbit transfer, planetary trajectories and extra planetary landing and ascent. The reaction control and orbital maneuvering systems provide the propulsive force for orbit maintenance, position control, station keeping, and spacecraft attitude control. Advanced in-space propulsion technologies will enable much more effective exploration of our Solar System and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With wide range of possible missions and candidate propulsion technologies, the question of which technologies are "best" for future missions is a difficult one. A portfolio of propulsion technologies should be developed to provide optimum solutions for a diverse set of missions and destinations. A large fraction of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by chemical reactions to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse (Is, or thrust per mass flow rate of propellant). A significant improvement (〉30%) in Is can be obtained by using cryogenic propellants, such as liquid oxygen and liquid hydrogen, for example. Historically, these propellants have not been applied beyond upper stages.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN56661 , Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials (ISSN 1869-1730); 655-671
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Large scale cargo transportation to support human missions to the Moon and Mars will require very high power Solar Electric Propulsion (SEP) systems operating between 200 and 400 kW. Aerojet Rocketdyne's NextSTEP program is developing and demonstrating a 100 kW EP system, the XR-100, using a Nested Hall Thruster (NHT) designed for powers up to 200 kW, a modular power processor and a modular flow controller. The three year program objective is to operate the integrated EP system continuously at 100 kW for 100 h, advancing this very high power Electric Propulsion (EP) system to Technology Readiness Level (TRL) 5. With our University of Michigan, Jet Propulsion Laboratory and NASA Glenn Research Center teammates, Aerojet Rocketdyne has completed the initial phase of the program, including operating the thruster at up to 30 kW to validate the thermal models and developing and operating multiple power processor modules in the required seriesparallel configuration. The current phase includes completing a TRL 4 integrated system test at reduced power to validate all system operating phases. Design upgrades to demonstrate the TRL 5 capabilities are underway. This paper will present the high power XR-100 capabilities, overall program and design approach and the latest test results for the 100 kW EP system demonstration program.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN47045 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: NASA remains committed to the development and demonstration of a high-power solar electric propulsion capability for the Agency. NASA is continuing to develop the 14 kilowatt Advanced Electric Propulsion System (AEPS), which has recently completed an Early Integrated System Test and System Preliminary Design Review. NASA continues to pursue Solar Electric Propulsion (SEP) Technology Demonstration Mission partners and mature high-power SEP mission concepts. The recent announcement of the development of a Power and Propulsion Element (PPE) as the first element of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission as the most probable first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. This paper presents the status of the combined NASA and Aerojet AEPS development activities and updated mission concept for implementation of the AEPS hardware as part of the ion propulsion system for a PPE.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-284 , GRC-E-DAA-TN45528 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6180 , International Conference on Dense Z-Pinches; Aug 13, 2017 - Aug 17, 2017; Lake Tahoe, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: A survey of low energy xenon ion impact sputter yields was conducted to provide a more coherent baseline set of sputter yield data and accompanying fits for electric propulsion integration. Data uncertainties are discussed and different available curve fit formulas are assessed for their general suitability. A Bayesian parameter fitting approach is used with a Markov chain Monte Carlo method to provide estimates for the fitting parameters while characterizing the uncertainties for the resulting yield curves.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN45154 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN45806 , Annual AIAA/USU Conference on Small Satellites; Aug 05, 2017 - Aug 10, 2017; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-07
    Description: The demand for higher power Hall and ion thrusters continues for providing high thrust and long life for deep space mission. The X3 nested Hall thruster is capable of power levels in the 20 to 200-kW range, and is being developed by the University of Michigan and Aerojet for future cargo and manned-missions. The cathode for this thruster is required to produce discharge currents of 50 to 350 A with lifetimes in excess of 10 khrs. A high-current lanthanum hexaboride (LaB6) hollow cathode was previously developed at JPL for these applications, and was successfully operated at over 250 A of discharge current. An updated version of this cathode has been designed, built and tested at JPL, and then used to run the X3 nested Hall thruster at currents of up to 250 A. The new version is designed to reduced orifice plate overheating at high currents, and is capable of injecting auxiliary gas directly into the near-cathode plume from two locations to minimize energetic ion generation at high current. The cathode is predicted to be capable of producing over 350 A of discharge current, and has been tested to date at JPL at steady-state discharge currents from 25 A to 300 A.
    Keywords: Spacecraft Propulsion and Power
    Type: JPL-CL-CL#17-5050 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-06
    Description: NASA has used Radioisotope Thermoelectric Generators (RTGs) for nearly five decades to power planetary science missions where solar arrays or other power systems were impractical or ineffective. The Multi-Mission RTG (MMRTG) is the only type of RTG available for spaceflight today and it relies on technology used for the Pioneer and Viking missions of the 1970s. The MMRTGs distant-relative, the General-Purpose Heat Source-RTG (GPHS-RTG), went out of production shortly after the turn of the twenty-first century. The thermoelectric technology it relied upon is several decades old and was first flown on the Voyager missions in 1977. While the GPHS-RTG could theoretically be brought out of mothballs, many advances have been made in thermoelectric materials, advances that warranted a clear-eyed review and study of the optimal properties of a next-generation RTG. This paper summarily describes the outcome of the study.
    Keywords: Spacecraft Propulsion and Power
    Type: JPL-CL-CL#17-2735 , AIAA Propulsion and Energy Forum and Exposition 2017; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...