ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (18,148)
  • Elsevier  (14,629)
  • National Academy of Sciences  (3,095)
  • Annual Reviews  (424)
  • 2020-2023
  • 2000-2004  (17,393)
  • 1980-1984
  • 1935-1939
  • 1925-1929  (755)
  • 2001  (17,393)
  • 1926  (755)
  • Medicine  (9,642)
  • Mathematics  (7,005)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (1,562)
Collection
  • Articles  (18,148)
Years
  • 2020-2023
  • 2000-2004  (17,393)
  • 1980-1984
  • 1935-1939
  • 1925-1929  (755)
Year
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 53-86 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The bacterial pathogen Salmonella enterica has evolved a very sophisticated functional interface with its vertebrate hosts. At the center of this interface is a specialized organelle, the type III secretion system, that directs the translocation of bacterial proteins into the host cell. Salmonella spp. encode two such systems that deliver a remarkable array of bacterial proteins capable of modulating a variety of cellular functions, including actin cytoskeleton dynamics, nuclear responses, and endocytic trafficking. Many of these bacterial proteins operate by faithful mimicry of host proteins, in some cases representing the result of extensive molecular tinkering and convergent evolution. The coordinated action of these type III secreted proteins secures the replication and survival of the bacteria avoiding overt damage to the host. The study of this remarkable pathogen is not only illuminating general paradigms in microbial pathogenesis but is also providing valuable insight into host cell functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 87-132 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Vertebrate limb buds are embryonic structures for which much molecular and cellular data are known regarding the mechanisms that control pattern formation during development. Specialized regions of the developing limb bud, such as the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm, direct and coordinate the development of the limb bud along the anterior-posterior (AP), dorsal-ventral (DV), and proximal-distal (PD) axes, giving rise to a stereotyped pattern of elements well conserved among tetrapods. In recent years, specific gene functions have been shown to mediate the organizing and patterning activities of the ZPA, the AER, and the non-ridge ectoderm. The analysis of these gene functions has revealed the existence of complex interactions between signaling pathways operated by secreted factors of the HH, TGF-beta/BMP, WNT, and FGF superfamilies, which interact with many other genetic networks to control limb positioning, outgrowth, and patterning. The study of limb development has helped to establish paradigms for the analysis of pattern formation in many other embryonic structures and organs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 133-157 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cells in the immune and nervous systems communicate through informational synapses. The two-dimensional chemistry underlying the process of synapse formation is beginning to be explored using fluorescence imaging and mechanical techniques. Early analysis of two-dimensional kinetic rates (kon and koff) and equilibrium constants (Kd) provides a number of biological insights. First, there are two regimes for adhesion-one disordered with slow kon and the other self-ordered with 104-fold faster kon. Despite huge variation in two-dimensional kon, the two-dimensional koff is like koff in solution, and two-dimensional koff is more closely related to intrinsic properties of the interaction than the two-dimensional kon. Thus difference in koff can be used to set signaling thresholds. Early signaling complexes are compartmentalized to generate synergistic signaling domains. Immune antigen receptor components have a role in neural synapse editing. This suggests significant parallels in informational synapse formation based on common two-dimensional chemistry and signaling strategies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 159-187 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Pollen tubes and root hairs are highly elongated, cylindrically shaped cells whose polarized growth permits them to explore the environment for the benefit of the entire plant. Root hairs create an enormous surface area for the uptake of water and nutrients, whereas pollen tubes deliver the sperm cells to the ovule for fertilization. These cells grow exclusively at the apex and at prodigious rates (in excess of 200 nm/s for pollen tubes). Underlying this rapid growth are polarized ion gradients and fluxes, turnover of cytoskeletal elements (actin microfilaments), and exocytosis and endocytosis of membrane vesicles. Intracellular gradients of calcium and protons are spatially localized at the growing apex; inward fluxes of these ions are apically directed. These gradients and fluxes oscillate with the same frequency as the oscillations in growth rate but not with the same phase. Actin microfilaments, which together with myosin generate reverse fountain streaming, undergo rapid turnover in the apical domain, possibly being regulated by key actin-binding proteins, e.g., profilin, villin, and ADF/cofilin, in concert with the ion gradients. Exocytosis of vesicles at the apex, also dependent on the ion gradients, provides precursor material for the continuously expanding cell wall of the growing cell. Elucidation of the interactions and of the dynamics of these different components is providing unique insight into the mechanisms of polarized growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 189-214 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Developing organisms may contain billions of cells destined to differentiate in numerous different ways. One strategy organisms use to simplify the orchestration of development is the separation of cell populations into distinct functional units. Our expanding knowledge of boundary formation and function in different systems is beginning to reveal general principles of this process. Fields of cells are subdivided by the interpretation of morphogen gradients, and these subdivisions are then maintained and refined by local cell-cell interactions. Sharp and stable separation between cell populations requires special mechanisms to keep cells segregated, which in many cases appear to involve the regulation of cell affinity. Once cell populations become distinct, specialized cells are often induced along the borders between them. These boundary cells can then influence the patterning of surrounding cells, which can result in progressively finer subdivisions of a tissue. Much has been learned about the signaling pathways that establish boundaries, but a key challenge for the future remains to elucidate the cellular and molecular mechanisms that actually keep cell populations separated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 1-23 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Oligosaccharides play a crucial role in many of the recognition, signaling, and adhesion events that take place at the surface of cells. Abnormalities in the synthesis or presentation of these carbohydrates can lead to misfolded and inactive proteins, as well as to several debilitating disease states. However, their diverse structures, which are the key to their function, have hampered studies by biologists and chemists alike. This review presents an overview of techniques for examining and manipulating cell surface oligosaccharides through genetic, enzymatic, and chemical strategies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 25-51 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Thrombospondins are secreted, multidomain macromolecules that act as regulators of cell interactions in vertebrates. Gene knockout mice constructed for two members of this family demonstrate roles in the organization and homeostasis of multiple tissues, with particularly significant activities in the regulation of angiogenesis. This review discusses the functions of thrombospondins with regard to their cellular mechanisms of action and highlights recent advances in understanding how multifactorial molecular interactions, at the cell surface and within extracellular matrix, produce cell-type-specific effects on cell behavior and the organization of matrix and tissues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 387-403 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Multipotent stem cells are clonal cells that self-renew as well as differentiate to regenerate adult tissues. Whereas stem cells and their fates are known by unique genetic marker studies, the fate and function of these cells are best studied by their prospective isolation. This review is about the properties of various highly purified tissue-specific multipotent stem cells and purified oligolineage progenitors. We contend that unless the stem or progenitor cells in question have been purified to near homogeneity, one cannot know whether their generation of expected (or unexpected) progeny is a property of a known cell type. It is interesting that in the hematopoietic system the only long-term self-renewing cells in the stem and progenitors pool are the hematopoietic stem cells. This fact is discussed in the context of normal and leukemic hematopoiesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 435-462 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Mouse embryonic stem cells are continuous cell lines derived directly from the fetal founder tissue of the preimplantation embryo. They can be expanded in culture while retaining the functional attributes of pluripotent early embryo cells. In particular, they can participate fully in fetal development when reintroduced into the embryo. The capacity for multilineage differentiation is reproduced in culture where embryonic stem cells can produce a wide range of well-defined cell types. This has stimulated interest in the isolation of analogous cells of human origin. Such human pluripotent stem cells could constitute a renewable source of more differentiated cells that could be employed to replace diseased or damaged tissue by cellular transplantation. In this review, the relationships between mouse embryonic stem cells, resident pluripotent cells in the embryo, and human embryo-derived cell lines are evaluated, and the prospects and challenges of embryo stem cell research are considered. This review is dedicated to Rosa Beddington FRS, a great developmental biologist, a wonderful colleague, and an inspirational advocate of human stem cell research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 463-516 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor-binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regulating some of these processes in vivo. Our knowledge in the field of MMP biology is rapidly expanding, yet we still do not fully understand how these enzymes regulate most processes of development, homeostasis, and disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 517-568 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract There has recently been considerable progress in understanding the regulation of clathrin-coated vesicle (CCV) formation and function. These advances are due to the determination of the structure of a number of CCV coat components at molecular resolution and the identification of novel regulatory proteins that control CCV formation in the cell. In addition, pathways of (a) phosphorylation, (b) receptor signaling, and (c) lipid modification that influence CCV formation, as well as the interaction between the cytoskeleton and CCV transport pathways are becoming better defined. It is evident that although clathrin coat assembly drives CCV formation, this fundamental reaction is modified by different regulatory proteins, depending on where CCVs are forming in the cell. This regulatory difference likely reflects the distinct biological roles of CCVs at the plasma membrane and trans-Golgi network, as well as the distinct properties of these membranes themselves. Tissue-specific functions of CCVs require even more-specialized regulation and defects in these pathways can now be correlated with human diseases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 779-805 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract A distinctive and essential feature of the vertebrate body is a pronounced left-right asymmetry of internal organs and the central nervous system. Remarkably, the direction of left-right asymmetry is consistent among all normal individuals in a species and, for many organs, is also conserved across species, despite the normal health of individuals with mirror-image anatomy. The mechanisms that determine stereotypic left-right asymmetry have fascinated biologists for over a century. Only recently, however, has our understanding of the left-right patterning been pushed forward by links to specific genes and proteins. Here we examine the molecular biology of the three principal steps in left-right determination: breaking bilateral symmetry, propagation and reinforcement of pattern, and the translation of pattern into asymmetric organ morphogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 215-253 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Circadian rhythms are found in most eukaryotes and some prokaryotes. The mechanism by which organisms maintain these roughly 24-h rhythms in the absence of environmental stimuli has long been a mystery and has recently been the subject of intense research. In the past few years, we have seen explosive progress in the understanding of the molecular basis of circadian rhythms in model systems ranging from cyanobacteria to mammals. This review attempts to outline these primarily genetic and biochemical findings and encompasses work done in cyanobacteria, Neurospora, higher plants, Drosophila, and rodents. Although actual clock components do not seem to be conserved between kingdoms, central clock mechanisms are conserved. Somewhat paradoxically, clock components that are conserved between species can be used in diverse ways. The different uses of common components may reflect the important role that the circadian clock plays in adaptation of species to particular environmental niches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 351-386 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cytokinesis creates two daughter cells endowed with a complete set of chromosomes and cytoplasmic organelles. This conceptually simple event is mediated by a complex and dynamic interplay between the microtubules of the mitotic spindle, the actomyosin cytoskeleton, and membrane fusion events. For many decades the study of cytokinesis was driven by morphological studies on specimens amenable to physical manipulation. The studies led to great insights into the cellular structures that orchestrate cell division, but the underlying molecular machinery was largely unknown. Molecular and genetic approaches have now allowed the initial steps in the development of a molecular understanding of this fundamental event in the life of a cell. This review provides an overview of the literature on cytokinesis with a particular emphasis on the molecular pathways involved in the division of animal cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 405-433 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract A number of novel chemical methods for studying biological systems have recently been developed that provide a means of addressing biological questions not easily studied with other techniques. In this review, examples that highlight the development and use of such chemical approaches are discussed. Specifically, strategies for modulating protein activity or protein-protein interactions using small molecules are presented. In addition, methods for generating and utilizing novel biomolecules (proteins, oligonucleotides, oligosaccharides, and second messengers) are examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 615-675 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The phosphoinositide 3-kinase (PI3K) family of enzymes is recruited upon growth factor receptor activation and produces 3' phosphoinositide lipids. The lipid products of PI3K act as second messengers by binding to and activating diverse cellular target proteins. These events constitute the start of a complex signaling cascade, which ultimately results in the mediation of cellular activities such as proliferation, differentiation, chemotaxis, survival, trafficking, and glucose homeostasis. Therefore, PI3Ks play a central role in many cellular functions. The factors that determine which cellular function is mediated are complex and may be partly attributed to the diversity that exists at each level of the PI3K signaling cascade, such as the type of stimulus, the isoform of PI3K, or the nature of the second messenger lipids. Numerous studies have helped to elucidate some of the key factors that determine cell fate in the context of PI3K signaling. For example, the past two years has seen the publication of many transgenic and knockout mouse studies where either PI3K or its signaling components are deregulated. These models have helped to build a picture of the role of PI3K in physiology and indeed there have been a number of surprises. This review uses such models as a framework to build a profile of PI3K function within both the cell and the organism and focuses, in particular, on the role of PI3K in cell regulation, immunity, and development. The evidence for the role of deregulated PI3K signaling in diseases such as cancer and diabetes is reviewed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 677-699 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Seed development requires coordinated expression of embryo and endosperm and has contributions from both sporophytic and male and female gametophytic genes. Genetic and molecular analyses in recent years have started to illuminate how products of these multiple genes interact to initiate seed development. Imprinting or differential expression of paternal and maternal genes seems to be involved in controlling seed development, presumably by controlling gene expression in developing endosperm. Epigenetic processes such as chromatin remodeling and DNA methylation affect imprinting of key seed-specific genes; however, the identity of many of these genes remains unknown. The discovery of FIS genes has illuminated control of autonomous endosperm development, a component of apomixis, which is an important developmental and agronomic trait. FIS genes are targets of imprinting, and the genes they control in developing endosperm are also regulated by DNA methylation and chromatin remodeling genes. These results define some exciting future areas of research in seed development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 255-296 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract This review provides a synthesis that combines data from classical experimentation and recent advances in our understanding of early eye development. Emphasis is placed on the events that underlie and direct neural retina formation and lens induction. Understanding these events represents a longstanding problem in developmental biology. Early interest can be attributed to the curiosity generated by the relatively frequent occurrence of disorders such as cyclopia and anophthalmia, in which dramatic changes in eye development are readily observed. However, it was the advent of experimental embryology at the turn of the century that transformed curiosity into active investigation. Pioneered by investigators such as Spemann and Adelmann, these embryological manipulations have left a profound legacy. Questions about early eye development first addressed using tissue manipulations remain topical as we try to understand the molecular basis of this process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 297-310 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The localization of mRNAs is used by various types of polarized cells to locally translate specific proteins, which restricts their distribution to a particular sub-region of the cytoplasm. This mechanism of protein sorting is involved in major biological processes such as asymmetric cell division, oogenesis, cellular motility, and synapse formation. With the finding of localized mRNAs in the yeast Saccharomyces cerevisiae, it is now possible to benefit from the powerful yeast laboratory tools to explore the molecular basis of RNA localization. Because mRNA transport and localization in yeast share many features with RNA localization in higher eukaryotes, including the formation of a large ribonucleoprotein (RNP) localization complex, the requirement of a polarized cytoskeleton and molecular motors, and the role of nuclear RNA-binding proteins in cytoplasmic localization, the yeast can be used as a paradigm for unraveling the molecular aspects of this process. This review summarizes the current knowledge on RNP transport and localization in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 311-350 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract In vertebrates, the paraxial mesoderm corresponds to the bilateral strips of mesodermal tissue flanking the notochord and neural tube and which are delimited laterally by the intermediate mesoderm and the lateral plate. The paraxial mesoderm comprises the head or cephalic mesoderm anteriorly and the somitic region throughout the trunk and the tail of the vertebrates. Soon after gastrulation, the somitic region of vertebrates starts to become segmented into paired blocks of mesoderm, termed somites. This process lasts until the number of somites characteristic of the species is reached. The somites later give rise to all skeletal muscles of the body, the axial skeleton, and part of the dermis. In this review I discuss the processes involved in the formation of the paraxial mesoderm and its segmentation into somites in vertebrates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 569-614 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The intracellular localization of mRNA, a common mechanism for targeting proteins to specific regions of the cell, probably occurs in most if not all polarized cell types. Many of the best characterized localized mRNAs are found in oocytes and early embryos, where they function as localized determinants that control axis formation and the development of the germline. However, mRNA localization has also been shown to play an important role in somatic cells, such as neurons, where it may be involved in learning and memory. mRNAs can be localized by a variety of mechanisms including local protection from degradation, diffusion to a localized anchor, and active transport, and we consider the evidence for each of these processes, before discussing the cis-acting elements that direct the localization of specific mRNAs and the trans-acting factors that bind them.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 753-777 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The replicated copies of each chromosome, the sister chromatids, are attached prior to their segregation in mitosis and meiosis. This association or cohesion is critical for each sister chromatid to bind to microtubules from opposite spindle poles and thus segregate away from each other at anaphase of mitosis or meiosis II. The cohesin protein complex is essential for cohesion in both mitosis and meiosis, and cleavage of one of the subunits is sufficient for loss of cohesion at anaphase. The localization of the cohesin complex and other cohesion proteins permits evaluation of the positions of sister-chromatid associations within the chromosome structure, as well as the relationship between cohesion and condensation. Recently, two key riddles in the mechanism of meiotic chromosome segregation have yielded to molecular answers. First, analysis of the cohesin complex in meiosis provides molecular support for the long-standing hypothesis that sister-chromatid cohesion links homologs in meiosis I by stabilizing chiasmata. Second, the isolation of the monopolin protein that controls kinetochore behavior in meiosis I defines a functional basis by which sister kinetochores are directed toward the same pole in meiosis I.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 701-752 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Fifteen years ago, we had a model of peroxisome biogenesis that involved growth and division of preexisting peroxisomes. Today, thanks to genetically tractable model organisms and Chinese hamster ovary cells, 23 PEX genes have been cloned that encode the machinery ("peroxins") required to assemble the organelle. Membrane assembly and maintenance requires three of these (peroxins 3, 16, and 19) and may occur without the import of the matrix (lumen) enzymes. Matrix protein import follows a branched pathway of soluble recycling receptors, with one branch for each class of peroxisome targeting sequence (two are well characterized), and a common trunk for all. At least one of these receptors, Pex5p, enters and exits peroxisomes as it functions. Proliferation of the organelle is regulated by Pex11p. Peroxisome biogenesis is remarkably conserved among eukaryotes. A group of fatal, inherited neuropathologies are recognized as peroxisome biogenesis diseases; the responsible genes are orthologs of yeast or Chinese hamster ovary peroxins. Future studies must address the mechanism by which folded, oligomeric enzymes enter the organelle, how the peroxisome divides, and how it segregates at cell division. Most pex mutants contain largely empty membrane "ghosts" of peroxisomes; a few mutants apparently lacking peroxisomes entirely have led some to propose the de novo formation of the organelle. However, there is evidence for residual peroxisome membrane vesicles ("protoperoxisomes") in some of these, and the preponderance of data supports the continuity of the peroxisome compartment in space and time and between generations of cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Physical detection of antigen-specific CD4 T cells has revealed features of the in vivo immune response that were not appreciated from in vitro studies. In vivo, antigen is initially presented to naive CD4 T cells exclusively by dendritic cells within the T cell areas of secondary lymphoid tissues. Anatomic constraints make it likely that these dendritic cells acquire the antigen at the site where it enters the body. Inflammation enhances in vivo T cell activation by stimulating dendritic cells to migrate to the T cell areas and display stable peptide-MHC complexes and costimulatory ligands. Once stimulated by a dendritic cell, antigen-specific CD4 T cells produce IL-2 but proliferate in an IL-2-independent fashion. Inflammatory signals induce chemokine receptors on activated T cells that direct their migration into the B cell areas to interact with antigen-specific B cells. Most of the activated T cells then die within the lymphoid tissues. However, in the presence of inflammation, a population of memory T cells survives. This population is composed of two functional classes. One recirculates through nonlymphoid tissues and is capable of immediate effector lymphokine production. The other recirculates through lymph nodes and quickly acquires the capacity to produce effector lymphokines if stimulated. Therefore, antigenic stimulation in the presence of inflammation produces an increased number of specific T cells capable of producing effector lymphokines throughout the body.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 19 (2001), S. 163-196 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Rheumatoid arthritis (RA), a systemic disease, is characterized by a chronic inflammatory reaction in the synovium of joints and is associated with degeneration of cartilage and erosion of juxta-articular bone. Many pro-inflammatory cytokines including TNFalpha, chemokines, and growth factors are expressed in diseased joints. The rationale that TNFalpha played a central role in regulating these molecules, and their pathophysiological potential, was initially provided by the demonstration that anti-TNFalpha antibodies added to in vitro cultures of a representative population of cells derived from diseased joints inhibited the spontaneous production of IL-1 and other pro-inflammatory cytokines. Systemic administration of anti-TNFalpha antibody or sTNFR fusion protein to mouse models of RA was shown to be anti-inflammatory and joint protective. Clinical investigations in which the activcity of TNFalpha in RA patients was blocked with intravenously administered infliximab, a chimeric anti-TNFalpha monoclonal antibody (mAB), has provided evidence that TNF regulates IL-6, IL-8, MCP-1, and VEGF production, recruitment of immune and inflammatory cells into joints, angiogenesis, and reduction of blood levels of matrix metalloproteinases-1 and -3. Randomized, placebo-controlled, multi-center clinical trials of human TNFalpha inhibitors have demonstrated their consistent and remarkable efficacy in controlling signs and symptoms, with a favorable safety profile, in approximately two thirds of patients for up to 2 years, and their ability to retard joint damage. Infliximab (a mAB), and etanercept (a sTNF-R-Fc fusion protein) have been approved by regulatory authorities in the United States and Europe for treating RA, and they represent a significant new addition to available therapeutic options.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Natural killer cells can discriminate between normal cells and cells that do not express adequate amounts of major histocompatibility complex (MHC) class I molecules. The discovery, both in mouse and in human, of MHC-specific inhibitory receptors clarified the molecular basis of this important NK cell function. However, the triggering receptors responsible for positive NK cell stimulation remained elusive until recently. Some of these receptors have now been identified in humans, thus shedding some light on the molecular mechanisms involved in NK cell activation during the process of natural cytotoxicity. Three novel, NK-specific, triggering surface molecules (NKp46, NKp30, and NKp44) have been identified. They represent the first members of a novel emerging group of receptors collectively termed natural cytotoxicity receptors (NCR). Monoclonal antibodies (mAbs) to NCR block to differing extents the NK-mediated lysis of various tumors. Moreover, lysis of certain tumors can be virtually abrogated by the simultaneous masking of the three NCRs. There is a coordinated surface expression of the three NCRs, their surface density varying in different individuals and also in the NK cells isolated from a given individual. A direct correlation exists between the surface density of NCR and the ability of NK cells to kill various tumors. NKp46 is the only NCR involved in human NK-mediated killing of murine target cells. Accordingly, a homologue of NKp46 has been detected in mouse. Molecular cloning of NCR revealed novel members of the Ig superfamily displaying a low degree of similarity to each other and to known human molecules. NCRs are coupled to different signal transducing adaptor proteins, including CD3zeta, FcRIgamma, and KARAP/DAP12. Another triggering NK receptor is NKG2D. It appears to play either a complementary or a synergistic role with NCRs. Thus, the triggering of NK cells in the process of tumor cell lysis may often depend on the concerted action of NCR and NKG2D. In some instances, however, it may uniquely depend upon the activity of NCR or NKG2D only. Strict NKG2D-dependency can be appreciated using clones that, in spite of their NCRdull phenotype, efficiently lyse certain epithelial tumors or leukemic cell lines. Other triggering surface molecules including 2B4 and the novel NKp80 appear to function as coreceptors rather than as true receptors. Indeed, they can induce natural cytotoxicity only when co-engaged with a triggering receptor. While an altered expression or function of NCR or NKG2D is being explored as a possible cause of immunological disorders, 2B4 dysfunction has already been associated with a severe form of immunodeficiency. Indeed, in patients with the X-linked lymphoproliferative disease, the inability to control Epstein-Barr virus infections may be consequent to a major dysfunction of 2B4 that exerts inhibitory instead of activating functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 19 (2001), S. 497-521 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Elevation of intracellular free Ca2+ is one of the key triggering signals for T-cell activation by antigen. A remarkable variety of Ca2+ signals in T cells, ranging from infrequent spikes to sustained oscillations and plateaus, derives from the interactions of multiple Ca2+ sources and sinks in the cell. Following engagement of the T cell receptor, intracellular channels (IP3 and ryanodine receptors) release Ca2+ from intracellular stores, and by depleting the stores trigger prolonged Ca2+ influx through store-operated Ca2+ (CRAC) channels in the plasma membrane. The amplitude and dynamics of the Ca2+ signal are shaped by several mechanisms, including K+ channels and membrane potential, slow modulation of the plasma membrane Ca2+-ATPase, and mitochondria that buffer Ca2+ and prevent the inactivation of CRAC channels. Ca2+ signals have a number of downstream targets occurring on multiple time scales. At short times, Ca2+ signals help to stabilize contacts between T cells and antigen-presenting cells through changes in motility and cytoskeletal reorganization. Over periods of minutes to hours, the amplitude, duration, and kinetic signature of Ca2+ signals increase the efficiency and specificity of gene activation events. The complexity of Ca2+ signals contains a wealth of information that may help to instruct lymphocytes to choose between alternate fates in response to antigenic stimulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 19 (2001), S. 595-621 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract B cell development is a highly regulated process whereby functional peripheral subsets are produced from hematopoietic stem cells, in the fetal liver before birth and in the bone marrow afterward. Here we review progress in understanding some aspects of this process in the mouse bone marrow, focusing on delineation of the earliest stages of commitment, on pre-B cell receptor selection, and B cell tolerance during the immature-to-mature B cell transition. Then we note some of the distinctions in hematopoiesis and pre-B selection between fetal liver and adult bone marrow, drawing a connection from fetal development to B-1/CD5+ B cells. Finally, focusing on CD5+ cells, we consider the forces that influence the generation and maintenance of this distinctive peripheral B cell population, enriched for natural autoreactive specificities that are encoded by particular germline VH-VL combinations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 495-519 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Lung surfactant covers and stabilizes a large, delicate surface at the interface between the host and the environment. The surfactant system is placed at risk by a number of environmental challenges such as inflammation, infection, or oxidant stress, and perhaps not surprisingly, it demonstrates adaptive changes in metabolism in response to alterations in the alveolar microenvironment. Recent experiments have shown that certain components of the surfactant system are active participants in the regulation of the alveolar response to a wide variety of environmental challenges. These components are capable not only of maintaining a low interfacial surface tension but also of amplifying or dampening inflammatory responses. These observations suggest that regulatory molecules are capable of both sensing the environment of the alveolus and providing feedback to the cells regulating surfactant synthesis, secretion, alveolar conversion, and clearance. In this review we examine the evidence from in vitro systems and gene-targeted mice that two surfactant-associated collectins (SP-A and SP-D) may serve in these roles and help modify surfactant homeostasis as part of a coordinated host response to environmental challenges.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 521-554 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The lung collectins, SP-A and SP-D, are important components of the innate immune response to microbial challenge and participate in other aspects of immune and inflammatory regulation within the lung. Both proteins bind to surface structures expressed by a wide variety of microorganisms and have the capacity to modulate multiple leukocyte functions, including the enhanced internalization and killing of certain microorganisms in vitro. In addition, transgenic mice with deficiencies in SP-A and SP-D show defective or altered responses to challenge with bacterial, fungal, and viral microorganisms and to bacterial lipopolysaccharides in vivo. Thus collectins could play particularly important roles in settings of inadequate or impaired specific immunity, and acquired alterations in the levels of active collectins within the airspaces and distal airways may increase susceptibility to infection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 579-605 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Renal cyclooxygenase 1 and 2 activity produces five primary prostanoids: prostaglandin E2, prostaglandin F2alpha, prostaglandin I2, thromboxane A2, and prostaglandin D2. These lipid mediators interact with a family of distinct G protein-coupled prostanoid receptors designated EP, FP, IP, TP, and DP, respectively, which exert important regulatory effects on renal function. The intrarenal distribution of these prostanoid receptors has been mapped, and the consequences of their activation have been partially characterized. FP, TP, and EP1 receptors preferentially couple to an increase in cell calcium. EP2, EP4, DP, and IP receptors stimulate cyclic AMP, whereas the EP3 receptor preferentially couples to Gi, inhibiting cyclic AMP generation. EP1 and EP3 mRNA expression predominates in the collecting duct and thick limb, respectively, where their stimulation reduces NaCl and water absorption, promoting natriuresis and diuresis. The FP receptor is highly expressed in the distal convoluted tubule, where it may have a distinct effect on renal salt transport. Although only low levels of EP2 receptor mRNA are detected in the kidney and its precise intrarenal localization is uncertain, mice with targeted disruption of the EP2 receptor exhibit salt-sensitive hypertension, suggesting that this receptor may also play an important role in salt excretion. In contrast, EP4 receptor mRNA is predominantly expressed in the glomerulus, where it may contribute to the regulation of glomerular hemodynamics and renin release. The IP receptor mRNA is highly expressed near the glomerulus, in the afferent arteriole, where it may also dilate renal arterioles and stimulate renin release. Conversely, TP receptors in the glomerulus may counteract the effects of these dilator prostanoids and increase glomerular resistance. At present there is little evidence for DP receptor expression in the kidney. These receptors act in a concerted fashion as physiological buffers, protecting the kidney from excessive functional changes during periods of physiological stress. Nonsteroidal anti-inflammatory drug (NSAID)-mediated cyclooxygenase inhibition results in the loss of these combined effects, which contributes to their renal effects. Selective prostanoid receptor antagonists may provide new therapeutic approaches for specific disease states.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 677-694 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The circadian clock is intrinsically linked to the daily cycle of day and night. A capacity for entrainment to light-dark cycles has proven to be a universal feature of the clock in all organisms examined. Here we review a wealth of recent advances that reveal more about the light input mechanisms by which the circadian clock is set to the correct time in a range of different systems. Now that we are identifying more of the molecular components of both the light input pathway and the clock mechanism itself, we are becoming increasingly less able to distinguish between the two.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 757-794 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Over the course of the past 40 years Neurospora has become a well-known and uniquely tractable model system for the analysis of the molecular basis of eukaryotic circadian oscillatory systems. Molecular bases for the period length and sustainability of the rhythm, light, and temperature resetting of the circadian system and for gating of light input and light effects are becoming understood, and Neurospora promises to be a suitable system for examining the role of coupled feedback loops in the clock. Many of these insights have shown or foreshadow direct parallels in mammalian systems, including the mechanism of light entrainment, the involvement of PAS:PAS heterodimers as transcriptional activators in essential clock-associated feedback loops, and dual role of FRQ in the loop as an activator and a repressor; similarities extend to the primary sequence level in at least one case, that of WC-1 and BMAL1. Work on circadian output in Neurospora has identified more than a dozen regulated genes and has been at the forefront of studies aimed at understanding clock control of gene expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 1-14 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 15-48 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The study of intermediary metabolism in biomolecules has been given new directions by recent experiments in human muscle and brain by 13C NMR. Labeled substrates, generally glucose, have enabled the fluxes to be determined in vivo, whereas the naturally abundant 13C has enabled concentrations to be measured. In muscle the glycogen synthesis pathway has been measured and the flux control determined by metabolic control analysis of data, which shows that this pathway is mainly responsible for insulin-stimulated glucose disposal and that a deficiency in the glucose transporter in the pathway is responsible for hyperglycemia in non-insulin-dependent diabetics. From a physiological point of view the most surprising result was that the heavily regulated allosteric enzyme, glycogen synthase, does not control flux but is needed to maintain homeostasis during flux changes. This novel role for a phosphorylated allosteric enzyme is proposed to be a general phenomenon in metabolic and signaling pathways, which physiologically link different cellular activities. In human and rat brains 13C NMR measurements of the flow of labeled glucose into glutamate and glutamine simultaneously determine the rate of glucose oxidation and glutamate neurotransmitter cycling and reveal a 1:1 stoichiometry between the two fluxes. Implications for the interpretation of functional imaging studies and for psychology are discussed. These results demonstrate how intermediary metabolism serves to connect biochemistry with systemic physiology when measured and analyzed by in vivo NMR methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 77-97 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The intracellular signaling mechanisms by which cholecystokinin (CCK) and other secretagogues regulate pancreatic acinar function are more complex than originally realized. CCK couples through heterotrimeric G proteins of the Gq family to lead to an increase in intracellular free Ca2+, which shows spatial and temporal patterns of signaling. The actions of Ca2+ are mediated in part by activation of a number of Ca2+-activated protein kinases and the protein phosphatase calcineurin. By the process of exocytosis the intracellular messengers Ca2+, diacylglycerol, and cAMP activate the release of the zymogen granule content in a manner that is poorly understood. This fusion event most likely involves SNARE and Rab proteins present on zymogen granules and cellular membrane domains. More likely related to nonsecretory aspects of cell function, CCK also activates three MAPK cascades leading to activation of ERKs, JNKs, and p38 MAPK. Although the function of these pathways is not well understood, ERKs are probably related to cell growth, and through phosphorylation of hsp27, p38 can affect the actin cytoskeleton. The PI3K (phosphatidylinositol 3-kinase)-mTOR (mammalian target of rapamycin) pathway is important for regulation of acinar cell protein synthesis because it leads to both activation of p70S6K and regulation of the availability of eIF4E in response to CCK. CCK also activates a number of tyrosyl phosphorylation events including that of p125FAK and other proteins associated with focal adhesions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 49-76 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Gastrin, produced by G cells in the gastric antrum, has been identified as the circulating hormone responsible for stimulation of acid secretion from the parietal cell. Gastrin also acts as a potent cell-growth factor that has been implicated in a variety of normal and abnormal biological processes including maintenance of the gastric mucosa, proliferation of enterochromaffin-like cells, and neoplastic transformation. Here, we review the models used to study the effects of gastrin on cell proliferation in vivo and in vitro with respect to mechanisms by which this hormone might influence normal and cancerous cell growth. Specifically, human and animal models of hypergastrinemia and hypogastrinemia have been described in vivo, and several cells that express cholecystokinin (CCK)B/gastrin receptors have been used for analysis of intracellular signaling pathways initiated by biologically active amidated gastrins. The binding of gastrin or CCK to their common cognate receptor triggers the activation of multiple signal transduction pathways that relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the synthesis of lipid-derived second messengers with subsequent activation of protein phosphorylation cascades, including mitogen-activated protein kinase, is an important early response to these signaling peptides. Gastrin and CCK also induce rapid Rho-dependent actin remodeling and coordinate tyrosine phosphorylation of cellular proteins including the non-receptor tyrosine kinases p125fak and Src and the adaptor proteins p130cas and paxillin. This article reviews recent advances in defining the role of gastrin and CCK in the control of cell proliferation in normal and cancer cells and in dissecting the signal transduction pathways that mediate the proliferative responses induced by these hormonal GI peptides in a variety of normal and cancer cell model systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 141-164 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The traditionally accepted theory has been that most of the biological effects of growth hormone (GH) are mediated by circulating (endocrine) insulin-like growth factor-I (IGF-I). This dogma was modified when it was discovered that most tissues express IGF-I that can act via an autocrine/paracrine fashion. In addition, both GH and IGF-I had independent effects on various target tissues. Using tissue-specific gene deletion of IGF-I in the liver, it has been shown that circulating IGF-I is predominantly liver-derived but is not essential for normal postnatal growth. Therefore, it is proposed that non-hepatic tissue-derived IGF-I may be sufficient for growth and development. Thus the original somatomedin hypothesis has undergone further modifications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 119-139 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Gastric epithelial organization and function are controlled and maintained by a variety of endocrine and paracrine mediators. Peptides encoded by the gastrin gene are an important part of this system because targeted deletion of the gene, or of the gastrin-CCKB receptor gene, leads to decreased numbers of parietal cells and decreased gastric acid secretion. Recent studies indicate that the gastrin precursor, preprogastrin, gives rise to a variety of products, each with a distinctive spectrum of biological activity. The conversion of progastrin to smaller peptides is regulated by multiple mechanisms including prohormone phosphorylation and secretory vesicle pH. Progastrin itself stimulates colonic epithelial proliferation; biosynthetic intermediates (Gly-gastrins) stimulate colonic epithelial proliferation and gastric epithelial differentiation; and C-terminally amidated gastrins stimulate colonic proliferation, gastric epithelial proliferation and differentiation, and acid secretion. The effects of progastrin-derived peptides on gastric epithelial function are mediated in part by release of paracrine factors that include histamine, epidermal growth factor (EGF)-receptor ligands, and Reg. The importance of the appropriate regulation of this system is shown by the observation that prolonged moderate hypergastrinemia in transgenic mice leads to remodelling of the gastric epithelium, and in the presence of Helicobacter, to gastric cancer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 99-117 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract In order to control cell functions, hormones and neurotransmitters generate an amazing diversity of Ca2+ signals such as local and global Ca2+ elevations and also Ca2+ oscillations. In pancreatic acinar cells, cholecystokinin (CCK) stimulates secretion of digestive enzyme and promotes cell growth, whereas acetylcholine (ACh) essentially triggers enzyme secretion. Pancreatic acinar cells are a classic model for the study of CCK- and ACh-evoked specific Ca2+ signals. In addition to inositol 1,4,5 trisphosphate (IP3), recent studies have shown that cyclic ADPribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) release Ca2+ in pancreatic acinar cells. Moreover, it has also been shown that both ACh and CCK trigger Ca2+ spikes by co-activation of IP3 and ryanodine receptors but by different means. ACh uses IP3 and Ca2+, whereas CCK uses cADPr and NAADP. In addition, CCK activates phospholipase A2 and D. The concept emerging from these studies is that agonist-specific Ca2+ signals in a single target cell are generated by combination of different intracellular messengers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 165-192 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract There was a time when the classification of sex hormones was simple. Androgens were male and estrogens female. What remains true today is that in young adults androgen levels are higher in males and estrogen levels higher in females. More recently we have learned that estrogens are necessary in males for regulation of male sexual behavior, maintenance of the skeleton and the cardiovascular system, and for normal function of the testis and prostate. The importance of androgen in females was never in doubt, it is after all the precursor of estrogen as the substrate for aromatase, the enzyme that produces estrogen. In addition, the tissue distribution of androgen receptors suggests that androgens themselves are important in the ovary, uterus, breast, and brain. New information promises to clarify some of the complex issues of the physiological roles of estrogen and the contribution of estrogen to the development of neoplastic diseases in humans. The discovery of the second estrogen receptor, the creation of mutant mice defective in both estrogen receptors and in the aromatase gene, the solution of the structures of the ligand-binding domains of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta), the finding of novel routes through which estrogen receptors can modulate transcription, and the identification of a man with a bi-allelic disruptive mutation of the ERalpha gene are but some of the milestones. This review focuses on the mechanistic aspects of signal transduction mediated by ERs and on the physiological consequences of deficiency of estrogen or estrogen receptor in the available mouse models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 215-233 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract During the 1980s the purification, cloning, and expression of various forms of guanylyl cyclase (GC) revealed that they served as receptors for extracellular signals. Seven membrane forms, which presumably exist as homodimers, and four subunits of apparent heterodimers (commonly referred to as the soluble forms) are known, but in animals such as nematodes, much larger numbers of GCs are expressed. The number of transmembrane segments (none, one, or multiple) divide the GC family into three groups. Those with no or one transmembrane segment bind nitric oxide/carbon monoxide (NO/CO) or peptides. There are no known ligands for the multiple transmembrane segment class of GCs. Mutational and structural analyses support a model where catalysis requires a shared substrate binding site between the subunits, whether homomeric or heteromeric in nature. Because some cyclases or cyclase ligand genes lack specific GC inhibitors, disruption of either has been used to define the functions of individual cyclases, as well as to define human genetic disease counterparts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 193-213 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Steroid hormone biosynthesis is acutely regulated by pituitary trophic hormones and other steroidogenic stimuli. This regulation requires the synthesis of a protein whose function is to translocate cholesterol from the outer to the inner mitochondrial membrane in steroidogenic cells, the rate-limiting step in steroid hormone formation. The steroidogenic acute regulatory (StAR) protein is an indispensable component in this process and is the best candidate to fill the role of the putative regulator. StAR is expressed in steroidogenic tissues in response to agents that stimulate steroid production, and mutations in the StAR gene result in the disease congenital lipoid adrenal hyperplasia, in which steroid hormone biosynthesis is severely compromised. The StAR null mouse has a phenotype that is essentially identical to the human disease. The positive and negative expression of StAR is sensitive to agents that increase and inhibit steroid biosynthesis respectively. The mechanism by which StAR mediates cholesterol transfer in the mitochondria has not been fully characterized. However, the tertiary structure of the START domain of a StAR homolog has been solved, and identification of a cholesterol-binding hydrophobic tunnel within this domain raises the possibility that StAR acts as a cholesterol-shuttling protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 235-257 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Ionic currents activated by hyperpolarization and regulated by cyclic nucleotides were first discovered more than 20 years ago. Recently the molecular identity of the underlying channels has been unveiled. The structural features of the protein sequences are discussed and related to the mechanisms of activation, selectivity for cyclic nucleotides, and ion permeation. Coverage includes a comparison of the biophysical properties of recombinant and native channels and their significance for the physiological functions of these channels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 259-287 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract O2 sensing is a fundamental biological process necessary for adaptation of living organisms to variable habitats and physiological situations. Cellular responses to hypoxia can be acute or chronic. Acute responses rely mainly on O2-regulated ion channels, which mediate adaptive changes in cell excitability, contractility, and secretory activity. Chronic responses depend on the modulation of hypoxia-inducible transcription factors, which determine the expression of numerous genes encoding enzymes, transporters and growth factors. O2-regulated ion channels and transcription factors are part of a widely operating signaling system that helps provide sufficient O2 to the tissues and protect the cells against damage due to O2 deficiency. Despite recent advances in the molecular characterization of O2-regulated ion channels and hypoxia-inducible factors, several unanswered questions remain regarding the nature of the O2 sensor molecules and the mechanisms of interaction between the sensors and the effectors. Current models of O2 sensing are based on either a heme protein capable of reversibly binding O2 or the production of oxygen reactive species by NAD(P)H oxidases and mitochondria. Complete molecular characterization of the hypoxia signaling pathways will help elucidate the differential sensitivity to hypoxia of the various cell types and the gradation of the cellular responses to variable levels of PO2. A deeper understanding of the cellular mechanisms of O2 sensing will facilitate the development of new pharmacological tools effective in the treatment of diseases such as stroke or myocardial ischemia caused by localized deficits of O2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 289-325 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Phosphagens are phosphorylated guanidino compounds that are linked to energy state and ATP hydrolysis by corresponding phosphagen kinase reactions: phosphagen + MgADP + H+〈-〉 guanidine acceptor + MgATP. Eight different phosphagens (and corresponding phosphagen kinases) are found in the animal kingdom distributed along distinct phylogenetic lines. By far, the creatine phosphate/creatine kinase (CP/CK) system, which is found in the vertebrates and is widely distributed throughout the lower chordates and invertebrates, is the most extensively studied phosphagen system. Phosphagen kinase reactions function in temporal ATP buffering, in regulating inorganic phosphate (Pi) levels, which impacts glycogenolysis and proton buffering, and in intracellular energy transport. Phosphagen kinase reactions show differences in thermodynamic poise, and the phosphagens themselves differ in terms of certain physical properties including intrinsic diffusivity. This review evaluates the distribution of phosphagen systems and tissue-specific expression of certain phosphagens in an evolutionary and functional context. The role of phosphagens in regulation of intracellular Pi levels likely evolved early. Thermodynamic poise of the phosphagen kinase reaction profoundly impacts this capacity. Furthermore, it is hypothesized that the capacity for intracellular targeting of CK evolved early as a means of facilitating energy transport in highly polarized cells and was subsequently exploited for temporal ATP buffering and dynamic roles in metabolic regulation in cells displaying high and variable rates of aerobic energy production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 327-357 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Terrestrial arthropods survive subzero temperatures by becoming either freeze tolerant (survive body fluid freezing) or freeze avoiding (prevent body fluid freezing). Protein ice nucleators (PINs), which limit supercooling and induce freezing, and antifreeze proteins (AFPs), which function to prevent freezing, can have roles in both freeze tolerance and avoidance. Many freeze-tolerant insects produce hemolymph PINs, which induce freezing at high subzero temperatures thereby inhibiting lethal intracellular freezing. Some freeze-tolerant species have AFPs that function as cryoprotectants to prevent freeze damage. Although the mechanism of this cryoprotection is not known, it may involve recrystallization inhibition and perhaps stabilization of the cell membrane. Freeze-avoiding species must prevent inoculative freezing initiated by external ice across the cuticle and extend supercooling abilities. Some insects remove PINs in the winter to promote supercooling, whereas others have selected against surfaces with ice-nucleating abilities on an evolutionary time scale. However, many freeze-avoiding species do have proteins with ice-nucleating activity, and these proteins must be masked in winter. In the beetle Dendroides canadensis, AFPs in the hemolymph and gut inhibit ice nucleators. Also, hemolymph AFPs and those associated with the layer of epidermal cells under the cuticle inhibit inoculative freezing. Two different insect AFPs have been characterized. One type from the beetles D. canadensis and Tenebrio molitor consists of 12- and 13-mer repeating units with disulfide bridges occurring at least every six residues. The spruce budworm AFP lacks regular repeat units. Both have much higher activities than any known AFPs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 359-390 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Marine teleosts at high latitudes can encounter ice-laden seawater that is approximately 1oC colder than the colligative freezing point of their body fluids. They avoid freezing by producing small antifreeze proteins (AFPs) that adsorb to ice and halt its growth, thereby producing an additional non-colligative lowering of the freezing point. AFPs are typically secreted by the liver into the blood. Recently, however, it has become clear that AFP isoforms are produced in the epidermis (skin, scales, fin, and gills) and may serve as a first line of defense against ice propagation into the fish. The basis for the adsorption of AFPs to ice is something of a mystery and is complicated by the extreme structural diversity of the five antifreeze types. Despite the recent acquisition of several AFP three-dimensional structures and the definition of their ice-binding sites by mutagenesis, no common ice-binding motif or even theme is apparent except that surface-surface complementarity is important for binding. The remarkable diversity of antifreeze types and their seemingly haphazard phylogenetic distribution suggest that these proteins might have evolved recently in response to sea level glaciation occurring just 1-2 million years ago in the northern hemisphere and 10-30 million years ago around Antarctica. Not surprisingly, the expression of AFP genes from different origins can also be quite dissimilar. The most intensively studied system is that of the winter flounder, which has a built-in annual cycle of antifreeze expression controlled by growth hormone (GH) release from the pituitary in tune with seasonal cues. The signal transduction pathway, transcription factors, and promoter elements involved in this process are just beginning to be characterized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 391-426 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract This review discusses the rapidly progressing field of cardiomyocyte signal transduction and the regulation of the hypertrophic response. When stimulated by a wide array of neurohumoral factors or when faced with an increase in ventricular-wall tension, individual cardiomyocytes undergo hypertrophic growth as an adaptive response. However, sustained cardiac hypertrophy is a leading predictor of future heart failure. A growing number of intracellular signaling pathways have been characterized as important transducers of the hypertrophic response, including specific G protein isoforms, low-molecular-weight GTPases (Ras, RhoA, and Rac), mitogen-activated protein kinase cascades, protein kinase C, calcineurin, gp130-signal transducer and activator of transcription, insulin-like growth factor I receptor pathway, fibroblast growth factor and transforming growth factor beta receptor pathways, and many others. Each of these signaling pathways has been implicated as a hypertrophic transducer, which collectively suggests an emerging paradigm whereby multiple pathways operate in concert to orchestrate a hypertrophic response
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 427-450 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract This review surveys a range of approaches using plasmid DNA encoding the 165-amino-acid isoform of vascular endothelial growth factor (phVEGF165) to therapeutically modulate micro- or macrovascular endothelial cells, focusing on strategies to augment postnatal collateral circulation in arterial insufficiency or to accelerate re-endothelialization after balloon angioplasty to prevent restenosis. We focus on intra-arterial and intramuscular/intramyocardial gene transfer of the VEGF165 gene, the options that have been most thoroughly studied to date in patients. We review developmental and postnatal significance of the endothelial-cell-specific mitogen VEGF that has stimulated these studies and present limitations of current knowledge as well as challenges for the future.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 1-29 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract PDZ domains are modular protein interaction domains that bind in a sequence-specific fashion to short C-terminal peptides or internal peptides that fold in a beta-finger. The diversity of PDZ binding specificities can be explained by variable amino acids lining the peptide-binding groove of the PDZ domain. Abundantly represented in Caenorhabditis elegans, Drosophila melanogaster, and mammalian genomes, PDZ domains are frequently found in multiple copies or are associated with other protein-binding motifs in multidomain scaffold proteins. PDZ-containing proteins are typically involved in the assembly of supramolecular complexes that perform localized signaling functions at particular subcellular locations. Organization around a PDZ-based scaffold allows the stable localization of interacting proteins and enhances the rate and fidelity of signal transduction within the complex. Some PDZ-containing proteins are more dynamically regulated in distribution and may also be involved in the trafficking of interacting proteins within the cell.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 57-86 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The primate visual brain consists of many separate, functionally specialized processing systems, each consisting of several apparently hierarchical stages or nodes. The evidence reviewed here leads me to speculate (a) that the processing systems are autonomous with respect to one another, (b) that activity at each node reaches a perceptual end point at a different time, resulting in a perceptual asynchrony in vision, and (c) that, consequently, activity at each node generates a microconsciousness. Visual consciousness is therefore distributed in space and time, with the universal organizing principle of abstraction applied separately within each processing system. The consequence of spatially and temporally distributed microconsciousnesses is that their integration is a multistage, nonhierarchical process that may involve a neural "glue."
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 139-166 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Correlated spiking of pre- and postsynaptic neurons can result in strengthening or weakening of synapses, depending on the temporal order of spiking. Recent findings indicate that there are narrow and cell type-specific temporal windows for such synaptic modification and that the generally accepted input- (or synapse-) specific rule for modification appears not to be strictly adhered to. Spike timing-dependent modifications, together with selective spread of synaptic changes, provide a set of cellular mechanisms that are likely to be important for the development and functioning of neural networks. When an axon of cell A is near enough to excite cell B or repeatedly or consistently takes part in firing it, some growth or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased. Donald Hebb (1949)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 167-202 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 203-238 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Binocular disparity provides the visual system with information concerning the three-dimensional layout of the environment. Recent physiological studies in the primary visual cortex provide a successful account of the mechanisms by which single neurons are able to signal disparity. This work also reveals that additional processing is required to make explicit the types of signal required for depth perception (such as the ability to match features correctly between the two monocular images). Some of these signals, such as those encoding relative disparity, are found in extrastriate cortex. Several other lines of evidence also suggest that the link between perception and neuronal activity is stronger in extrastriate cortex (especially MT) than in the primary visual cortex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 897-931 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Learning the relationships between aversive events and the environmental stimuli that predict such events is essential to the survival of organisms throughout the animal kingdom. Pavlovian fear conditioning is an exemplar of this form of learning that is exhibited by both rats and humans. Recent years have seen an incredible surge in interest in the neurobiology of fear conditioning. Neural circuits underlying fear conditioning have been mapped, synaptic plasticity in these circuits has been identified, and biochemical and genetic manipulations are beginning to unravel the molecular machinery responsible for the storage of fear memories. These advances represent an important step in understanding the neural substrates of a rapidly acquired and adaptive form of associative learning and memory in mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 869-896 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Transplantation studies performed in chicken embryos indicated that early anterior/posterior patterning of the vertebrate midbrain and cerebellum might be regulated by an organizing center at the junction between the midbrain and hindbrain. More than a decade of molecular and genetic studies have shown that such an organizer is indeed central to development of the midbrain and anterior hindbrain. Furthermore, a complicated molecular network that includes multiple positive and negative feedback loops underlies the establishment and refinement of a mid/hindbrain organizer, as well as the subsequent function of the organizer. In this review, we first introduce the expression patterns of the genes known to be involved in this patterning process and the quail-chick transplantation experiments that have provided the foundation for understanding the genetic pathways regulating mid/hindbrain patterning. Subsequently, we discuss the molecular genetic studies that have revealed the roles for many genes in normal early patterning of this region. Finally, some of the remaining questions and future directions are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 807-843 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Activity-dependent plasticity occurs in the spinal cord throughout life. Driven by input from the periphery and the brain, this plasticity plays an important role in the acquisition and maintenance of motor skills and in the effects of spinal cord injury and other central nervous system disorders. The responses of the isolated spinal cord to sensory input display sensitization, long-term potentiation, and related phenomena that contribute to chronic pain syndromes; they can also be modified by both classical and operant conditioning protocols. In animals with transected spinal cords and in humans with spinal cord injuries, treadmill training gradually modifies the spinal cord so as to improve performance. These adaptations by the isolated spinal cord are specific to the training regimen and underlie new approaches to restoring function after spinal cord injury. Descending inputs from the brain that occur during normal development, as a result of supraspinal trauma, and during skill acquisition change the spinal cord. The early development of adult spinal cord reflex patterns is driven by descending activity; disorders that disrupt descending activity later in life gradually change spinal cord reflexes. Athletic training, such as that undertaken by ballet dancers, is associated with gradual alterations in spinal reflexes that appear to contribute to skill acquisition. Operant conditioning protocols in animals and humans can produce comparable reflex changes and are associated with functional and structural plasticity in the spinal cord, including changes in motoneuron firing threshold and axonal conduction velocity, and in synaptic terminals on motoneurons. The corticospinal tract has a key role in producing this plasticity. Behavioral changes produced by practice or injury reflect the combination of plasticity at multiple spinal cord and supraspinal sites. Plasticity at multiple sites is both necessary-to insure continued performance of previously acquired behaviors-and inevitable-due to the ubiquity of the capacity for activity-dependent plasticity in the central nervous system. Appropriate induction and guidance of activity-dependent plasticity in the spinal cord is an essential component of new therapeutic approaches aimed at maximizing function after spinal cord injury or restoring function to a newly regenerated spinal cord. Because plasticity in the spinal cord contributes to skill acquisition and because the spinal cord is relatively simple and accessible, this plasticity is a logical and practical starting point for studying the acquisition and maintenance of skilled behaviors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 933-962 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract alpha-Latrotoxin, a potent neurotoxin from black widow spider venom, triggers synaptic vesicle exocytosis from presynaptic nerve terminals. alpha-Latrotoxin is a large protein toxin (120 kDa) that contains 22 ankyrin repeats. In stimulating exocytosis, alpha-latrotoxin binds to two distinct families of neuronal cell-surface receptors, neurexins and CLs (Cirl/latrophilins), which probably have a physiological function in synaptic cell adhesion. Binding of alpha-latrotoxin to these receptors does not in itself trigger exocytosis but serves to recruit the toxin to the synapse. Receptor-bound alpha-latrotoxin then inserts into the presynaptic plasma membrane to stimulate exocytosis by two distinct transmitter-specific mechanisms. Exocytosis of classical neurotransmitters (glutamate, GABA, acetylcholine) is induced in a calcium-independent manner by a direct intracellular action of alpha-latrotoxin, while exocytosis of catecholamines requires extracellular calcium. Elucidation of precisely how alpha-latrotoxin works is likely to provide major insight into how synaptic vesicle exocytosis is regulated, and how the release machineries of classical and catecholaminergic neurotransmitters differ.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 963-979 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Functional imaging methods permit analysis of neuronal systems in which activity is broadly distributed in time and space. In the olfactory system the dimensions that describe odorant stimuli in "odorant space" are still poorly defined. One way of trying to characterize the attributes of this space is to examine the ways in which its dimensions are encoded by the neurons and circuits making up the system and to compare these responses with physical-chemical attributes of the stimuli and with the output behavior of the animal. For documenting distributed events as they occur, imaging methods are among the few tools available. We are still in the early stages of this analysis; however, a number of recent studies have contributed new information to our understanding of the odorant coding problem. This paper describes imaging results in the context of other data that have contributed to our understanding of how odors are encoded by the peripheral olfactory pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 1005-1039 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The neurological mutant mouse reeler has played a critical role in the evolution of our understanding of normal brain development. From the earliest neuroanatomic studies of reeler, it was anticipated that the characterization of the gene responsible would elucidate important molecular and cellular principles governing cell positioning and the formation of synaptic circuits in the developing brain. Indeed, the identification of reelin has challenged many of our previous notions and has led to a new vision of the events involved in the migration of neurons. Several neuronal populations throughout the brain secrete Reelin, which binds to transmembrane receptors located on adjacent cells triggering a tyrosine kinase cascade. This allows neurons to complete migration and adopt their ultimate positions in laminar structures in the central nervous system. Recent studies have also suggested a role for the Reelin pathway in axonal branching, synaptogenesis, and pathology underlying neurodegeneration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 981-1004 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract In general the cerebellum is crucial for the control but not the initiation of movement. Voluntary eye movements are particularly useful for investigating the specific mechanisms underlying cerebellar control because they are precise and their brain-stem circuitry is already well understood. Here we describe single-unit and inactivation data showing that the posterior vermis and the caudal fastigial nucleus, to which it projects, provide a signal during horizontal saccades to make them fast, accurate, and consistent. The caudal fastigial nucleus also is necessary for the recovery of saccadic accuracy after actual or simulated neural or muscular damage causes horizontal saccades to be dysmetric. Saccade-related activity in the interpositus nucleus is related to vertical saccades. Both the caudal fastigial nucleus and the flocculus/paraflocculus are necessary for the normal smooth eye movements that pursue a small moving spot. By using eye movements, we have begun to uncover basic principles that give us insight into how the cerebellum may control movement in general.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 1041-1070 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The developmental steps required to build a brain have been recognized as a distinctive sequence since the turn of the twentieth century. As marking tools for experimental embryology emerged, the cellular events of cortical histogenesis have been intensively scrutinized. On this rich backdrop, molecular genetics provides the opportunity to play out the molecular programs that orchestrate these cellular events. Genetic studies of human brain malformation have proven a surprising source for finding the molecules that regulate CNS neuronal migration. These studies also serve to relate the significance of genes first identified in murine species to the more complex human brain. The known genetic repertoire that is special to neuronal migration in brain has rapidly expanded over the past five years, making this an appropriate time to take stock of the emerging picture. We do this from the perspective of human brain malformation syndromes, noting both what is now known of their genetic bases and what remains to be discovered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 1091-1119 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Forward genetic analyses in flies and mice have uncovered conserved transcriptional feedback loops at the heart of circadian pacemakers. Conserved mechanisms of posttranslational regulation, most notably phosphorylation, appear to be important for timing feedback. Transcript analyses have indicated that circadian clocks are not restricted to neurons but are found in several tissues. Comparisons between flies and mice highlight important differences in molecular circuitry and circadian organization. Future studies of pacemaker mechanisms and their control of physiology and behavior will likely continue to rely on forward genetics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 1071-1089 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Dendritic spines are morphological specializations that receive synaptic inputs and compartmentalize calcium. In spite of a long history of research, the specific function of spines is still not well understood. Here we review the current status of the relation between morphological changes in spines and synaptic plasticity. Since Cajal and Tanzi proposed that changes in the structure of the brain might occur as a consequence of experience, the search for the morphological correlates of learning has constituted one of the central questions in neuroscience. Although there are scores of studies that encompass this wide field in many species, in this review we focus on experimental work that has analyzed the morphological consequences of hippocampal long-term potentiation (LTP) in rodents. Over the past two decades many studies have demonstrated changes in the morphology of spines after LTP, such as enlargements of the spine head and shortenings of the spine neck. Biophysically, these changes translate into an increase in the synaptic current injected at the spine, as well as shortening of the time constant for calcium compartmentalization. In addition, recent online studies using time-lapse imaging have reported increased spinogenesis. The currently available data show a strong correlation between synaptic plasticity and morphological changes in spines, although at the same time, there is no evidence that these morphological changes are necessary or sufficient for the induction or maintenance of LTP. Still, they highlight once more how form and function go hand in hand in the central nervous system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 1121-1159 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The defining neuropathological characteristics of Alzheimer's disease are abundant filamentous tau lesions and deposits of fibrillar amyloid beta peptides. Prominent filamentous tau inclusions and brain degeneration in the absence of beta-amyloid deposits are also hallmarks of neurodegenerative tauopathies exemplified by sporadic corticobasal degeneration, progressive supranuclear palsy, and Pick's disease, as well as by hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Because multiple tau gene mutations are pathogenic for FTDP-17 and tau polymorphisms appear to be genetic risk factors for sporadic progressive supranuclear palsy and corticobasal degeneration, tau abnormalities are linked directly to the etiology and pathogenesis of neurodegenerative disease. Indeed, emerging data support the hypothesis that different tau gene mutations are pathogenic because they impair tau functions, promote tau fibrillization, or perturb tau gene splicing, thereby leading to formation of biochemically and structurally distinct aggregates of tau. Nonetheless, different members of the same kindred often exhibit diverse FTDP-17 syndromes, which suggests that additional genetic or epigenetic factors influence the phenotypic manifestations of neurodegenerative tauopathies. Although these and other hypothetical mechanisms of neurodegenerative tauopathies remain to be tested and validated, transgenic models are increasingly available for this purpose, and they will accelerate discovery of more effective therapies for neurodegenerative tauopathies and related disorders, including Alzheimer's disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 1161-1192 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Naturally occurring variations in maternal care alter the expression of genes that regulate behavioral and endocrine responses to stress, as well as hippocampal synaptic development. These effects form the basis for the development of stable, individual differences in stress reactivity and certain forms of cognition. Maternal care also influences the maternal behavior of female offspring, an effect that appears to be related to oxytocin receptor gene expression, and which forms the basis for the intergenerational transmission of individual differences in stress reactivity. Patterns of maternal care that increase stress reactivity in offspring are enhanced by stressors imposed on the mother. These findings provide evidence for the importance of parental care as a mediator of the effects of environmental adversity on neural development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 1193-1216 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract It has long been assumed that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical properties of the signals to which they are exposed. Attneave (1954), Barlow (1961) proposed that information theory could provide a link between environmental statistics and neural responses through the concept of coding efficiency. Recent developments in statistical modeling, along with powerful computational tools, have enabled researchers to study more sophisticated statistical models for visual images, to validate these models empirically against large sets of data, and to begin experimentally testing the efficient coding hypothesis for both individual neurons and populations of neurons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 1217-1281 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Nerve growth factor (NGF) was discovered 50 years ago as a molecule that promoted the survival and differentiation of sensory and sympathetic neurons. Its roles in neural development have been characterized extensively, but recent findings point to an unexpected diversity of NGF actions and indicate that developmental effects are only one aspect of the biology of NGF. This article considers expanded roles for NGF that are associated with the dynamically regulated production of NGF and its receptors that begins in development, extends throughout adult life and aging, and involves a surprising variety of neurons, glia, and nonneural cells. Particular attention is given to a growing body of evidence that suggests that among other roles, endogenous NGF signaling subserves neuroprotective and repair functions. The analysis points to many interesting unanswered questions and to the potential for continuing research on NGF to substantially enhance our understanding of the mechanisms and treatment of neurological disorders.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 1-25 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract It long has been known that mechanical forces play a role in the development of the cardiovascular system, but only recently have biomechanical engineers begun to explore this field. This paper reviews some of this work. First, an overview of the relevant biology is discussed. Next, a mechanical theory is presented that can be used to model developmental processes. The theory includes the effects of finite volumetric growth and active contractile forces. Finally, applications of this and other theories to problems of cardiovascular development are discussed, and some future directions are suggested. The intent is to stimulate further interest among engineers in this important area of research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. xv 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Thomas A. McMahon (1943-1999) was a pioneer in the field of biomechanics. He made primary contributions to our understanding of terrestrial locomotion, allometry and scaling, cardiac assist devices, orthopedic biomechanics, and a number of other areas. His work was frequently characterized by the use of simple mathematical models to explain seemingly complex phenomena. He also validated these models through creative experimentation. McMahon was a successful inventor and also published three well-received novels. He was raised in Lexington, Massachussetts, attended Cornell University as an undergraduate, and earned a PhD at MIT. From 1970 until his death, he was a member of the faculty of Harvard University, where he taught biomedical engineering. He is fondly remembered as a warm and gentle colleague and an exemplary mentor to his students.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 57-81 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract The heart requires a large amount of energy to sustain both ionic homeostasis and contraction. Under normal conditions, adenosine triphosphate (ATP) production meets this demand. Hence, there is a complex regulatory system that adjusts energy production to meet this demand. However, the mechanisms for this control are a topic of active debate. Energy metabolism can be divided into three main stages: substrate delivery to the tricarboxylic acid (TCA) cycle, the TCA cycle, and oxidative phosphorylation. Each of these processes has multiple control points and exerts control over the other stages. This review discusses the basic stages of energy metabolism, mechanisms of control, and the mathematical and computational models that have been used to study these mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 195-223 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract The Human Genome Project and other major genomic sequencing projects have pushed the development of sequencing technology. In the past six years alone, instrument throughput has increased 15-fold. New technologies are now on the horizon that could yield massive increases in our capacity for de novo DNA sequencing. This review presents a summary of state-of-the-art technologies for genomic sequencing and describes technologies that may be candidates for the next generation of DNA sequencing instruments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 245-273 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract Recent interest in using modeling and simulation to study movement is driven by the belief that this approach can provide insight into how the nervous system and muscles interact to produce coordinated motion of the body parts. With the computational resources available today, large-scale models of the body can be used to produce realistic simulations of movement that are an order of magnitude more complex than those produced just 10 years ago. This chapter reviews how the structure of the neuromusculoskeletal system is commonly represented in a multijoint model of movement, how modeling may be combined with optimization theory to simulate the dynamics of a motor task, and how model output can be analyzed to describe and explain muscle function. Some results obtained from simulations of jumping, pedaling, and walking are also reviewed to illustrate the approach.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 335-373 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract Soft lithography, a set of techniques for microfabrication, is based on printing and molding using elastomeric stamps with the patterns of interest in bas-relief. As a technique for fabricating microstructures for biological applications, soft lithography overcomes many of the shortcomings of photolithography. In particular, soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and to pattern and manipulate cells. For the relatively large feature sizes used in biology (〉=50 mum), production of prototype patterns and structures is convenient, inexpensive, and rapid. Self-assembled monolayers of alkanethiolates on gold are particularly easy to pattern by soft lithography, and they provide exquisite control over surface biochemistry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 83-108 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract Medical imaging has been used primarily for diagnosis. In the past 15 years there has been an emergence of the use of images for the guidance of therapy. This process requires three-dimensional localization devices, the ability to register medical images to physical space, and the ability to display position and trajectory on those images. This paper examines the development and state of the art in those processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 109-143 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract Nitric oxide (NO) is a remarkable free radical gas whose presence in biological systems and whose astonishing breadth of physiological and pathophysiological activities have only recently been recognized. Mathematical models for NO biotransport, just beginning to emerge in the literature, are examined in this review. Some puzzling and paradoxical properties of NO may be understood by modeling proposed mechanisms with known parameters. For example, it is not obvious how NO can survive strong scavenging by hemoglobin and still be a potent vasodilator. Recent models do not completely explain how tissue NO can reach effective levels in the vascular wall, and they point toward mechanisms that need further investigation. Models help to make sense of extremely low partial pressures of NO exhaled from the lung and may provide diagnostic information. The role of NO as a gaseous neurotransmitter is also being understood through modeling. Studies on the effects of NO on O2 transport and metabolism, also reviewed, suggest that previous mathematical models of transport of O2 to tissue need to be revised, taking the biological activity of NO into account.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 225-243 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract The development of a tissue-engineered blood vessel substitute has motivated much of the research in the area of cardiovascular tissue engineering over the past 20 years. Several methodologies have emerged for constructing blood vessel replacements with biological functionality. These include cell-seeded collagen gels, cell-seeded biodegradable synthetic polymer scaffolds, cell self-assembly, and acellular techniques. This review details the most recent developments, with a focus on core technologies and construct development. Specific examples are discussed to illustrate both the benefits and shortcomings of each methodology, as well as to underline common themes. Finally, a brief perspective on challenges for the future is presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 307-333 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract Trabecular bone is a complex material with substantial heterogeneity. Its elastic and strength properties vary widely across anatomic sites, and with aging and disease. Although these properties depend very much on density, the role of architecture and tissue material properties remain uncertain. It is interesting that the strains at which the bone fails are almost independent of density. Current work addresses the underlying structure-function relations for such behavior, as well as more complex mechanical behavior, such as multiaxial loading, time-dependent failure, and damage accumulation. A unique tool for studying such behavior is the microstructural class of finite element models, particularly the "high-resolution" models. It is expected that with continued progress in this field, substantial insight will be gained into such important problems as osteoporosis, bone fracture, bone remodeling, and design/analysis of bone-implant systems. This article reviews the state of the art in trabecular bone biomechanics, focusing on the mechanical aspects, and attempts to identify important areas of current and future research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 555-578 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract SP-B is the only surfactant-associated protein absolutely required for postnatal lung function and survival. Complete deficiency of SP-B in mice and humans results in lethal, neonatal respiratory distress syndrome and is characterized by a virtual absence of lung compliance, highly disorganized lamellar bodies, and greatly diminished levels of SP-C mature peptide; in contrast, lung structure and function in SP-C null mice is normal. This review attempts to integrate recent findings in humans and transgenic mice with the results of in vitro studies to provide a better understanding of the functions of SP-B and SP-C and the structural basis for their actions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 63 (2001), S. 847-869 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The precise regulation of neural excitability is essential for proper nerve cell, neural circuit, and nervous system function. During postembryonic development and throughout life, neurons are challenged with perturbations that can alter excitability, including changes in cell size, innervation, and synaptic input. Numerous experiments demonstrate that neurons are able to compensate for these types of perturbation and maintain appropriate levels of excitation. The mechanisms of compensation are diverse, including regulated changes to synaptic size, synaptic strength, and ion channel function in the plasma membrane. These data are evidence for homeostatic regulatory systems that control neural excitability. A model of neural homeostasis suggests that information about cell activity, cell size, and innervation is fed into a system of cellular monitors. Intracellular- and intercellular-signaling systems transduce this information into regulated changes in synaptic and ion channel function. This review discusses evidence for such a model of homeostatic regulation in the nervous system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 239-262 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Studies of the disorders known as paraneoplastic neurologic degenerations exemplify the successful application of modern molecular biological techniques to diseases, yielding, even for these extremely rare disorders, wide-ranging insight into basic neurobiology, tumor immunity, and autoimmune neurologic disease. Immune responses to paraneoplastic neurologic degeneration antigens, also called onconeural antigens, have been exploited to clone and characterize a number of neuron-specific proteins, including several RNA-binding proteins and new kinds of signaling molecules. The biology and functions of these proteins are reviewed, and a model in which their functions are related to the pathogenesis of autoimmune neurologic disease is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 263-297 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract We examine early olfactory processing in the vertebrate and insect olfactory systems, using a computational perspective. What transformations occur between the first and second olfactory processing stages? What are the causes and consequences of these transformations? To answer these questions, we focus on the functions of olfactory circuit structure and on the role of time in odor-evoked integrative processes. We argue that early olfactory relays are active and dynamical networks, whose actions change the format of odor-related information in very specific ways, so as to refine stimulus identification. Finally, we introduce a new theoretical framework ("winnerless competition") for the interpretation of these data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 653-675 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract A fundamental problem in neuroscience is understanding how a neuron transduces synaptic input into action potentials. The dendrites form the substrate for consolidating thousands of synaptic inputs and are the first stage for signal processing in the neuron. Traditionally, dendrites are viewed as passive structures whose main function is to funnel synaptic input into the soma. However, dendrites contain a wide variety of voltage- and time-dependent ion channels. When activated, the currents through these channels can alter the amplitude and time course of the synaptic input and under certain conditions even evoke all-or-none regenerative potentials. The synaptic input that ultimately reaches the soma is likely to be a highly transformed version of the original signal. Thus, a key step in understanding the relationship between synaptic input and neuronal firing is to elucidate the signal processing that occurs in the dendrites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 677-736 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Neurotrophins regulate development, maintenance, and function of vertebrate nervous systems. Neurotrophins activate two different classes of receptors, the Trk family of receptor tyrosine kinases and p75NTR, a member of the TNF receptor superfamily. Through these, neurotrophins activate many signaling pathways, including those mediated by ras and members of the cdc-42/ras/rho G protein families, and the MAP kinase, PI-3 kinase, and Jun kinase cascades. During development, limiting amounts of neurotrophins function as survival factors to ensure a match between the number of surviving neurons and the requirement for appropriate target innervation. They also regulate cell fate decisions, axon growth, dendrite pruning, the patterning of innervation and the expression of proteins crucial for normal neuronal function, such as neurotransmitters and ion channels. These proteins also regulate many aspects of neural function. In the mature nervous system, they control synaptic function and synaptic plasticity, while continuing to modulate neuronal survival.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 779-805 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Visual transduction captures widespread interest because its G-protein signaling motif recurs throughout nature yet is uniquely accessible for study in the photoreceptor cells. The light-activated currents generated at the photoreceptor outer segment provide an easily observed real-time measure of the output of the signaling cascade, and the ease of obtaining pure samples of outer segments in reasonable quantity facilitates biochemical experiments. A quiet revolution in the study of the mechanism has occurred during the past decade with the advent of gene-targeting techniques. These have made it possible to observe how transduction is perturbed by the deletion, overexpression, or mutation of specific components of the transduction apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 737-777 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The raphe magnus is part of an interrelated region of medullary raphe and ventromedial reticular nuclei that project to all areas of the spinal gray. Activation of raphe and reticular neurons evokes modulatory effects in sensory, autonomic, and motor spinal processes. Two physiological types of nonserotonergic cells are observed in the medullary raphe and are thought to modulate spinal pain processing in opposing directions. Recent evidence suggests that these cells may modulate stimulus-evoked arousal or alerting rather than pain-evoked withdrawals. Nonserotonergic cells are also likely to modulate spinal autonomic and motor circuits involved in thermoregulation and sexual function. Medullary serotonergic cells have state-dependent discharge and are likely to contribute to the modulation of pain processing, thermoregulation, and sexual function in the spinal cord. The medullary raphe and ventromedial reticular region may set sensory, autonomic, and motor spinal circuits into configurations that are appropriate to the current behavioral state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 1283-1309 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Flies can learn. For the past 25 years, researchers have isolated mutants, engineered mutants with transgenes, and tested likely suspect mutants from other screens for learning ability. There have been notable surprises-conventional second messenger systems co-opted for intricate associative learning tasks, two entirely separate forms of long-term memory, a cell-adhesion molecule that is necessary for short-term memory. The most recent surprise is the mechanistic kinship revealed between learning and addictive drug response behaviors in flies. The flow of new insight is likely to quicken with the completion of the fly genome and the arrival of more selective methods of gene expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 391-419 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract A number of technological innovations are yielding unprecedented data on the networks of biochemical, genetic, and biophysical reactions that underlie cellular behavior and failure. These networks are composed of hundreds to thousands of chemical species and structures, interacting via nonlinear and possibly stochastic physical processes. A central goal of modern biology is to optimally use the data on these networks to understand how their design leads to the observed cellular behaviors and failures. Ultimately, this knowledge should enable cellular engineers to redesign cellular processes to meet industrial needs (such as optimal natural product synthesis), aid in choosing the most effective targets for pharmaceuticals, and tailor treatment for individual genotypes. The size and complexity of these networks and the inevitable lack of complete data, however, makes reaching these goals extremely difficult. If it proves possible to modularize these networks into functional subnetworks, then these smaller networks may be amenable to direct analysis and might serve as regulatory motifs. These motifs, recurring elements of control, may help to deduce the structure and function of partially known networks and form the basis for fulfilling the goals described above. A number of approaches to identifying and analyzing control motifs in intracellular networks are reviewed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 39 (2001), S. 1-11 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Notes: I first describe my introduction to plant pathology and early experiences with employment, the environment, diseases, pests, and various plant pathologists. Then I recount a decade of stimulating studies at the University of Minnesota and the route I followed to a career in international agriculture with the Rockefeller Foundation in Colombia and later at Cornell University. My appreciation for and knowledge of traditional farmers and sustainable agriculture occurred as a slow awakening. Comments are made regarding problems, principles, and satisfactions associated with the improvement of efforts to aid food production in developing countries. My curious love affair with root and tuber crops, especially cassava, is explained and readily defended. My favorite pathogens, Phytophthora infestans and Ralstonia solanacearum, among others, are considered. The pleasures and satisfactions of teaching, writing, and sabbatical leaves are related. Finally, thoughts on the balance between basic and applied research in plant pathology are offered with significant nervousness about the future of our discipline.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 39 (2001), S. 79-102 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Notes: Abstract Nineteen single dominant genes (R genes) for resistance to viruses, nematodes, and fungi have been positioned on the molecular map of potato using DNA markers. Fourteen of those genes are located in five "hotspots" for resistance in the potato genome. Quantitative trait loci (QTL) for resistance to late blight caused by the oomycete Phytophthora infestans, to tuber rot caused by the bacterium Erwinia carotovora ssp. atroseptica, and to root cyst nematodes have been identified on all 12 potato chromosomes. Some QTL for resistance to different pathogens are linked to each other and/or to resistance hotspots. Based on the genetic clustering with R genes, we propose that some QTL for resistance have a molecular basis similar to single R genes. Mapping potato genes with sequence similarity to cloned R genes of other plants and other defense-related genes reveals linkage between candidate genes, R genes, and resistance QTL. To explain the molecular basis of polygenic resistance in potato we propose (a) genes having structural similarity with cloned R genes and (b) genes involved in the defense response. The "candidate gene approach" enables the identification of markers highly useful for marker-assisted selection in potato breeding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 39 (2001), S. 103-133 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Notes: Abstract The controlled environment of greenhouses, the high value of the crops, and the limited number of registered fungicides offer a unique niche for the biological control of plant diseases. During the past ten years, over 80 biocontrol products have been marketed worldwide. A large percentage of these have been developed for greenhouse crops. Products to control soilborne pathogens such as Sclerotinia, Pythium, Rhizoctonia and Fusarium include Coniothyrium minitans, species of Gliocladium, Trichoderma, Streptomyces, and Bacillus, and nonpathogenic Fusarium. Products containing Trichoderma, Ampelomyces quisqualis, Bacillus, and Ulocladium are being developed to control the primary foliar diseases, Botrytis and powdery mildew. The development of Pseudomonas for the control of Pythium diseases in hydroponics and Pseudozyma flocculosa for the control of powdery mildew by two Canadian research programs is presented. In the future, biological control of diseases in greenhouses could predominate over chemical pesticides, in the same way that biological control of greenhouse insects predominates in the United Kingdom. The limitations in formulation, registration, and commercialization are discussed, along with suggested future research priorities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 39 (2001), S. 157-186 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Notes: Abstract Populations of plant viruses, like all other living beings, are genetically heterogeneous, a property long recognized in plant virology. Only recently have the processes resulting in genetic variation and diversity in virus populations and genetic structure been analyzed quantitatively. The subject of this review is the analysis of genetic variation, its quantification in plant virus populations, and what factors and processes determine the genetic structure of these populations and its temporal change. The high potential for genetic variation in plant viruses, through either mutation or genetic exchange by recombination or reassortment of genomic segments, need not necessarily result in high diversity of virus populations. Selection by factors such as the interaction of the virus with host plants and vectors and random genetic drift may in fact reduce genetic diversity in populations. There is evidence that negative selection results in virus-encoded proteins being not more variable than those of their hosts and vectors. Evidence suggests that small population diversity, and genetic stability, is the rule. Populations of plant viruses often consist of a few genetic variants and many infrequent variants. Their distribution may provide evidence of a population that is undifferentiated, differentiated by factors such as location, host plant, or time, or that fluctuates randomly in composition, depending on the virus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 39 (2001), S. 259-284 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Notes: Abstract The vast evolutionary gulf between plants and animals-in terms of structure, composition, and many environmental factors-would seem to preclude the possibility that these organisms could act as receptive hosts to the same microorganism. However, some pathogens are capable of establishing themselves and thriving in members of both the plant and animal kingdoms. The identification of functionally conserved virulence mechanisms required to infect hosts of divergent evolutionary origins demonstrates the remarkable conservation in some of the underlying virulence mechanisms of pathogenesis and is changing researchers' thinking about the evolution of microbial pathogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 39 (2001), S. 313-335 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Notes: Abstract Polygalacturonase-inhibiting proteins (PGIPs) are extracellular plant proteins capable of inhibiting fungal endopolygalacturonases (PGs). Plants have evolved different PGIPs with specific recognition abilities against the many PGs produced by fungi. The genes encoding PGIPs are organized into families, and different members of each family may encode proteins with nearly identical characteristics but different specificities and regulation. PGIPs are typically induced by pathogen infection and stress-related signals. The recognition ability of PGIPs resides in their LRR (leucine-rich repeat) structure, where solvent-exposed residues in the beta-strand/beta-turn motifs of the LRRs are determinants of specificity. Manipulation of the primary structure of PGIPs is expected to generate more efficient PGIPs with novel recognition specificities to protect crop plants against pathogens.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 39 (2001), S. 419-460 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Notes: Abstract This article summarizes studies of viral coat (capsid) proteins (CPs) of RNA plant viruses. In addition, we discuss and seek to interpret the knowledge accumulated to date. CPs are named for their primary function; to encapsidate viral genomic nucleic acids. However, encapsidation is only one feature of an extremely diverse array of structural, functional, and ecological roles played during viral infection and spread. Herein, we consider the evolution of viral CPs and their multitude of interactions with factors encoded by the virus, host plant, or viral vector (biological transmission agent) that influence the infection and epidemiological facets of plant disease. In addition, applications of today's understanding of CPs in the protection of crops from viral infection and use in the manufacture of valuable compounds are considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Nutrition 21 (2001), S. 381-406 
    ISSN: 0199-9885
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Plants consumed by humans contain thousands of phenolic compounds. The effects of dietary polyphenols are of great current interest due to their antioxidative and possible anticarcinogenic activities. A popular belief is that dietary polyphenols are anticarcinogens because they are antioxidants, but direct evidence for this supposition is lacking. This chapter reviews the inhibition of tumorigenesis by phenolic acids and derivatives, tea and catechins, isoflavones and soy preparations, quercetin and other flavonoids, resveratrol, and lignans as well as the mechanisms involved based on studies in vivo and in vitro. Polyphenols may inhibit carcinogenesis by affecting the molecular events in the initiation, promotion, and progression stages. Isoflavones and lignans may influence tumor formation by affecting estrogen-related activities. The bioavailability of the dietary polyphenols is discussed extensively, because the tissue levels of the effective compounds determine the biological activity. Understanding the bioavailability and blood and tissue levels of polyphenols is also important in extrapolating results from studies in cell lines to animal models and humans. Epidemiological studies concerning polyphenol consumption and human cancer risk suggest the protective effects of certain food items and polyphenols, but more studies are needed for clear-cut conclusions. Perspectives on the application of dietary polyphenols for the prevention of human cancer and possible concerns on the consumption of excessive amounts of polyphenols are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Pharmacology 41 (2001), S. 625-659 
    ISSN: 0362-1642
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Chemistry and Pharmacology
    Notes: Abstract Degenerative diseases are characterized by a worsening of disease status over time. The rate of deterioration is determined by the natural rate of progression of the disease and by the effect of drug treatments. A goal of drug treatment is to slow disease progression. Drug treatments can be categorized as symptomatic or protective. Symptomatic treatments do not affect the rate of disease progression whereas protective treatments have the ability to slow disease progression down. Many current methods for describing disease progression have two common drawbacks: a linear relationship between time and disease status is assumed, and within- and between-subject variability is ignored. Disease progress models combined with pharmacokinetic pharmacodynamic models and hierarchical random effects statistical models provide insights into understanding the time course and management of degenerative disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Pharmacology 41 (2001), S. 691-721 
    ISSN: 0362-1642
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Chemistry and Pharmacology
    Notes: Abstract The functions of the lower urinary tract, to store and periodically release urine, are dependent on the activity of smooth and striated muscles in the urinary bladder, urethra, and external urethral sphincter. This activity is in turn controlled by neural circuits in the brain, spinal cord, and peripheral ganglia. Various neurotransmitters, including acetylcholine, norepinephrine, dopamine, serotonin, excitatory and inhibitory amino acids, adenosine triphosphate, nitric oxide, and neuropeptides, have been implicated in the neural regulation of the lower urinary tract. Injuries or diseases of the nervous system, as well as drugs and disorders of the peripheral organs, can produce voiding dysfunctions such as urinary frequency, urgency, and incontinence or inefficient voiding and urinary retention. This chapter will review recent advances in our understanding of the pathophysiology of voiding disorders and the targets for drug therapy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Pharmacology 41 (2001), S. 723-749 
    ISSN: 0362-1642
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Chemistry and Pharmacology
    Notes: Abstract Osteopontin (OPN) is a glycosylated phosphoprotein found in all body fluids and in the proteinaceous matrix of mineralized tissues. It can function both as a cell attachment protein and as a cytokine, delivering signals to cells via a number of receptors including several integrins and CD44. Expression of OPN is enhanced by a variety of toxicants, especially those that activate protein kinase C. In its capacity as a signaling molecule, OPN can modify gene expression and promote the migration of monocytes/macrophages up an OPN gradient. It has both inflammatory and anti-inflammatory actions. Some experiments suggest that it may inhibit apoptosis, possibly contributing to the survival of cells in response to toxicant injury. Elevated OPN expression often correlates with malignancy and has been shown to enhance the tumorigenic and/or metastatic phenotype of the cancer cell. Recent studies have revealed that OPN plays critical roles in bone remodeling and cell-mediated immunity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...