ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (5)
  • Data
  • finite volume  (5)
  • Wiley-Blackwell  (5)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • 2010-2014
  • 2005-2009
  • 1995-1999  (5)
  • 1980-1984
  • 1975-1979
  • 1925-1929
  • 2012
  • 1997  (5)
  • 1984
  • 1980
  • 1978
  • 1977
  • 1925
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (5)
Collection
  • Books
  • Articles  (5)
  • Data
Publisher
  • Wiley-Blackwell  (5)
  • American Chemical Society
  • American Institute of Physics (AIP)
Years
  • 2010-2014
  • 2005-2009
  • 1995-1999  (5)
  • 1980-1984
  • 1975-1979
  • +
Year
Topic
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (5)
  • Mathematics  (1)
  • Technology  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 25 (1997), S. 225-243 
    ISSN: 0271-2091
    Keywords: Navier-Stokes ; low Peclet number ; chemical vapour deposition ; low Mach number ; finite volume ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An enhanced solution strategy based on the SIMPLER algorithm is presented for low-Peclet-number mass transport calculations with applications in low-pressure material processing. The accurate solution of highly diffusive flows requires boundary conditions that preserve specified chemical species mass fluxes. The implementation of such boundary conditions in the standard SIMPLER solution procedure leads to degraded convergence that scales with the Peclet number. Modifications to both the non-linear and linear parts of the solution algorithm remove the slow convergence problem. In particular, the linearized species transport equations must be implicitly coupled to the boundary condition equations and the combined system must be solved exactly at each non-linear iteration. The pressure correction boundary conditions are reformulated to ensure that continuity is preserved in each finite volume at each iteration. The boundary condition scaling problem is demonstrated with a simple linear model problem. The enhanced solution strategy is implemented in a baseline computer code that is used to solve the multicomponent Navier-Stokes equations on a generalized, multiple-block grid system. Accelerated convergence rates are demonstrated for several material-processing example problems. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 519-530 
    ISSN: 0271-2091
    Keywords: local mesh refinement ; multigrid ; finite volume ; SIMPLEC ; k-∊ ; buoyancy ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper presents a local mesh refinement procedure based on a discretization over internal interfaces where the averaging is performed on the coarse side. It is implemented in a multigrid environment but can optionally be used without it. The discretization for the convective terms in the velocity and the temperature equation is the QUICK scheme, while the HYBRID-UPWIND scheme is used in the turbulence equations. The turbulence model used is a two-layer k-∊ model. We have applied this formulation on a backward-facing step at Re=800 and on a three-dimensional turbulent ventilated enclosure, where we have resolved a geometrically complex inlet consisting of 84 nozzles. In both cases the concept of local mesh refinements was found to be an efficient and accurate solution strategy. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 1111-1128 
    ISSN: 0271-2091
    Keywords: pressure correction ; block-implicit ; finite volume ; parallel ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A comparison of a new parallel block-implicit method and the parallel pressure correction procedure for the solution of the incompressible Navier-Stokes equations is presented. The block-implicit algorithm is based on a pressure equation. The system of non-linear equation s is solved by Newton's method. For the solution of the linear algebraic systems the Bi-CGSTAB algorithm with incomplete lower-upper (ILU) decomposition of the matrix is applied. Domain decomposition serves as a strategy for the parallelization of the algorithms. Different algorithms for the parallel solution of the linear system of algebraic equations in conjunction with the pressure correction procedure are proposed. Three different flows are predicted with the parallel algorithms. Results and efficiency data of the block-implicit method are compared with the parallel version of the pressure correction algorithm. The block-implicit method is characterized by stable convergence behaviour, high numerical efficiency, insensitivity to relaxation parameters and high spatial accuracy. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 25 (1997), S. 659-677 
    ISSN: 0271-2091
    Keywords: periodic flow ; periodic heat transfer ; unstructured mesh ; finite volume ; pressure-based ; heat exchangers ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical scheme has been developed for computing fluid flow and heat transfer in periodically repeating geometries. Unstructured solution-adaptive meshes are used in a cell-centred finite volume formulation. The SIMPLE algorithm is used for pressure-velocity coupling. For periodic flows the static pressure is decomposed into a periodic component and one that varies linearly in the streamwise direction. The latter is computed from the imposition of overall mass balance at the periodic boundary. A subiteration between the periodic pressure correction equation and the correction to the linear component is used. For heat transfer a formulation using the physical rather than the scaled temperature is employed. The scheme is applied to both laminar and turbulent computations of periodic flow and heat transfer in a variety of heat exchanger geometries; comparison with published computations and experimental data is found to be satisfactory. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 25 (1997), S. 1241-1261 
    ISSN: 0271-2091
    Keywords: finite volume ; upwind scheme ; MUSCL ; unstructured ; 3D ; transonic ; turbulent ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The development of new aeronautic projects require accurate and efficient simulations of compressible flows in complex geometries. It is well known that most flows of interest are at least locally turbulent and that the modelling of this turbulence is critical for the reliability of the computations. A turbulence closure model which is both cheap and reasonably accurate is an essential part of a compressible code. An implicit algorithm to solve the 2D and 3D compressible Navier-Stokes equations on unstructured triangular/tetrahedral grids has been extended to turbulent flows. This numerical scheme is based on second-order finite element-finite volume discretization: the diffusive and source terms of the Navier-Stokes equations are computed using a finite element method, while the other terms are computed with a finite volume method. Finite volume cells are built around each node by means of the medians. The convective fluxes are evaluated with the approximate Riemann solver of Roe coupled with the van Albada limiter. The standard k-∊ model has been introduced to take into account turbulence. Implicit integration schemes with efficient numerical methods (CGS, GMRES and various preconditioning techniques) have also been implemented. Our interest is to present the whole method and to demonstrate its limitations on some well-known test cases in three-dimensional geometries. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...