ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12)
  • Data
  • hybridoma  (12)
  • 2010-2014
  • 2005-2009
  • 1995-1999  (12)
  • 1980-1984
  • 1975-1979
  • 1935-1939
  • 1925-1929
  • 2010
  • 2009
  • 1997  (12)
  • 1978
  • 1977
  • 1976
  • 1925
  • Process Engineering, Biotechnology, Nutrition Technology  (12)
Collection
  • Articles  (12)
  • Data
Publisher
Years
  • 2010-2014
  • 2005-2009
  • 1995-1999  (12)
  • 1980-1984
  • 1975-1979
  • +
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cytotechnology 23 (1997), S. 231-239 
    ISSN: 1573-0778
    Keywords: apoptosis ; hybridoma ; amino acids ; starvation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Two mouse hybridoma cell lines cultured in different basal media withthe iron-rich protein-free supplement were subjected to deliberatestarvation by inoculation into media diluted with saline to 50% or less.In the diluted media the growth was markedly suppressed and a largefraction of cells died by apoptosis. The cells could be rescued fromapoptotic death by individual additions of amino acids, such as glycine,L-alanine, L-serine, L-threonine, L-proline, L-asparagine, L-glutamine,L-histidine, D-serine, β-alanine or taurine. Amino acids withhydrophobic or charged side chains were without effect. The apoptosispreventing activity manifested itself even in extremely diluted media,down to 10% of the standard medium. The activity of L-alanine in theprotection of cells starving in 20% medium was shown also in semicontinuousculture. In the presence of 2 mM L-alanine the steady-state viable cell density more than doubled, with respect to control, andthe apoptotic index dropped from 37% in the control to 16%. It wasconcluded that the apoptosis-preventing amino acids acted as signalmolecules, rather than nutrients, and that the signal had a character ofa survival factor. The specificity of present results, obtained with twodifferent hybridomas, supports our view (Franěk and Chládková-Šrámková, 1995) that the membranetransport macromolecules themselves may play the role of therecognition elements in a signal transduction pathway controlling thesurvival of hybridoma cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0778
    Keywords: apoptosis resistant ; bag–1 ; bcl–2 ; COS–1 ; hybridoma ; protein production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The authors established apoptosis resistant COS–1, myeloma, hybridoma, and Friend leukemia cell lines by genetically engineering cells, aiming at more efficient protein production by cell culture. COS–1 cells, which are most widely used for eukariotic gene expression, were transfected with human bcl–2 gene. Both bcl–2 and mock transfected COS–1 cells were cultured at low (0.2%) serum concentration for 9 days. The final viable cell number of the bcl–2 transfected cells was ninefold of that of the mock transfectants. Both bcl–2 and mock transfectants were further transfected with the vector pcDNA-λ containing SV40 ori and immunoglobulin λ gene for transiently expressing λ protein. The bcl–2 expressing COS–1 cells produced more λ protein than the mock transfected COS–1 cells after 4 days posttransfection. Mouse myeloma p3-X63-Ag.8.653 cells, which are widely used as the partner for preparing hybridoma, and hybridoma 2E3 cells were transfected with human bcl–2 gene. Both bcl–2 transfected myeloma and hybridoma survived longer than the corresponding original cells in batch culture. The bcl–2 transfected 2E3 cells survived 2 to 4 four days longer in culture, producing 1.5- to 4-fold amount of antibody in comparison with the mock transfectants. Coexpression of bag–1 with bcl–2 improved survival of hybridoma 2E3 cells more than bcl–2 expression alone. The bag–1 and bcl–2 coexpressing cells produced more IgG than the the cells expressing bcl–2 alone. Apoptosis of Friend murine erythroleukemia(F-MEL) cells was suppressed with antisense c-jun expression. The antisense c-jun expressing cells survived 16 days at non-growth state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0778
    Keywords: antibody consistency ; hollow fibre bioreactor ; hybridoma ; monoclonal antibody
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract This paper analyses the performance of MAbMaxTM/TricentricTM, a new generation hollow fibre bioreactor, for hybridoma growth and antibody productivity, the down stream processing of monoclonal antibody harvests throughout the run and the further control of antibody quality consistency. Handling and process parameters were optimised using a mouse hybridoma, IgG1K secretor, and then confirmed with several other hybridomas. Cells were kept at optimal viability during an unusually long period of time and a continuously high production of antibodies was detected over several months. Foetal bovine serum concentration was reduced to 1\% and the effects of weaning of cells from serum were monitored in terms of cell metabolism and antibody productivity. Antibody harvests collected at regular intervals throughout the run (2 to 12 weeks) were purified using affinity chromatography on a recombinant protein A/G matrix and then analysed in terms of antigen binding properties, isoelectric forms and oligosaccharide structures, in order 1) to control antibody quality consistency as a function of time and serum concentration and 2) to compare antibody characteristics as a function of culture conditions, in vitro bioreactor cultivation versus in vivo mouse ascite cultivation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 565-570 
    ISSN: 0006-3592
    Keywords: hybridoma ; hypoosmotic stress ; specific antibody productivity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To investigate the response of hybridoma cells to hypoosmotic stress, S3H5/γ2bA2 and DB9G8 hybridomas were cultivated in the hypoosmolar medium [Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% serum] resulting from sodium chloride subtraction. Both hybridomas showed similar responses to hypoosmotic stress in regard to cell growth and antibody production. The cell growth and antibody production at 276 mOsm/kg were comparable to those at 329 mOsm/kg (standard DMEM). Both cells grew well at 219 mOsm/kg, though their growth and antibody production were slightly decreased. When the osmolality was further decreased to 168 mOsm/kg, the cell growth did not occur. When subjected to hyperosmotic stress, both cells displayed significantly enhanced specific antibody productivity (qAb). However, the cells subjected to hypoosmotic stress did not display enhanced qAb. Taken together, both hyperosmotic and hypoosmotic stresses depressed the growth of S3H5/γ2bA2 and DB9G8 hybridomas. However, their response to hypoosmotic stress in regard to qAb was different from that to hyperosmotic stress. © 1997 John Wiley & Sons, Inc. Biotechnol Biong 55: 565-570, 1997.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cytotechnology 24 (1997), S. 213-218 
    ISSN: 1573-0778
    Keywords: gene deletion ; hybrid antibody ; hybridoma ; immunoglobulin light chain ; monoclonal antibody
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Monoclonal antibodies (mAbs) of the IgG class produced by mouse hybridomas raised with NS-1 myelomas have been shown to contain two types of immunoglobulin light (κ) chains derived from the myelomas and antigen-stimulated spleen lymphocytes, and the hybridomas produce three mAb species with light chain heterogeneity (Abe and Inouye, 1993). In the present study, 9 hybridoma lines secreting homogeneous mAbs have been isolated from 63 lines cloned from an established hybridoma line producing three mAbs. They secrete homogeneous mAbs containing light chains derived from either myeloma or spleen cells. They contain either κ gene derived from the respective cells, and the other gene was deleted during the cultivation. The deletion frequency of the κ gene of myelomas is 3 times higher than that of spleen cells, although 80–85% of hybridomas reach the stable state containing both κ genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-0778
    Keywords: hybridoma ; monoclonal antibody ; stirred tank perfusion culture ; potassium acetate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract To increase the yield of monoclonal antibody in a hybridoma culture, it is important to optimize the combination of several factors including cell density, antibody productivity per cell, and the duration of the culture. Potassium acetate enhances the production of antibodies by cells but sometimes depresses cell density. The production of anti-(human B-type red blood cell surface antigen) antibody by Cp9B hybridoma was studied. In batch cultures, potassium acetate inhibited Cp9B cells growth and decreased the maximal cell density but the productivity of antibody per cell was increased. The balance of the two effects resulted in a slight decline of antibody production. In a stirred tank bioreactor, the inhibitory effect of potassium acetate on cell density was overcome by applying the perfusion technique with the attachment of a cell-recycling apparatus to the bioreactor. In such a reactor, potassium acetate at 1 g l-1 did not cause a decrease in the cell density, and the antibody concentration in the culture supernatant was increased from 28 μg ml-1 to 38 μg ml-1. Potassium acetate also suppressed the consumption of glucose and the accumulation of lactate in batch cultures, but the glucose and lactate levels were kept stable by applying the perfusion technique in the stirred tank bioreactor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-0778
    Keywords: antibody productivity ; apoptosis ; bcl-2 ; fed batchculture ; hybridoma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Mouse hybridoma 2E3 transfected with human bcl-2 gene survived longer with increasing expression level of bcl-2 when cultured in DME medium supplemented with 9% serum. One of the transfectants, 2E3BCMGbcl-2, overexpressed bcl-2 and could maintain viable cell density higher than the initial density for more than four days at a low 0.5% serum concentration. In comparison a mock transfectant 2E3BCMG remained viable for only one day. However, both hybridomas died out within a day in serum-free medium. These results suggested that bcl-2 needed a small amount of some serum components to suppress apoptosis of the hybridoma. Overexpression of bcl-2 also suppressed apoptosis of the hybridoma induced by glutamine deprivation. When hybridoma 2E3BCMGbcl-2 was inoculated in DME medium supplemented with 9% serum and cultured for 10 d with additional 2% serum feed at day 4 of the culture, viable cell density increased 2-fold and antibody produced 3-fold, in comparison with mock transfected 2E3 cultured in the same manner. The mock transfectant with additional feed of serum at day 4 of the culture showed no difference in viable cell density and antibody production. These results suggested that the mock transfectant committed to apoptosis before day 4 of the culture and the additional serum at day 4 could not reverse the commitment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 165-180 
    ISSN: 0006-3592
    Keywords: monoclonal antibody ; hybridoma ; BiP ; PDI ; GRP94 ; serum-free medium ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: BiP, GRP94 and PDI, three endoplasmic reticulum (ER) based proteins are involved in the maturation of secretory proteins and might represent a bottleneck in the secretory pathway of monoclonal antibodies (MAB). With the three hybridoma cell lines tested, MAB production kinetics were significantly increased for the batch cultures done in serum-free medium (SFM) with respect to those done in serum-containing medium (SCM). It could be established that there was a correlation between the cellular levels of PDI and GRP94 and the specific MAB production rate. With respect to BiP, no correlation with the MAB production rate was observed. The non-producing myeloma cell line X63, used as a reference, showed increased cellular PDI levels when cultivated in SFM. However, in this cell, the cellular GRP94 levels were not significantly influenced by the medium composition.It was concluded that SFM induced an increase of cellular PDI levels and this elevation seemed to be responsible for the increase in the specific MAB production rates. On the other hand, only MAB producing cells showed an increase in the cellular GRP94 levels which might be a result of increased MAB sythesis. Indeed, I.13.17 cultivated in SFM supplemented with serum showed a significantly reduced (about 50%) specific MAB production rate in comparison to I.13.17 cultivated in non-serum supplemented SFM. The cellular PDI and BiP levels did not vary between these conditions of culture, whereas the cellular GRP94 level was about two-fold lower in I.13.17 cultivated in SFM when supplemented with serum than in I.13.17 cultivated in SFM without futher supplementation. These results are discussed with respect to the medium composition as well as in the context of apparent and potential bottlenecks within the secretory pathway of MAB. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 165-180, 1997.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 153-164 
    ISSN: 0006-3592
    Keywords: hybridoma ; oxygen ; serum-free medium ; continuous culture ; antioxidant ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The murine B-lymphocyte hybridoma, CC9C10 was grown at steady state under serum-free conditions in continuous culture at dissolved oxygen (DO) concentrations in the range of 10% to 150% of air saturation. Cells could be maintained with this range at high viability in a steady state at a dilution rate of 1 d-1, although with lower cell concentrations at higher DO. A higher specific antibody production measured at higher DO was matched by a decrease in the viable cell concentration at steady state, so that the volumetric antibody titre was not changed significantly. An attempt to grow cells at 250% of air saturation was unsuccessful but the cells recovered to normal growth once the DO was decreased.There was a requirement for cellular adaptation at each step-wise increase in dissolved oxygen. Adaptation to a DO of 100% was associated with an increase in the specific activities of glutathione peroxidase (×18), glutathione S-transferase (×11) and superoxide dismutase (×6) which are all known antioxidant enzymes. At DO above 100%, the activities of GPX and GST decreased possibly as a result of inactivation by reactive oxygen radicals.The increase in dissolved oxygen concentration caused changes in energy metabolism. The specific rate of glucose uptake increased at higher dissolved oxygen concentrations with a higher proportion of glucose metabolized anaerobically. Short-term radioactive assays showed that the relative flux of glucose through glycolysis and the pentose phosphate pathway increased whereas the flux through the tricarboxylic acid cycle decreased at high DO. Although the specific glutamine utilization rate increased at higher DO, there was no evidence for a change in the pattern of metabolism. This indicates a possible blockage of glycolytic metabolites into the TCA cycle, and is compatible with a previous suggestion that pyruvate dehydrogenase is inhibited by high oxygen concentrations.Analysis of the oxygen uptake rate of cell suspensions at steady state under all conditions showed a pronounced Crabtree effect which was manifest by a decrease (up to 40%) in oxygen consumption on addition of glucose. This indicates that the degree of aerobic metabolism in these cultures is highly sensitive to the glucose concentration. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 153-164, 1997.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 357-364 
    ISSN: 0006-3592
    Keywords: cell culture ; hybridoma ; monoclonal antibody ; growth factor ; antigen ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The cell growth and monoclonal antibody production kinetics of hybridoma cell cultures continuously exposed to growth factors and the cognate antigen were investigated. The growth factors were the epidermal growth factor, fibroblast growth factor, and interleukin-2, whereas the antigen was the trinitrophenyl group conjugated to a carrier protein. The cultures were carried out in a protein-free medium in batch operation. During the entire cultivation period there was continuously available free, antibody-unbound antigen to interact with the cells. The produced antibody was measured with an ELISA after it was released from the antigen-protein conjugate by competitive elution with non-protein-conjugated antigen. Cultures with growth factors and without antigen increased the total antibody produced by up to 30%, whereas cell growth remained unaffacted. Soluble antigen-protein conjugates had no effect on the hybridoma cultures. In contrast, immobilized antigen-protein on sepharose beads in cultures with growth factors induced significant changes. Total antibody produced was higher by up to 40%. More importantly, the specific antibody production shifted from a growth-phase-independent to a growth-phase-dependent profile, with approximately twice as much specific antibody production during the late growth-early stationary phase relative to constant specific antibody production in the antigen-free, factor-free culture. The culture changes induced by the presence of immobilized antigen and growth factors were reversed when the antigen and the growth factors were removed from the cells' environment. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 357-364, 1997.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 535-541 
    ISSN: 0006-3592
    Keywords: hybridoma ; fixed bed ; metabolism ; kinetic model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cultures with immobilized hybridoma cells were performed in fixed bed systems. “Steady state” values for volume-specific substrate uptake and metabolite production rates were determined at various perfusion rates and superficial flow velocities of the medium within the carrier matrix. Data from fixed bed volumes between 50 and 600 ml did not show any difference. The volume-specific glutamine and glucose uptake rate turned out to be independent of the superficial flow velocity, but decreased with decreasing glutamine and glucose concentration. The volume-specific oxygen uptake rate increased with increasing superficial flow velocity and substrate concentration, respectively. A similar behavior was observed for the ratio between oxygen and glucose uptake rate. The production rate for monoclonal antibodies was neither affected by the substrate concentration nor by the superficial flow velocity. The metabolic parameters of the immobilized cells were put into kinetic equations and compared to those of suspended cells. It could be concluded that the metabolism of the immobilized cells is determined by the oxygen supply within the macroporous carriers. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 535-541, 1997.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 272-286 
    ISSN: 0006-3592
    Keywords: glutamine limitation ; mammalian cells ; chemostat ; specific metabolic rates ; hybridoma ; medium optimization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Glutamine is a major source of energy, carbon, and nitrogen for mammalian cells. The amount of glutamine present in commercial mammalian cell media is, however, not necessarily balanced with cell requirements. Therefore, the effects of glutamine limitation on the physiology of two mammalian cell lines were studied in steady-state chemostat cultures fed with IMDM medium with 5% serum. The cell lines used were MN12, a mouse-mouse hybridoma, and SP2/0-Ag14, a mouse myeloma often used in hybridoma fusions. Cultures, grown at a fixed dilution rate of 0.03 h-1, were fed with media containing glutamine concentrations ranging from 0.5 to 4 mmol L-1. Biomass dry weight and cell number were linearly proportional to the glutamine concentrations fed, between 0.5 and 2 mmol L-1, and glutamine was completely consumed by both cell lines. From this it was concluded that glutamine was the growth-limiting substrate in this concentration range and that the standard formulation of IMDM medium contains a twofold excess of glutamine. In glutamine-limited cultures, the specific rates of ammonia and alanine production were low compared to glutamine-excess cultures containing 4 mmol L-1 glutamine in the feed medium. The specific consumption rates of nearly all amino acids decreased with increasing glutamine feed, indicating that, in their metabolic function, they may partially be replaced by glutamine. Both cell lines reacted similarly to differences in glutamine feeding in all aspects investigated, except for glucose metabolism, In SP2/0-Ag14 glutamine feed concentrations did not affect the specific glucose consumption, whereas in MN12 this parameter increased with increasing amounts of glutamine fed. This systematic study using controlled culture conditions together with a detailed analysis of culture data shows that, although cells may react similarly in many aspects, cell-line-specific characteristics may be encountered even with respect to fundamental physiological responses like the interaction of the glutamine and glucose metabolism. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 272-286, 1997.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...