ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (4)
  • Data
  • incompressible  (4)
  • Wiley-Blackwell  (4)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • 2010-2014
  • 2005-2009
  • 1995-1999  (4)
  • 1975-1979
  • 1935-1939
  • 1997  (4)
  • 1984
  • 1978
  • 1977
  • 1935
  • 1925
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (4)
Collection
  • Books
  • Articles  (4)
  • Data
Publisher
  • Wiley-Blackwell  (4)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • Springer  (1)
Years
  • 2010-2014
  • 2005-2009
  • 1995-1999  (4)
  • 1975-1979
  • 1935-1939
Year
Topic
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 1449-1461 
    ISSN: 0271-2091
    Keywords: parallel finite element ; three-dimensional ; incompressible ; steady ; flow ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Steady flows in a three-dimensional lid-driven cavity at moderate Reynolds number are studied using various methods of parallel programming on the Cray T3D and Thinking Machines CM-5. These three-dimensional flows are compared with flows computed in a two-dimensional cavity. Solutions at Reynolds number up to 500 agree well with the experimental data of Aidun et al. (Phys. Fluids A, 3, 2081-2091 (1991)) for the location of separation of the secondary eddy at the downstream wall. Convergence of the three-dimensional problem using GMRES with diagonal preconditioning could not be obtained at Reynolds number greater than about 500. We speculate that the source of the difficulty is the loss of stability via pitchfork and Hopf bifurcations identified by Aidun et al. The relative performance of various methods of message passing on the Cray T3D is compared with the data-parallel mode of programming on the CM-5. No clear advantage between machines or message-passing methods is distinguished. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 833-861 
    ISSN: 0271-2091
    Keywords: Navier-Stokes ; incompressible ; unsteady ; finite difference ; finite element ; non-staggered grid ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A hybrid conservative finite difference/finite element scheme is proposed for the solution of the unsteady incompressible Navier-Stokes equations. Using velocity-pressure variables on a non-staggeredgrid system, the solution is obtained with a projection method basedon the resolution of a pressure Poisson equation.The new proposed scheme is derived from the finite element spatial discretization using the Galerkin method with piecewise bilinear polynomial basis functions defined on quadrilateral elements. It is applied to the pressure gradient term and to the non-linear convection term as in the so-called group finite element method. It ensures strong coupling between spatial directions, inhibiting the development of oscillations during long-term computations, as demonstrated by the validation studies.Two- and three-dimensional unsteady separated flows with open boundaries have been simulated with the proposed method using Cartesian uniform mesh grids. Several examples of calculations on the backward-facing step configuration are reported and the results obtained are compared with those given by other methods. © 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 833-861, 1997.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 25 (1997), S. 803-823 
    ISSN: 0271-2091
    Keywords: incompressible ; Navier-Stokes ; heat transfer ; adaptive FEM ; forced convection ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper presents an adaptive finite element method to solve forced convective heat transfer. Solutions are obtained in primitive variables using a high-order finite element approximation on unstructured grids. Two general-purpose error estimators are developed to analyse finite element solutions and to determine the characteristics of an improved mesh which is adaptively regenerated by the advancing front method. The adaptive methodology is validated on a problem with a known analytical solution. The methodology is then applied to heat transfer predictions for two cases of practical interest. Predictions of the Nusselt number compare well with measurements and constitute an improvement over previous results. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 101-120 
    ISSN: 0271-2091
    Keywords: incompressible ; Navier-Stokes ; adaptive FEM ; turbulencek-∊ model ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper presents an adaptive finite element method for solving incompressible turbulent flows using a k-∊ model of turbulence. Solutions are obtained in primitive variables using a highly accurate quadratic finite element on unstructured grids. A projection error estimator is presented that takes into account the relative importance of the errors in velocity, pressure and turbulence variables. The efficiency and convergence rate of the methodology are evaluated by solving problems with known analytical solutions. The method is then applied to turbulent flow over a backward-facing step and predictions are compared with experimental measurements. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...