ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • XES  (2)
  • crystal structure  (2)
  • 5 Abbey Square, Chester, Cheshire CH1 2HU, England  (4)
  • Cambridge University Press
  • 2020-2022  (4)
  • 1990-1994
  • 1965-1969
Collection
  • Other Sources  (4)
Source
Publisher
Language
Years
  • 2020-2022  (4)
  • 1990-1994
  • 1965-1969
Year
  • 1
    Publication Date: 2021-04-14
    Description: Pyrroloquinoline quinone (PQQ) is an important cofactor of calcium‐ and lanthanide‐dependent alcohol dehydrogenases, and has been known for over 30 years. Crystal structures of Ca–MDH enzymes (MDH is methanol dehydrogenase) have been known for some time; however, crystal structures of PQQ with biorelevant metal ions have been lacking in the literature for decades. We report here the first crystal structure analysis of a Ca–PQQ complex outside the protein environment, namely, poly[[undecaaquabis(μ‐4,5‐dioxo‐4,5‐dihydro‐1H‐pyrrolo[2,3‐f]quinoline‐2,7,9‐tricarboxylato)tricalcium(II)] dihydrate], {[Ca3(C14H3N2O8)2(H2O)11]·2H2O}n. The complex crystallized as Ca3PQQ2·13H2O with Ca2+ in three different positions and PQQ3−, including an extensive hydrogen‐bond network. Similarities and differences to the recently reported structure with biorelevant europium (Eu2PQQ2) are discussed.
    Description: Pyrroloquinoline quinone (PQQ) is an important cofactor of calcium‐ and lanthanide‐dependent alcohol dehydrogenases. The crystal structure of a Ca–PQQ complex (Ca3PQQ2·13H2O) is reported for the first time outside a protein environment. image
    Description: research
    Keywords: 548 ; pyrroloquinoline quinone ; calcium ; PQQ ; methanol dehydrogenase ; crystal structure ; FID-GEO-DE-7
    Language: English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-30
    Description: ROBL‐II provides four different experimental stations to investigate actinide and other alpha‐ and beta‐emitting radionuclides at the new EBS storage ring of ESRF within an energy range of 3 to 35 keV. The XAFS station consists of a highly automatized, high sample throughput installation in a glovebox, to measure EXAFS and conventional XANES of samples routinely at temperatures down to 10 K, and with a detection limit in the sub‐p.p.m. range. The XES station with its five bent‐crystal analyzer, Johann‐type setup with Rowland circles of 1.0 and 0.5 m radii provides high‐energy resolution fluorescence detection (HERFD) for XANES, XES, and RIXS measurements, covering both actinide L and M edges together with other elements accessible in the 3 to 20 keV energy range. The six‐circle heavy duty goniometer of XRD‐1 is equipped for both high‐resolution powder diffraction as well as surface‐sensitive CTR and RAXR techniques. Single crystal diffraction, powder diffraction with high temporal resolution, as well as X‐ray tomography experiments can be performed at a Pilatus 2M detector stage (XRD‐2). Elaborate radioprotection features enable a safe and easy exchange of samples between the four different stations to allow the combination of several methods for an unprecedented level of information on radioactive samples for both fundamental and applied actinide and environmental research.
    Description: ROBL‐II at ESRF provides four experimental stations to investigate actinides with X‐ray absorption and emission spectroscopy, and with surface, high‐resolution powder, and single‐crystal X‐ray diffractometry.
    Keywords: 549 ; actinides ; EXAFS ; XANES ; HERFD‐XANES ; XAS ; XES ; RIXS ; XRD ; CTR ; RAXR ; surface diffraction
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-05
    Description: Carbonates containing CO4 groups as building blocks have recently been discovered. A new orthocarbonate, Sr2CO4 is synthesized at 92 GPa and at a temperature of 2500 K. Its crystal structure was determined by in situ synchrotron single‐crystal X‐ray diffraction, selecting a grain from a polycrystalline sample. Strontium orthocarbonate crystallizes in the orthorhombic crystal system (space group Pnma) with CO4, SrO9 and SrO11 polyhedra as the main building blocks. It is isostructural to Ca2CO4. DFT calculations reproduce the experimental findings very well and have, therefore, been used to predict the equation of state, Raman and IR spectra, and to assist in the discussion of bonding in this compound.
    Description: A new orthocarbonate, Sr2CO4, was synthesized under extreme pressure and temperature conditions of 92 GPa and 2500 K, respectively. The crystal structure of the compound s fully characterized in situ by synchrotron single‐crystal X‐ray diffraction and DFT calculations were employed to provide insight into its equation of state, Raman and IR spectra, and bonding. image
    Keywords: 548 ; orthocarbonates ; crystal structure ; single‐crystal X‐ray diffraction ; high pressure ; Sr2CO4
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-26
    Description: X‐SPEC is a high‐flux spectroscopy beamline at the KIT (Karlsruhe Institute of Technology) Synchrotron for electron and X‐ray spectroscopy featuring a wide photon energy range. The beamline is equipped with a permanent magnet undulator with two magnetic structures of different period lengths, a focusing variable‐line‐space plane‐grating monochromator, a double‐crystal monochromator and three Kirkpatrick–Baez mirror pairs. By selectively moving these elements in or out of the beam, X‐SPEC is capable of covering an energy range from 70 eV up to 15 keV. The flux of the beamline is maximized by optimizing the magnetic design of the undulator, minimizing the number of optical elements and optimizing their parameters. The beam can be focused into two experimental stations while maintaining the same spot position throughout the entire energy range. The first experimental station is optimized for measuring solid samples under ultra‐high‐vacuum conditions, while the second experimental station allows in situ and operando studies under ambient conditions. Measurement techniques include X‐ray absorption spectroscopy (XAS), extended X‐ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X‐ray PES (HAXPES), as well as X‐ray emission spectroscopy (XES) and resonant inelastic X‐ray scattering (RIXS).
    Description: X‐SPEC is a high‐flux undulator beamline for electron and X‐ray spectroscopy with an energy range from 70 eV to 15 keV. It offers X‐ray absorption spectroscopy (XAS), extended X‐ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X‐ray PES (HAXPES), as well as X‐ray emission spectroscopy (XES) and resonant inelastic X‐ray scattering (RIXS) for in vacuo, in situ and operando sample environments. image
    Keywords: 548 ; undulator beamline ; soft X‐ray ; tender X‐ray ; hard X‐ray ; in situ ; operando ; HAXPES ; RIXS ; XAS ; XES
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...