ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (43,257)
  • LUNAR AND PLANETARY EXPLORATION  (14,409)
  • AERODYNAMICS  (12,790)
  • STRUCTURAL MECHANICS  (10,233)
  • SPACECRAFT DESIGN, TESTING AND PERFORMANCE  (5,824)
  • Animals
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2021-04-25
    Description: Niphargus is a speciose amphipod genus found in groundwater habitats across Europe. Three Niphargus species living in the sulphidic Frasassi caves in Italy harbour sulphur-oxidizing Thiothrix bacterial ectosymbionts. These three species are distantly related, implying that the ability to form ectosymbioses with Thiothrix may be common among Niphargus. Therefore, Niphargus-Thiothrix associations may also be found in sulphidic aquifers other than Frasassi. In this study, we examined this possibility by analysing niphargids of the genera Niphargus and Pontoniphargus collected from the partly sulphidic aquifers of the Southern Dobrogea region of Romania, which are accessible through springs, wells and Movile Cave. Molecular and morphological analyses revealed seven niphargid species in this region. Five of these species occurred occasionally or exclusively in sulphidic locations, whereas the remaining two were restricted to nonsulphidic areas. Thiothrix were detected by PCR on all seven Dobrogean niphargid species and observed using microscopy to be predominantly attached to their hosts' appendages. 16S rRNA gene sequences of the Thiothrix epibionts fell into two main clades, one of which (herein named T4) occurred solely on niphargids collected in sulphidic locations. The other Thiothrix clade was present on niphargids from both sulphidic and nonsulphidic areas and indistinguishable from the T3 ectosymbiont clade previously identified on Frasassi-dwelling Niphargus. Although niphargids from Frasassi and Southern Dobrogea are not closely related, the patterns of their association with Thiothrix are remarkably alike. The finding of similar Niphargus-Thiothrix associations in aquifers located 1200 km apart suggests that they may be widespread in European groundwater ecosystems.
    Keywords: amphipods; ecology; sulphide; symbiosis; systematics; taxonomy ; 551 ; Amphipoda ; Animals ; DNA, Bacterial ; Ecosystem ; Groundwater ; Molecular Sequence Data ; Phylogeny ; RNA, Ribosomal, 16S ; Romania ; Sequence Analysis, DNA ; Sulfur ; Symbiosis ; Thiothrix
    Language: English , English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Wind tunnel tests have been conducted on an NACA 2412 airfoil section at Reynolds number of 2.2 x 10(exp 6) and Mach number of 0.13. Detailed measurements of flow fields associated with turbulent boundary layers have been obtained at angles of attack of 12.4 degrees, 14.4 degrees, and 16.4 degrees. Pre- and post-separated velocity and pressure survey results over the airfoil and in the associated wake are presented. Extensive force, pressure, tuft survey, hot-film survey, local skin friction, and boundary layer data are also included. Pressure distributions and separation point locations show good agreement with theory for the two layer angles of attack. Boundary layer displacement thickness, momentum thickness, and shape factor agree well with theory up to the point of separation. There is considerable disparity between extent of flow reversal in the wake as measured by pressure and hot-film probes. The difference is attributed to the intermittent nature of the flow reversal.
    Keywords: AERODYNAMICS
    Type: NASA-CR-197497 , NAS 1.26:197497 , AR77-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: We have investigated the interaction of Io, Jupiter's innermost Galilean satellite, with the Io plasma torus. The interaction of Io with the plasma surrounding it has been a subject of interest for almost 30 years, dating from the discovery by Bigg (1964) that radio emissions from the Jovian magnetosphere are controlled by Io's position. Since that time, both ground-based and spacecraft observations have shown that Io is a unique satellite that influences the Jovian magnetosphere in important ways. In particular, material from Io is a major source of plasma for the magnetosphere, and the energy that this plasma harnesses from Jupiter's co-rotating magnetic field is an important power source for the magnetosphere. It is apparent that the local interaction of the torus plasma with Io plays a key role in the formation, composition, and energetics of the Io torus; the interaction is also highly nonlinear. We have modeled this interaction using time-dependent three-dimensional magnetohydrodynamic (MHD) simulations. During this past year, we have used NASA support to develop a new MHD code to study the interaction. As part of the Galileo spacecraft's recent successful insertion into orbit around Jupiter, the spacecraft passed within 900 km of Io's surface. Our calculations have focused on using Galileo particles and fields data to examine a question that was not resolved by the Voyager observations: Does Io have an intrinsic magnetic field? In this progress summary, we describe our efforts on this problem to date.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-200134 , NAS 1.26:200134 , SAIC-95/1381:APPAT-174 , NIPS-96-07877
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The implementation of a two-equation k-omega turbulence model into the NPARC flow solver is described. Motivation for the selection of this model is given, major code modifications are outlined, new imputs to the code are described, and results are presented for several validation cases: an incompressible flow over a smooth flat plate, a subsonic diffuser flow, and a shock-induced separated flow. Comparison of results with the k-epsilon model indicate that the k-omega model predicts simple flows equally well whereas, for adverse pressure gradient flows, the k-omega model outperforms the other turbulence models in NPARC.
    Keywords: AERODYNAMICS
    Type: NASA-TM-107080 , NAS 1.15:107080 , E-9955 , AIAA PAPER 96-0383 , NIPS-96-08118 , Aerospace Sciences Meeting and Exhibit; Jan 15, 1996 - Jan 18, 1996; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper develops a simplified continuum (continuous with respect to time, stress, etc.) fatigue damage model for use in critical design, Life Extending Control and fault prognosis. The work is based on the local strain cyclic damage modeling method. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modelling. Stress based continuum models are derived. Extension to plastic strain-strain rate models is also presented. Progress toward a non-zero mean stress based is presented. Also new nonlinear explicit equation forms in terms of stress amplitude are derived for this case. Application of the various models to design, control, and fault prognosis is considered.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-107065 , NAS 1.15:107065 , E-9926 , NIPS-96-08117 , International Symposium on Transport Phenomena and Dynamics of Rotating Machinery; Feb 25, 1996 - Feb 29, 1996; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal, and hexahedral cells, as well the general cut cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data structures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study upon a series of hexahedral, tetrahedral, prismatic, and Cartesian meshes for an analytic inviscid problem. A series of laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory, and experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cylinder combination.
    Keywords: AERODYNAMICS
    Type: NASA-TM-107135 , NAS 1.15:107135 , AIAA PAPER 96-0762 , E-10065 , NIPS-96-07909 , Aerospace Sciences Meeting and Exhibit; Jan 15, 1996 - Jan 18, 1996; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Estimates of the mass of dust suspended in the Martian atmosphere are derived from global and regional 9-micrometer opacity maps produced from Viking Infrared Thermal Mapper data. During the peak of the 1977b storm, a total dust mass of approximately 4.3 x 10(exp 14) g was suspended, equivalent to 4.3 x 10(exp -4) g/sq cm, or a layer 1.4 micrometers thick. During a local dust storm near Solis Planum at L(sub s) 227 deg, approximately 1.3 x 10(exp 13) g of dust were lofted, equal to about a 6-micrometer layer in that vicinity.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E4; p. 7509-7512
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 113; 1; p. 220-225
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Measurements of wing buffeting, using root strain gages, were made in the NASA Langley 0.3 m cryogenic wind tunnel to refine techniques which will be used in larger cryogenic facilities such as the United States National Transonic Facility (NTF) and the European Transonic Wind Tunnel (ETW). The questions addressed included the relative importance variations in frequency parameter and Reynolds number, the choice of model material (considering both stiffness and damping) and the effects of static aeroelastic distortion. The main series of tests was made on three half models of slender 65 deg delta wings with a sharp leading edge. The three delta wings had the same planform but widely differing bending stiffnesses and frequencies (obtained by varying both the material and the thickness of the wings). It was known that the steady flow on this configuration would be insensitive to variations in Reynolds number. On this wing at vortex breakdown the spectrum of the unsteady excitation is unusual, having a sharp peak at particular frequency parameter. Additional tests were made on one unswept half-wing of aspect ratio 1.5 with an NPL 9510 aerofoil section, known to be sensitive to variations in Reynolds number at transonic speeds. The test Mach numbers were M = 0.21 and 0.35 for the delta wings and to M = 0.30 for the unswept wing. On this wing the unsteady excitation spectrum is fairly flat (as on most wings). Hence correct representation of the frequency parameter is not particularly important.
    Keywords: AERODYNAMICS
    Type: Aeronautical Journal (ISSN 0001-9240); 99; 981; p. 1-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: We investigate the orbital dynamics of small dust particles generated via the continuous micrometeoroid bombardment of the Martian moons. In addition to Mar's oblateness, we also consider the radiation pressure perturbation that is complicated by the planet's eccentric orbit and tilted rotational axis. Considering the production rates and the lifetimes of dust grains, we show that particles from Deimos with radii of about 15 micrometers are expected to dominate the population of a permanently present and tilted dust torus. This torus has an estimated peak number density of approximately equals 5 x 10(exp -12)/cu cm and an optical depth of approximately equals 4 x 10(exp -8).
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E2; p. 3277-3284
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: The valley network channels on the heavily cratered ancient surface of Mars suggest the presence of liquid water approximately 3.8 Gyr ago. However, the implied warm climate is difficult to explain in the context of the standard solar model, even allowing for the maximum CO2 greenhouse heating. In this paper we investigate the astronomical and planetary implications of a nonstandard solar model in which the zero-age, main-sequence Sun had a mass of 1.05 +/- 0.02 Solar Mass. The excess mass was subsequently lost in a solar wind during the first 1.2(-0.2, +0.4) Gyr of the Sun's main sequence phase. The implied mass-loss rate of 4(+3, -2) x 10(exp -11) M/yr, or about 10(exp 3) x that of the current Sun, may be detectable in several nearby young solar type stars.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 5457-5464
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: Hellas basin on Mars has been the site of volcanism, tectonism, and modification by fluvial, mass-wasting, and eolian processes over its more than 4-b.y. existence. Our detailed geologic mapping and related studies have resulted in the following new interpretations. The asymmetric distribution of highland massifs and other structures that define the uplifted basin rim suggest a formation of the basin by the impact of a low-angle bolide having a trajectory heading S60E. During the Late Noachian, the basin was infilled, perhaps by lava flows, that were sufficiently thick (greater than 1 km) to produce wrinkle ridges on the fill material and extensional faulting along the west rim of the basin. At about the same time, deposits buried northern Malea Planum, which are interpreted to be pyroclastic flows from Amphitrites and Peneus Paterae on the basis of their degraded morphology, topology, and the application of a previous model for pyroclastic volcanism on Mars. Peneus forms a distinctive caldera structure that indicates eruption of massive volumes of magma, whereas Amphitrites is a less distinct circular feature surrounded by a broad, low, dissected shield that suggests generally smaller volume eruptions. During the Early Hesperian, an approximately 1-to 2km-thick sequence of primarily fined-grained, eolian material was deposited on the floor of Hellas basin. Subsequently, the deposit was deeply eroded, except where armored by crater ejecta, and it retreated as much as 200-300 km along its western margin, leaving behind pedestal craters and knobby outliers of the deposit. Local debris flows within the deposit attest to concentrations of groundwater, perhaps in part brought in by outflow floods along the east rim of the basin. These floods may have deposited approximately 100-200m of sediment, subduing wrinkle ridges in the eastern part of the basin floor. During the Late Hesperian and Amazonian, eolian mantles were emplaced on the basin rim and floor and surrounding highlands. Their subsequent erosion resulted in pitted and etched plains and crater fill, irregular mesas, and pedestal craters. Local evidence occurs for the possible former presence of ground ice or ice sheets approximately 100 km across; however, we disagree with a hypothesis that suggest that the entire south rim and much of the floor of Hellas have been glaciated. Orientations of dune fields and yardangs in lower parts of Hellas basin follow directions of the strongest winds predicted by a recently published general circulation model (GCM). Transient frost and dust splotches in the region are, by contrast, related to the GCM prediction for the season in which the images they appear in were taken.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 5407-5432
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: Visible and near-IR refectivity, Moessbauer, and X ray diffraction data were obtained on powders of impact melt rock from the Manicouagan Impact Crater located in Quebec, Canada. The iron mineralogy is dominated by pyroxene for the least oxidized samples and by hematite for the most oxidized samples. Phyllosilicate (smectite) contents up to approximately 15 wt % were found in some heavily oxidized samples. Nanophase hematite and/or paramagnetic ferric iron is observed in all samples. No hydrous ferric oxides (e.g., goethite, lepidocrocite, and ferrihydrite) were detected, which implies the alteration occurred above 250 C. Oxidative alteration is thought to have occurred predominantly during late-stage crystallization and subsolidus cooling of the impact melt by invasion of oxidizing vapors and/or solutions while the impact melt rocks were still hot. The near-IR band minimum correlated with the extent of aleration Fe(3+)/Fe(sub tot) and ranged from approximately 1000 nm (high-Ca pyroxene) to approximately 850 nm (bulk, well-crystalline hematite) for least and most oxidized samples, respectively. Intermediate band positions (900-920 nm) are attributed to low-Ca pyroxene and/or a composite band from hematite-pyroxene assemblages. Manicouagan data are consistent with previous assignments of hematite and pyroxene to the approximately 850 and approximately 1000nm bands observed in Martian reflectivity spectra. Manicouagan data also show that possible assignments for intermediate band positions (900-920 nm) in Martian spectra are pyroxene and/or hematite-pyroxene assemblages. By analogy with impact melt sheets and in agreement with observables for Mars, oxidative alteration of Martian impact melt sheets above 250 C and subsequent erosion could produce rocks and soils with variable proportions of hematite (both bulk and nanophase), pyroxene, and phyllosilicates as iron-bearing mineralogies. If this process is dominant, these phases on Mars were formed rapidly at relativly high temperatures on a sporadic basis throughout the history of the planet. The Manicouagan samples also show that this mineralogical diversity can be accomplished at constant chemical composition, which is also indicated for Mars from the analyses of soil at the two Viking landing sites.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); pp. 5319-5328
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: Based on the conservation of chemical elements in chemical reactions, a rule is proved that the number of boundary conditions given by densities and/or nonzero velocities should not be less than the number of chemical elements in the system, and the boundary conditions for species given by densities and velocities should include all elements in the system. Applications of this rule to Mars are considered. It is shown that the problem of the CO2-H2O chemistry in the lower and middle atmosphere of Mars, say, in the range of 0-80 km does not have a unique solution, if only CO2 and H2O densities are given at the lower boundary, and the remaining boundary conditions are fluxes. Two examples of models of this type are discussed. Two models of the photochemistry of the Martian atmosphere, with and without nitrogen chemistry, are considered. The oxygen nonthermal escape ratio of 1.2 x 10(exp 8)/cu cm/s is given at 240 km and is balanced with the total hydrogen escape rate within an uncertainty of 1% for both models. Both models fit the measured O2 and CO mixing ratios, the O3 abundance, and the O2 1.27-micrometer dayglow almost within the uncertainties of the measured values, though the model without nitrogen chemistry fits better. The importance of nitrogen chemistry in the lower and middle atmosphere of Mars depends on a fine balance between production of NO and N in the upper atmosphere which is not known within the required accuracy.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E2; p. 3263-3276
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: Goethite-bearing samples with values of Mn(s) (Mn/(Mn+Fe) mole fraction) up to 0.206 were synthesized by precipitation from alkaline solution. Samples with Mn(s) less than or equal 0.061 were single-phase Mn-goethites: samples with higher Mn(s) values contained another Mn-bearing phase (probably jacobsite). Mn-hematites were prepared by dehydroxylation of corresponding Mn-goethites at 500 C. Orthorhombic a and b unit cell dimensions of Mn-goethites changed in a linear manner with Mn(s), but not at rates predicted by the Vegrad law. Hexagonal unit cell dimensions of Mn-hematites did not vary with Mn(s). Moessbauer parameters isomer shift (IS), quadrupole splitting (QS), and hyperfine field (B(sub hf)) were measured at 293 and 15 K. For all single-phase Mn-goethites and Mn-hematites (Mn(s) less than or equal 0.061), magnetic splitting was observed at both temperatures. At 293 K, small but systematic decreases in B(sub hf) were observed with increasing Mn substitution; IS and QS were not dependent on Mn(s). Mn substitution strongly lowered the Morin transition temperature of hematite. At 15 K, the Morin transition was not present for Mn(s) greater than 0.020(4). The saturation magnetization of Mn-goethites and Mn-hematites (Mn(s) less than or equal 0.061) was the expected zero (within error) for antiferromagnetic goethite and for hematites obtained from dehydroxylation of goethites. Mn-geothites with Mn(s) greater than 0.061 were magnetic because of the presence of strongly magnetic jacobsite. For reflectivity spectra, bands resulting from MN(3+) were centered near 454 and 596 nm for Mn-goethites and near 545 and 700 nm for Mn-hematites. There is evidence for a approximately 700 nm band in spectral data for Martian bright regions, but association of it with Mn(3+) is not a unique interpretation. Comparison of laboratory and Martian spectral data implies that Mn(s) less than 0.032 for the Mn(3+) content of Martian hematites.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E2; p. 3285-3295
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Ferric-iron-bearing materials play an important role in the interpretation of visible to near-IR Mars spectra, and they may play a similarly important role in the analysis of new mid-IR spacecraft spectral observations to be obtained over the next decade. We review exisiting data on mid-IR transmission spectra of ferric oxides/oxyhydroxides and present new transmission spectra for ferric-bearing materials spanning a wide range of mineralogy and crystallinity. These materials include 11 samples of well-crystallized ferric oxides (hematite, maghemite, and magnetite) and ferric oxyhydroxides (goethite, lepidocrocite). We also report the first transmission spectra for purely nanophase ferric oxide samples that have been shown to exhibit spectral similarities to Mars in the visible to near-IR and we compare these data to previous and new transmission spectra of terrestial palagonites. Most of these samples show numerous, diagnostic absorption features in the mid-IR due to Fe(3+) - 0(2-) vibrational transitions, structural and/or bound OH, and/or silicates. These data indicate that high spatial resolution, moderate spectral resolution mid-IR ground-based and spacecraft observations of Mars may be able to detect and uniquely discriminate among different ferric-iron-bearing phases on the Martian surface or in the airborne dust.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 5297-5307
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: The Magellan spacecraft has been aerobraked into a 197 x 541 km near-circular orbit around Venus from which it is conducting a high-resolution gravity mapping mission. This was the first interplanetary aerobrake maneuver and involved flying the spacecraft through the upper reaches of the Venusian atmosphere 730 times over a 70 day period. Round-trip light-time varied from 9.57 to 18.83 minutes during this period. Navigation for this dynamic phase of the Magellan mission was planned and executed in the face of budget-driven down-sizing with all spacecraft safe modes disabled and a flight-team one-third the size of comparable interplanetary missions. Successful execution of this manuever using spacecraft hardware not designed to operate in a planetary atmosphere, demonstrated a practical cost-saving technique for both large and small future interplanetary missions.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: British Interplanetary Society, Journal (ISSN 0007-094X); 48; 3; p. 111-122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-08-31
    Description: Industrial demands for highly motivated and competent technical personnel to carry forward with the technological goals of the US has posed a significant challenge to graduating engineers. While curricula has improved and diversified over time to meet these industry demands, relevant industry experience is not always available to undergraduates. The microsatellite development program at San Jose State University (SJSU) has allowed an entire undergraduate senior class to utilize a broad range of training and education to refine their engineering skills, bringing them closer to becoming engineering professionals. Close interaction with industry mentors and manufacturers on a real world project provides a significant advantage to educators and students alike. With support from companies and government agencies, the students have designed and manufactured a microsatellite, designed to be launched into a low Earth orbit. This satellite will gather telemetry for characterizing the state of the spacecraft. This will enable the students to have a physical check on their predicted value of spacecraft subsystem performance. Additional experiments will also be undertaken during the two year lifetime, including micro-meteorite impact sensing and capturing digital color images of the Earth. This paper will detail the process whereby students designed, prototype and manufactured a small satellite in a large team environment, along with the experiments that will be performed on board. With the project's limited funds, it needed the support of many industry companies to help with technical issues and hardware acquisition. Among the many supporting companies, NASA's space shuttle small payloads program could be used for an affordable launch vehicle for the student project. The paper address these collaborations between the student project and industry support, as well as explaining the benefits to both. The paper draws conclusion on how these types of student projects can be used by industry as a feasible resource for developing small platforms for space based experiments, as well as increasing the practical experience and engineering knowledge of graduating students. These benefits to industry and universities, can lead to a close working relationship between the two. These types of projects can facilitate the development of low-cost space rated parts to be used by the industry and university projects. It can also help with the understanding and use of acceptable risk non-space rated parts reducing the cost of the spacecraft. This will lead to the development of low cost platforms for space based experiments, providing research companies an inexpensive, long duration platform to conduct their in-space experiments, while better preparing engineering undergraduates for their transition into the work force.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 289-294
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-08-31
    Description: The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) is a Hitchhiker payload scheduled to fly as part of the International Space Station (ISS) Phase-1 flight program to the Russian Space Station Mir. The objective of the first flight of PASDE on STS-74 is to obtain video images of the Mir Kvant-2 solar array response to various structural dynamic excitation events. This experiment will demonstrate the use of photogrammetric techniques for on-orbit structural dynamics measurements. Photogrammetric measurements will provide a low cost alternative to appendage mounted accelerometers to the ISS program. The PASDE experiment hardware consists of three instruments each containing two video cameras, two video tape recorders, a modified video signal time inserter, and associated avionics boxes. The instruments were designed and built at the NASA Langley Research Center, and are integrated into standard Hitchhiker canisters at the NASA Goddard Space Flight Center. The Hitchhiker canisters are then installed into the Space Shuttle cargo bay in locations selected to achieve good video coverage and photogrammetric geometry. The measurement resolution of the instruments is expected to be on the order of 0.25 cm (0.1 in.).
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 73-82
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: SVN 9 was a GPS Block I research and development satellite. When it was launched in Jun. 1984, questions regarding the future performance of atomic frequency standards in orbit remained to be answered. In Mar. 1994, after performing for twice its designed life span, SVN 9 was deactivated as a member of the operational GPS satellite constellation. During the next two months, U.S. Air Force and Rockwell personnel performed various tests to determine just how well the atomic frequency standards had withstood ten years in the space environment. The results of these tests are encouraging. With a full constellation of Block II/IIA satellites on orbit, as well as the anticipated launch of the Block IIR satellites, results from the end of life testing will be helpful in assuring the continued success of the GPS program.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, The 26th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; p 405-413
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-08-31
    Description: The Voyager 1 spacecraft flew by Jupiter on March 5, 1979. Spacecraft navigation was performed with radio tracking data from NASA's Deep Space Network. In the years since then, there has been a great deal of progress in the definition of celestial reference frames and in determining the orbit and orientation of the Earth. Using these improvements, the radio metric range and Doppler data acquired from the Voyager 1 spacecraft near its encounter with Jupiter have been reanalyzed to determine the plane-of-sky position of Jupiter with much greater accuracy than was possible at the time of the encounter. The position of Jupiter at the time of encounter has been determined with an accuracy of 40 nrad in right ascension and 140 nrad in declination with respect to the celestial reference frame defined by the International Earth Rotation Service. This position estimate has been done to improve the ephemeris of Jupiter prior to the upcoming encounter of the Galileo spacecraft with Jupiter.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: The Telecommunications and Data Acquisition Report; p 1-8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-08-31
    Description: The need for electrical energy supply in the rural communities of developing countries has been well documented. Equally well known is the potential for photovoltaic in cost effectively meeting this need. A major impediment to fulfilling the need is the lack of indigenous personnel with a knowledgeof photovoltaic systems, and the associated infrastructure required to implement project. Various delivery schemes for providing the needed training to developing countries personnel have been investigated. Various train methods and programs that have been employed to remedy the problem have had significant drawbacks in terms of cost, consistency, impact, reach, and sustainability. The hypothesis to be tested in this project posits that satellite-based distance education using ACTS technologies can overcome these impediments. The purpose of the project is to investigate the applicability of the ACTS satellite in providing distance education in photovoltaic systems to developing countries and rural communities. An evaluation of the cost effectiveness of using ACTS unique technologies to overcome identified problems shall be done. The limitations of ACTS in surmounting distance education problems in developing countries shall be investigated. This project will, furthermore, provide training to Savannah State College faculty in photovoltaic (PV) systems and in distance education configurations and models. It will also produce training materials adequate for use in PV training programs via distance education. Savannah State College will, as a consequence become well equipped to play a leading role in the training of minority populations in photovoltaic systems and other renewables through its Center for Advanced Water Technology and Energy Systems. This communication provides the project outline including the specific issues that will be investigated during the project. Also presented i the project design which covers the participations of the various components of a network of institutions that is formed for optimal project execution. The expected results and project output, including plans for potential leverages and linkages to be derived, are also discussed. Finally, we point out possible extensions from this project and other related projects that could be initiated based on the experiences gained from the project.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center, HBCUs Research Conference Agenda and Abstracts; p 36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-08-31
    Description: The Boeing Company, under contract to the Electric Power Research Institute (EPRI), has completed a test program on the Mod-2 wind turbines at Goodnoe Hills, Washington. The objectives were to update fatigue load spectra, discern site and machine differences, measure vortex generator effects, and to evaluate rotational sampling techniques. This paper shows the test setup and loads instrumentation, loads data comparisons and test/analysis correlations. Test data are correlated with DYLOSAT predictions using both the NASA interim turbulence model and rotationally sampled winds as inputs. The latter is demonstrated to have the potential to improve the test/analysis correlations. The paper concludes with an assessment of the importance of vortex generators, site dependence, and machine differences on fatigue loads. The adequacy of prediction techniques used are evaluated and recommendations are made for improvements to the methodology.
    Keywords: STRUCTURAL MECHANICS
    Type: DASCON Engineering, Collected Papers on Wind Turbine Technology; p 139-152
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-08-31
    Description: Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.
    Keywords: AERODYNAMICS
    Type: DASCON Engineering, Collected Papers on Wind Turbine Technology; p 41-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-08-31
    Description: Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.
    Keywords: STRUCTURAL MECHANICS
    Type: Collected Papers on Wind Turbine Technology; p 17-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-08-31
    Description: This paper gives a brief overview of the European free flying spacecraft 'EURECA' and the initial post flight investigations following its retrieval in June 1993. EURECA was in low earth orbit for 11 months commencing in August 1992, and is the first spacecraft to be retrieved and returned to Earth since the recovery of LDEF. The primary mission objective of EURECA was the investigation of materials and fluids in a very low micro-gravity environment. In addition other experiments were conducted in space science, technology and space environment disciplines. The European Space Agency (ESA) has taken the initiative in conducting a detailed post-flight investigation to ensure the full exploitation of this unique opportunity.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 23-35
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-08-31
    Description: A computational procedure is presented for evaluating the sensitivity coefficients of the dynamic axisymmetric response of viscoplastic shells of revolution. The analytical formulation is based on Reissner's large deformation shell theory with the effects of transverse shear deformation, rotatory inertia and moments turning around the normal to the middle surface included. The material model is chosen to be isothermal viscoplasticity, and an associated flow rule is used with a von Mises effective stress. A mixed formulation is used with the fundamental unknowns consisting of six stress resultants, three generalized displacements and three velocity components. Spatial discretization is performed using finite elements, with discontinuous stress resultants across element interfaces. The temporal integration is performed by using an explicit central difference scheme (leap-frog method) with an implicit constitutive update. The sensitivity coefficients are evaluated using a direct differentiation approach. Numerical results are presented for a spherical cap subjected to step loading, and a circular plate subjected to impulsive loading. The sensitivity coefficients are generated by evaluating the derivatives of the response quantities with respect to thickness, mass density, Young's modulus, and two of the material parameters characterizing the viscoplastic response. Time histories of the response and sensitivity coefficients are presented, along with spatial distributions of these quantities at selected times.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-08-31
    Description: Experimental data from spacecraft providing impact penetration rates and cratering for metallic targets is reviewed. Data includes NASA Explorers 16 and 23 and the Pegasus series, the second US-UK satellite Ariel 2, Space Shuttle STS-3 (MFE), recovered surfaces on Solar Max Satellite, The Long Duration Exposure Facility (LDEF) and EuReCa TiCCE. Factors concerning exposure to the environment are considered and, especially, material properties which affect the penetration resistance. Reference to a common material, Aluminum alloy 2024-T3, is effected and the data then compared to define firstly an average impact flux over the period. The data is examined, in the context of possible satellite and space debris growth rates, to determine the constancy of the flux. This also provides strong constraints on the current space debris component. It is found that the impact data are consistent with domination by natural meteoroid sources. Growth rates are not evident within the period 1980-1990 and Eureca TiCCE fluxes in 1993, for particles penetrating foils of around 10 microns thickness, supports the constancy of the flux. At larger dimensions the 1993 Eureca TiCCE fluxes show an 8-fold increase but this is considered not inconsistent with the selective exposure to meteoroid streams of a satellite stabilized in heliocentric co-ordinates for an 11 month period.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 337-351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-08-31
    Description: With the threat of damage to aerospace systems (space station, shuttle, hypersonic a/c, solar power satellites, loss of life, etc.) from collision with debris (manmade/artificial), there exists an opportunity for the design of a novel system (collision avoidance) to be incorporated into the overall design. While incorporating techniques from ccd and remote sensing technologies, an integrated system utilized in the infrared/visible spectrum for detection, tracking, localization, and maneuvering from doppler shift measurements is achievable. Other analysis such as impact assessment, station keeping, chemical, and optical tracking/fire control solutions are possible through this system. Utilizing modified field programmable gated arrays (software reconfiguring the hardware) the mission and mission effectiveness can be varied. This paper outlines the theoretical operation of a prototype system as it applies to collision avoidance (to be followed up by research).
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 285-287
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-08-31
    Description: A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under development for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This paper presents an overview of this effort, along with a perspective on the present and future status of the methodology.
    Keywords: AERODYNAMICS
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 289-308
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-08-31
    Description: Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH's) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH's were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). We also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 385-399
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-08-31
    Description: POD Associates have revisited the issue of generic scaling laws able to adequately predict (within better than 20 percent) cratering in semi-infinite targets and perforations through finite thickness targets. The approach used was to apply physical logic for hydrodynamics in a consistent manner able to account for chunky-body impacts such that the only variables needed are those directly related to known material properties for both the impactor and target. The analyses were compared and verified versus CTH hydrodynamic code calculations and existing data. Comparisons with previous scaling laws were also performed to identify which (if any) were good for generic purposes. This paper is a short synopsis of the full report available through the NASA Langley Research Center, LDEF Science Office.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 523-535
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-08-31
    Description: Interpretation of the wealth of impact data available from the Long Duration Exposure Facility, in terms of the absolute and relative populations of space debris and natural micrometeoroids, requires three dimensional models of the distribution of impact directions, velocities and masses of such particles, as well as understanding of the impact processes. Although the stabilized orbit of LDEF provides limited directional information, it is possible to determine more accurate impact directions from detailed crater morphology. The applicability of this technique has already been demonstrated but the relationship between crater shape and impactor direction and velocity has not been derived in detail. We present the results of impact experiments and simulations: (1) impacts at micron dimensions using the Unit's 2MV Van de Graaff accelerator; (2) impacts at mm dimensions using a Light Gas Gun; and (3) computer simulations using AUTODYN-3D from which an empirical relationship between crater shape and impactor velocity, direction and particle properties we aim to derive. Such a relationship can be applied to any surface exposed to space debris or micrometeoroid particles for which a detailed pointing history is available.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 499-508
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-08-31
    Description: A 5.2 mm crater in Al-metal represents the largest found on LDEF. We have examined this crater by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and time-of-flight/secondary ion mass spectroscopy (TOF-SIMS) in order to determine if there is any evidence of impactor residue. Droplet and dome-shaped columns, along with flow features, are evidence of melting. EDS from the crater cavity and rim show Mg, C, O and variable amounts of Si, in addition to Al. No evidence for a chondritic impactor was found, and it hypothesized that the crater may be the result of impact with space debris.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 475-481
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-08-31
    Description: Four of the eight available double layer microparticle capture cells, flown as the experiment A0023 on the trailing (West) face of LDEF, have been extensively studied. An investigation of the chemistry of impactors has been made using SEM/EDX techniques and the effectiveness of the capture cells as bumper shields has also been examined. Studies of these capture cells gave positive EDX results, with 53 percent of impact sites indicating the presence of some chemical residues, the predominant residue identified as being silicon in varying quantities.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 445-457
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-08-31
    Description: Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 257-273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-08-31
    Description: The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 65-70
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The objective of the Materials Exposure Facility (MEF) is to provide a test bed in space for conducting long-term (greater than one year) materials experiments which require exposure to the low Earth orbit (LEO) space environment. The proposed MEF is planned to be an integral part of the agency's Space Environments and Effects Research Program. The facility will provide experiment trays similar to the Long Duration Exposure Facility (LDEF). Each tray location is planned to have a power and data interface and robotic installation and removal provisions. Space environmental monitoring for each side of the MEF will also be provided. Since routine access to MEF for specimen retrieval is extremely important to the materials research, Space Station Freedom has been chosen as the preferred MEF carrier.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1301-1304
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-08-31
    Description: There is need for a space platform for experiments investigating long duration exposure to space. This platform should be maintainable in the event of a malfunction, and experiments should be easily recoverable for analysis on Earth. The International Space Station provides such a platform. The current Space Station configuration has six external experiment attachment sites, providing utilities and data support distributed along the external truss. There are also other sites that could potentially support long duration exposure experiments. This paper describes the resources provided to payloads at these sites, and cites examples of integration of proposed long duration exposure experiments on these sites. The environments to which external attached payloads will be exposed are summarized.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1289-1300
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-08-31
    Description: Space Station will be a permanent orbiting laboratory in space which will provide researchers with unprecedented opportunities for access to the space environment. Space Station is designed to provide essential resources of volume, crew, power, data handling and communications to accommodate experiments for long-duration studies in technology, materials and the life sciences. Materials and coatings for exposure research will be supported by Space Station, providing new knowledge for applications in Earthbased technology and future space missions. Space Station has been redesigned at the direction of the President. The redesign was performed to significantly reduce development, operations and utilization costs while achieving many of the original goals for long duration scientific research. An overview of the Space Station Program and capabilities for research following the redesign is presented below. Accommodations for pressurized and external payloads are described.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1285-1288
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-08-31
    Description: This paper presents an architecture for satellites regarded as intercommunicating agents. The architecture is based upon a postmodern paradigm of artificial intelligence in which represented knowledge is regarded as text, inference procedures are regarded as social discourse and decision making conventions and the semantics of representations are grounded in the situated behaviour and activity of agents. A particular protocol is described for agent participation in distributed search and retrieval operations conducted as joint activities.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies; p 15-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-08-31
    Description: This paper discusses the design and development of the Solar X-ray Imager (SXI) vacuum door assembly (VDA). Rationale for the type of mechanism, seal, and prime mover is covered. An overview of the testing performed is included.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Johnson Space Center, The 29th Aerospace Mechanisms Symposium; p 208-217
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-08-31
    Description: CLUSTER is a scientific space mission to in-situ investigate the Earth's plasma environment by means of four identical spin-stabilized spacecraft. Each spacecraft is provided with a set of four rigid booms: two Antenna Booms and two Radial Booms. This paper presents a summary of the boom development and verification phases addressing the key aspects of the Radial Boom design. In particular, it concentrates on the difficulties encountered in fulfilling simultaneously the requirements of minimum torque ratio and maximum allowed shock loads at boom latching for this two degree of freedom boom. The paper also provides an overview of the analysis campaign and testing program performed to achieve sufficient confidence in the boom performance and operation.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Johnson Space Center, The 29th Aerospace Mechanisms Symposium; p 221-237
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The Clementine spacecraft was developed under the 'faster, better, cheaper' theme. The constraints of a low budget coupled with an unusually tight schedule forced many departures from the normal spacecraft development methods. This paper discusses technical lessons learned about several of the mechanisms on the Clementine spacecraft as well as managerial lessons learned for the entire mechanisms subsystem. A quick overview of the Clementine mission is included; the mission schedule and environment during the mechanisms releases and deployment are highlighted. This paper then describes the entire mechanisms subsystem. The design and test approach and key philosophies for a fast-track program are discussed during the description of the mechanisms subsystem. The mechanism subsystem included a marman clamp separation system, a separation nut separation system, a solar panel deployment and pointing system, a high gain antenna feed deployment system, and two separate sensor cover systems. Each mechanism is briefly discussed. Additional technical discussion is given on the marman clamp design, the sensor cover designs, and the design and testing practices for systems driven by heated actuators (specifically paraffin actuators and frangibolts). All of the other mechanisms were of conventional designs and will receive less emphasis. Lessons learned are discussed throughout the paper as they applied to the systems being discussed. Since there is information on many different systems, this paper is organized so that information on a particular topic can be quickly referenced.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Johnson Space Center, The 29th Aerospace Mechanisms Symposium; p 109-127
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-31
    Description: On July 4,1997, the Mars Pathfinder spacecraft lands on Mars and starts conducting technological and scientific experiments. One experiment, the Alpha-Proton-X-ray Spectrometer, uses a sensor head placed against rocks and soil to determine their composition. To guarantee proper placement, a deployment mechanism mounted on the Mars Rover aligns the sensor head to within 20 deg of the rock and soil surfaces. In carrying out its task, the mechanism mimics the action of a human hand and arm. Consisting of a flexible wrist, a parallel link arm, a brush dc motor actuator, and a revolutionary non-pyrotechnic fail-safe release device, the mechanism correctly positions the sensor head on rocks as high as 0.29 m and on targets whose surfaces are tilted as much as 45 deg from the nominal orientation of the sensor head face. The mechanism weighs less than 0.5 kg, can withstand 100 g's, and requires less than 2.8 N x m of actuation torque. The fail-safe coupler utilizes Cerrobend, a metal alloy that melts at 60 C, to fuse the actuator and the rest of the mechanism together. A film heater wrapped around the coupler melts the metal, and Negator springs drive the mechanism into its stowed position. The fail-safe actuates using 6.75 Watts for 5 minutes in the event of an actuator failure.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA. Johnson Space Center, The 29th Aerospace Mechanisms Symposium; p 61-78
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-31
    Description: Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 287-322
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-31
    Description: Part of the LDEF tray allocated to French experiments (FRECOPA) has been devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Crater size distributions have made possible the evaluation of the incident microparticle flux in the near-Earth environment. Comparisons are made with measurements obtained on the other faces of LDEF (tray clamps), on the leading edge (MAP) and with results of a similar experiment flown on the MIR space station. The geometry of impact craters, depth in particular, provides useful information on the nature of impacting particles and the correlation of geometry with the chemical analysis of projectile remnants inside craters make possible a discrimination between meteoroids and orbital debris. Emphasis has been laid on the size distribution of small craters in order to assess a cut-off in the distribution of particles in LEO. Special attention has been paid to the phenomenon of secondary impacts. A comparison of flight data with current models of meteoroids and space debris shows a fair agreement for LDEF, except for the smaller particles: the possible contribution of orbital debris in GTO orbits to the LDEF trailing edge flux is discussed. For MIR, flight results show differences with current modeling: the possible enhancement of orbital debris could be due to the contaminating presence of a permanently manned space station.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 275-285
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-29
    Description: The finite deformation field of a plane strain Mode 1 crack in a hyperelastic and incompressible material was examined under the assumptions of small scale nonlinearity. Finite element analyses were performed for two different material laws, a Neo-Hookean material and a third order invariant of a Rivlin material. The numerical results for both materials were compared to the appropriate theoretical asymptotic solution. A local cavitation locus surrounding the crack tip was identified for the Neo-Hookean material. For the third order invariant Rivlin material, maximum values of the dominant stress component were found close to the surface of the crack, above and below the deformed crack tip.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, Computational Modeling of Tires; p 53-68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-29
    Description: The NASA Orbiter Experiments (OEX) Program provided a mechanism for utilization of an operational space shuttle orbiter as a flight research vehicle, as an adjunct to its normal space transportation mission. OEX Program experiments were unique among orbiter payloads, as the research instrumentation for these experiments were carried as integral parts of the vehicle's structure, rather than being placed in the orbiter's payload bay as mission-unique cargo. On each of its first 17 flights, the Orbiter Columbia carried some type of research instrumentation. Various instrumentation systems were used to measure, in flight, the requisite parameters for determination of the orbiter aerodynamic characteristics over the entire entry flight regime and/or the aerodynamic-heating rates imposed upon the vehicle during the hypersonic portion of atmospheric entry. The data derived from this instrumentation represent benchmark hypersonic flight data heretofore unavailable for a lifting entry vehicle. The data are being used in a continual process of validation of state-of-the-art methods, both experimental and computational, for simulating/predicting the aerodynamic and aerothermal characteristics of advanced space transportation vehicles. This paper describes the OEX Program complement of research experiments, presents typical flight data obtained by these experiments, and demonstrates the utilization of these data for advancement and validation of vehicle aerothermodynamic-design tools. By example, the concept of instrumenting operational vehicles and/or spacecraft in order to perform advanced technology development and validation is demonstrated to be an effective and economical method for maturing space-systems design technologies.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AGARD, Space Systems Design and Development Testing; 17 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-08-29
    Description: Arcjet and ion propulsion offer potentially significant reductions in the mass of propulsion systems required for Earth orbiting satellites and planetary spacecraft. For this reason, they have been the subject of validation and demonstration programs. After examining the benefits of electric propulsion, this paper discusses the technology base for the Electric Propulsion Space Experiment (ESEX) arcjet demonstration experiment and the NASA Technology Application Readiness (NSTAR) ion propulsion validation program. As part of the Advanced Research Global Observation Spacecraft (ARGOS), ESEX will perform ten 15-min firings of a 30-kW ammonia arcjet. NASA's validation program, NSTAR, consists of two major elements: a ground-test element and an in-space experiment. The ground element will validate the life, integrability, and performance of low-power ion propulsion. The in-space element will demonstrate the feasibility of integrating and flying an ion propulsion system. The experiment will measure the interactions among the ion propulsion system, the host spacecraft, and the surrounding space plasma. It will provide a quantitative assessment of the ability of ground testing to replicate the in-space performance ion thrusters. By involving industry in NSTAR, a commercial source for this technology will be ensured. Furthermore, the successful completion of the NSTAR validation program will stimulate commercial and government (both civilian and military) uses of this technology.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AGARD, Space Systems Design and Development Testing; 15 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-29
    Description: Pegasus is a satellite-launching space rocket dropped from a B52 carrier aircraft instead of launching vertically from a ground pad. Its three-year, privately-funded accelerated development was carried out under a demanding design-to-nonrecurring cost methodology, which imposed unique requirements on its flight test program, such as the decision not to drop an inert model from the carrier aircraft; the number and type of captive and free-flight tests; the extent of envelope exploration; and the decision to combine test and operational orbital flights. The authors believe that Pegasus may be the first vehicle where constraints in the number and type of flight tests to be carried out actually influenced the design of the vehicle. During the period November 1989 to February of 1990 a total of three captive flight tests were conducted, starting with a flutter clearing flight and culminating in a complete drop rehearsal. Starting on April 5, 1990, two combination test/operational flights were conducted. A unique aspect of the program was the degree of involvement of flight test personnel in the early design of the vehicle and, conversely, of the design team in flight testing and early flight operations. Various lessons learned as a result of this process are discussed throughout this paper.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AGARD, Space Systems Design and Development Testing; 9 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-29
    Description: Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamic and physical processes, is the genesis for the design and development of advanced space transportation vehicles. It provides crucial information to other disciplines involved in the development process such as structures, materials, propulsion, and avionics. Sources of aerothermodynamic information include ground-based facilities, computational fluid dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this triad is required to provide the optimum requirements while reducing undue design conservatism, risk, and cost. This paper discusses the role of ground-based facilities in the design of future space transportation system concepts. Testing methodology is addressed, including the iterative approach often required for the assessment and optimization of configurations from an aerothermodynamic perspective. The influence of vehicle shape and the transition from parametric studies for optimization to benchmark studies for final design and establishment of the flight data book is discussed. Future aerothermodynamic testing requirements including the need for new facilities are also presented.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AGARD, Space Systems Design and Development Testing; 22 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2013-08-29
    Description: The Submillimeter Wave Astronomy Satellite (SWAS) mission is dedicated to the study of star formation and interstellar chemistry. To carry out this mission, SWAS will survey dense (n(sub H2) greater than 10(exp 3) cm(exp -3)) molecular clouds within our galaxy in either the ground-state of a low-lying transition of five astrophysically important species: H2O, H2O-18, O2, CI, and CO-13. By observing these lines SWAS will: (1) test long-standing theories that predict that these species are the dominant coolants of molecular clouds during the early stages of their collapse to form stars and planets, and (2) supply heretofore missing information about the abundanceof key species central to the chemical models of dense interstellar gas. SWAS will employ two independent Schottky barrier diode mixers, passively cooled to approx. 150 K, coupled to a highly efficient 54 x 68 cm off-axis Cassegrain antenna. During its two year mission, SWAS will observe giant and dark cloud cores with the goal of detecting or setting an upper limit on the water abundance of 3 x 10(exp -6) and on th molecular oxygen abundances of 2 x 10(exp -6), both relative to H2. In addition, advantage will be taken of SWAS's relatively large beamsize of 3.2 x 4.0 arcminutes at 551 GHz and 3.6 x 4.5 arcminutes at 492 GHz to obtain large-area (approx. 1 deg x 1 deg) maps of giant and dark clouds in the CO-13 and CI lines. SWAS is scheduled for launch in mid-1995.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 673-678
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: Grid generation plays an integral part in the solution of computational fluid dynamics problems for aerodynamics applications. A major difficulty with standard structured grid generation, which produces quadrilateral (or hexahedral) elements with implicit connectivity, has been the requirement for a great deal of human intervention in developing grids around complex configurations. This has led to investigations into unstructured grids with explicit connectivities, which are primarily composed of triangular (or tetrahedral) elements, although other subdivisions of convex cells may be used. The existence of large gradients in the solution of aerodynamic problems may be exploited to reduce the computational effort by using high aspect ratio elements in high gradient regions. However, the heuristic approaches currently in use do not adequately address this need for high aspect ratio unstructured grids. High aspect ratio triangulations very often produce the large angles that are to be avoided. Point generation techniques based on contour or front generation are judged to be the most promising in terms of being able to handle complicated multiple body objects, with this technique lending itself well to adaptivity. The eventual goal encompasses several phases: first, a partitioning phase, in which the Voronoi diagram of a set of points and line segments (the input set) will be generated to partition the input domain; second, a contour generation phase in which body-conforming contours are used to subdivide the partition further as well as introduce the foundation for aspect ratio control, and; third, a Steiner triangulation phase in which points are added to the partition to enable triangulation while controlling angle bounds and aspect ratio. This provides a combination of the advancing front/contour techniques and refinement. By using a front, aspect ratio can be better controlled. By using refinement, bounds on angles can be maintained, while attempting to minimize the number of Steiner points.
    Keywords: AERODYNAMICS
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-01-25
    Description: The Small Satellite Technology Initiative (SSTI) 'CLARK' spacecraft is required to be single-failure tolerant, i.e., no failure of any single component or subsystem shall result in complete mission loss. Fault tolerance is usually achieved by implementing redundant subsystems. Fault tolerant systems are therefore heavier and cost more to build and launch than non-redundent, non fault-tolerant spacecraft. The SSTI CLARK satellite Attitude Determination and Control System (ADACS) achieves single-fault tolerance without redundancy. The attitude determination system system uses a Kalman Filter which is inherently robust to loss of any single attitude sensor. The attitude control system uses three orthogonal reaction wheels for attitude control and three magnetic dipoles for momentum control. The nominal six-actuator control system functions by projecting the attitude correction torque onto the reaction wheels while a slower momentum management outer loop removes the excess momentum in the direction normal to the local B field. The actuators are not redundant so the nominal control law cannot be implemented in the event of a loss of a single actuator (dipole or reaction wheel). The spacecraft dynamical state (attitude, angular rate, and momentum) is controllable from any five-element subset of the six actuators. With loss of an actuator the instantaneous control authority may not span R(3) but the controllability gramian integral(limits between t,0) Phi(t, tau)B(tau )B(prime)(tau) Phi(prime)(t, tau)d tau retains full rank. Upon detection of an actuator failure the control torque is decomposed onto the remaining active axes. The attitude control torque is effected and the over-orbit momentum is controlled. The resulting control system performance approaches that of the nominal system.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium 1995; p 417
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-01-25
    Description: The successful flight, retrieval, and analyses of the Long Duration Exposure Facility (LDEF) experiments demonstrated the value of long duration space exposure for a broad spectrum of science and engineering investigations. The original LDEF was an excellent gravity gradient spacecraft, but because of its 9 m length and 9,700 kg mass it was difficult to manifest on the Shuttle, for either launch or retrieval, in conjunction with other payloads. This paper discusses an LDEF follow-on spacecraft concept whose short stowed length (approximately 3 m) greatly improves Shuttle manifesting opportunities while still providing very large surface area exposure for experiments. Deployable 'wings' on each end of the short, 'cylindrical' main body of this new spacecraft provide the means for gravity gradient stabilization while greatly increasing the spacecraft surface area. The center section of the spacecraft is oriented with the end faces of the twelve sided, 4.2 m diameter 'cylinder' perpendicular to the velocity vector thus providing large areas for experiments in both the ram and anti-ram directions as well as additional exposure area around the periphery of the cylinder. When deployed and properly oriented with the Shuttle's Remote Manipulator System (RMS), both wings of the spacecraft are oriented edge on to the direction of motion and lie in the plane which contains the local gravity vector. The relatively thin wings readily accommodate dual side exposure of glass plate stacks for cosmic ray detection. Flat surfaces mounted normal to and on the periphery of the wings provide additional areas in both the ram and anti-ram directions for cosmic dust, micrometeoroid, and orbital debris collection free of contamination from 'splatter' off secondary surfaces. The baseline concept provides enhancements not available on the original LDEF such as solar array generated electrical power and data telemetry. Status of the efforts to promote support for and ultimately space flight of this concept will be presented. Suggestions for improvements in the spacecraft design and proposed utilization are solicited.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1307
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-01-25
    Description: Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility (LDEF) after the spacecraft had spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments in an effort to reproduce such features and to -- hopefully -- understand the relationships between projectile size and the resulting crater or penetration-hole diameter over a wide range of impact velocity. Such relationships are needed to derive the size- and mass-frequency distribution and flux of natural and man-made particles in low-Earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres of 3.175 mm (1/8 inch) nominal diameter (Dp) into pure Teflon FEP targets at velocities ranging from 1 to 7 km/s. Target thickness (T) was varied over more than three orders of magnitude from infinite halfspace targets (Dp/T less than 0.1) to very thin films (Dp/T greater than 100). Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration-hole diameter (Dh) can become larger than that of a standard crater (Dc) at relative target thicknesses of Dp/T = 0.6-0.9. The crater diameter is infinite halfspace Teflon targets increases -- at otherwise constant impact conditions -- with encounter velocity by a factor of V0.44. In contrast, the penetration-hole size is very thin foils (Dp/T greater than 50) is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for the velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations dominate all impacts in which the shock-pulse duration of the projectile (tp) is shorter than that of the target (tt). We also demonstrate that each penetration hole from space-retrieved surfaces may be assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 521
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-01-25
    Description: A computational procedure is presented for evaluating the sensitivity coefficients of the dynamic frictional contact/impact response of axisymmetric composite structures. The structures are assumed to consist of an arbitrary number of perfectly bonded homogeneous anisotropic layers. The material of each layer is assumed to be hyperelastic, and the effect of geometric nonlinearity is included. The sensitivity coefficients measure the sensitivity of the response to variations in different material, lamination and geometric parameters of the structure. A displacement finite element model is used for the discretization. The normal contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the nodal displacements, and the Lagrange multipliers associated with the contact conditions. The Lagrange multipliers are allowed to be discontinuous at interelement boundaries. Tangential contact conditions are incorporated by using a penalty method in conjunction with the classical Coulomb's friction model. Temporal integration is performed by using Newmark method. The Newton-Raphson iterative scheme is used for the solution of the resulting nonlinear algebraic equations, and for the determination of the contact region, contact conditions (sliding or sticking), and the contact pressures. The sensitivity coefficients are evaluated by using a direct differentiation approach. Numerical results are presented from the frictional contact/impact response of a composite spherical cap impacting on a rigid plate.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-01-25
    Description: A computational strategy is presented for postbuckling and nonlinear static analyses of large complex structures on distributed-memory parallel computers. The strategy is designed for message-passing parallel computer systems. The key elements of the proposed strategy are: (1) a multiple-parameter reduced basis technique; (2) a nested dissection (or multilevel substructuring) ordering scheme; (3) parallel assembly of global matrices; and (4) a parallel sparse equation solver. The effectiveness of the strategy is assessed by performing thermomechanical postbuckling analyses of stiffened composite panels with cutouts, and nonlinear large-deflection analyses of High Speed Civil Transport models on three distributed-memory computers. The numerical studies presented demonstrate the advantages of nested dissection-based solvers over traditional skyline-based solvers on distributed-memory machines.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-01-25
    Description: A computational strategy is presented for the nonlinear static and postbuckling analyses of large complex structures on massively parallel computers. The strategy is designed for distributed-memory, message-passing parallel computer systems. The key elements of the proposed strategy are: (1) a multiple-parameter reduced basis technique; (2) a nested dissection (or multilevel substructuring) ordering scheme; (3) parallel assembly of global matrices; and (4) a parallel sparse equation solver. The effectiveness of the strategy is assessed by applying it to thermo-mechanical postbuckling analyses of stiffened composite panels with cutouts, and nonlinear large-deflection analyses of HSCT models on Intel Paragon XP/S computers. The numerical studies presented demonstrate the advantages of nested dissection-based solvers over traditional skyline-based solvers on distributed memory machines.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-01-25
    Description: A reduced basis technique and a computational procedure are presented for generating the nonlinear vibrational response, and evaluating the first-order sensitivity coefficients of thin-walled composite frames. The sensitivity coefficients are the derivatives of the nonlinear frequency with respect to the material and lamination parameters of the frame. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frame. The flanges and webs of the frames are modeled by using geometrically nonlinear two-dimensional shell and plate finite elements. The computational procedure can be conveniently divided into three distinct steps. The first step involves the generation of various-order perturbation vectors, and their derivatives with respect to the material and lamination parameters of the frame, using the Linstedt-Poincare perturbation technique. The second step consists of using the perturbation vectors as basis vectors, computing the amplitudes of these vectors and the nonlinear frequency of vibration, via a direct variational procedure. The third step consists of using the perturbation vectors, and their derivatives, as basis vectors and computing the sensitivity coefficients of the nonlinear frequency via a second application of the direct variational procedure. Numerical results are presented for semicircular thin-walled frames with I and J section, showing the convergence of the nonlinear frequency and the sensitivity coefficients obtained by both the reduced-basis and perturbation techniques.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-03-30
    Description: Two symposia related to the exploration of the Venus and Mars atmospheres produced papers which described the results of spacecraft-based and ground-based observations of these two planets. The topics addressed included solar wind interactions, molecular ions, planetary magnetospheres, planetary ionospheres, planetary thermospheres, gravity waves, the homopause, radiative transfer, radiative balance, atmospheric water, planetary lightning, very low frequency bursts, cosmic-ray ionization, planetary loss, and future missions to study Mars aeronomy, energetic particles near Mars, radar exploration of Mars, and the Mars Environmental Survey (MESUR) mission.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 15; 4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-01-25
    Description: In support of the power requirements for the Space Station Alpha (SSA), a joint program by the U.S. and Russia for a permanently manned space station to be launched into orbit by 1998, a robust control scheme is needed to assure the stability of the rotating machines that will be integrated into the power subsystem. A framework design and systems studies for modeling and analysis is presented. It employs classical d-q axes machine model with voltage/frequency dependent loads. To guarantee that design requirements and necessary trade studies are done, a functional analysis tool CORE is used for the study. This provides us with different control options for stability assessment. Initial studies and recommendations using advanced simulation tools are also presented. The benefits of the stability/control scheme for evaluating future designs and power management are discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center, HBCUs Research Conference Agenda and Abstracts; p 28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-01-25
    Description: A computational strategy is presented for calculating sensitivity coefficients for the nonlinear large-deflection and postbuckling responses of laminated composite structures on distributed-memory parallel computers. The strategy is applicable to any message-passing distributed computational environment. The key elements of the proposed strategy are: (1) a multiple-parameter reduced basis technique; (2) a parallel sparse equation solver based on a nested dissection (or multilevel substructuring) node ordering scheme; and (3) a multilevel parallel procedure for evaluating hierarchical sensitivity coefficients. The hierarchical sensitivity coefficients measure the sensitivity of the composite structure response to variations in three sets of interrelated parameters; namely, laminate, layer and micromechanical (fiber, matrix, and interface/interphase) parameters. The effectiveness of the strategy is assessed by performing hierarchical sensitivity analysis for the large-deflection and postbuckling responses of stiffened composite panels with cutouts on three distributed-memory computers. The panels are subjected to combined mechanical and thermal loads. The numerical studies presented demonstrate the advantages of the reduced basis technique for hierarchical sensitivity analysis on distributed-memory machines.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: A reduction technique and a computational procedure are presented for predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of the reduction technique, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-01-25
    Description: Analytic three-dimensional solutions are presented for the coupled thermoelectroelastic response of multilayered hybrid composite plates. The plates consist of a combination of fiber-reinforced cross-ply and piezothermoelastic layers. Both the thermoelectroelastic static response and its sensitivity coefficients are computed. The sensitivity coefficients measure the sensitivity of the response to variations in different mechanical, thermal and piezoelectric material properties of the plate. A linear constitutive model is used, and the material properties are assumed to be independent of the temperature and the electric field. The plates are assumed to have rectangular geometry and special material symmetries. A mixed formulation is used with the fundamental unknowns consisting of the three transverse stress components; three displacement components; transverse component of the electric displacement field; electric potential; transverse heat flux component, and temperature change. Each of the fundamental unknowns is expressed in terms of a double Fourier series in the Cartesian surface coordinates. A state space approach is used to generate the static response and to evaluate the sensitivity coefficients. Extensive numerical results are presented showing the effects of variation in the geometric parameters of the plate on the different response quantities and their sensitivity coefficients.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-01-25
    Description: A computational procedure is presented for evaluating the sensitivity coefficients of the static frictional contact response of axisymmetric composite structures. The structures are assumed to consist of an arbitrary number of perfectly bonded homogeneous anisotropic layers. The material of each layer is assumed to be hyperelastic, and the effect of geometric nonlinearity is included. The sensitivity coefficients measure the sensitivity of the response variations in different material, lamination and geometric parameters of the structure. A displacement finite element model is used for the discretization. The normal contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of nodal displacements, and Lagrange multipliers associated with the contact conditions. The Lagrange multipliers are allowed to be discontinuous at interelement boundaries. Tangential contact conditions are incorporated by using a penalty method in conjunction with the classical Coulomb's friction model. The Newton-Raphson iterative scheme is used for the solution of the resulting nonlinear algebraic equations, and for the determination of the contact region, contact conditions (sliding or sticking), and the contact pressures. The sensitivity coefficients are evaluated by using a direct differentiation approach. Numerical results are presented for the frictional contact of a composite spherical cap pressed against a rigid plate.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-01-25
    Description: The results of a study of the detailed thermomechanical postbuckling response characteristics of flat unstiffened composite panels with central circular cutouts are presented. The panels are subjected to combined temperature changes and applied edge loading (or edge displacements). The analysis is based on a first-order shear deformation plate theory. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the plate. The postbuckling displacements, transverse shear stresses, transverse shear strain energy density, and their sensitivity coefficients are evaluated. The sensitivity coefficients measure the sensitivity of the post-buckling response to variations in the different lamination and material parameters of the panel. Numerical results are presented showing the effects of the variations in the hole diameter, laminate stacking sequence, fiber orientation, and aspect ratio of the panel on the thermomechanical postbuckling response and its sensitivity to changes in panel parameters.
    Keywords: STRUCTURAL MECHANICS
    Type: Virginia Univ., Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-01-25
    Description: A study is made of the effect of mesh distortion on the accuracy of transverse shear stresses and their first-order and second-order sensitivity coefficients in multilayered composite panels subjected to mechanical and thermal loads. The panels are discretized by using a two-field degenerate solid element, with the fundamental unknowns consisting of both displacement and strain components, and the displacement components having a linear variation throughout the thickness of the laminate. A two-step computational procedure is used for evaluating the transverse shear stresses. In the first step, the in-plane stresses in the different layers are calculated at the numerical quadrature points for each element. In the second step, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of transverse shear stresses. Numerical results are presented showing no noticeable degradation in the accuracy of the in-plane stresses and their sensitivity coefficients with mesh distortion. However, such degradation is observed for the transverse shear stresses and their sensitivity coefficients. The standard of comparison is taken to be the exact solution of the three-dimensional thermoelasticity equations of the panel.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-01-25
    Description: A study is made of the buckling and postbuckling responses of flat, unstiffened composite panels subjected to various combinations of mechanical and thermal loads. The analysis is based on a first-order shear deformation von Karman-type plate theory. A mixed formulation is used with the fundamental unknowns consisting of the strain components, stress resultants and the generalized displacements of the plate. The stability boundary, postbuckling response and the sensitivity coefficients are evaluated. The sensitivity coefficients measure the sensitivity of the buckling and postbuckling responses to variations in the different lamination and material parameters of the panel. Numerical results are presented for both solid panels and panels with central circular cutouts. The results show the effects of the variations in the fiber orientation angels, aspect ratio of the panel, and the hole diameter (for panels with cutouts) on the stability boundary, postbuckling response and sensitivity coefficients.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-04-02
    Description: A newly discovered source of energetic particle streams directed at Venus' nightside may cause several exosphere phenomena. The streams evolve from dispersed cosmoids, a surreptitious population of meteoroids in nearly hyperbolic orbits, measured with three dust experiments on Pioneer 10/11. Loose fragile comet-like ensembles of frozen volatile material, they are orders of magnitude more populous than short-period meteoroids. Dispersion is forced near a planet masking the meteor signature at Earth, but recently terrestrial exosphere interactions have been detected principally from VLF radar returns and as suddenly formed layers of neutral sodium and iron probed by lidar. Venus influx is estimated greater than 10(exp -14)(g)/((sq cm)(s)) with nightside directed kinetic power of greater than 0.3 (erg)/((sq cm)s)). Compared to Earth, Venus, lacking a dipole field with almost no rotation, has a readily recognized set of nightside interaction signatures of these downward energetic particle streams: i.e., density depressions of the neutral thermosphere, hydrogen and helium bulges, a non-disappearing ionosphere, electron holes, nightglows, VLF bursty signals, and local magnetic fields. From Pioneer Venus Orbiter (PVO) measurements, the cosmoid population, its temporal and solar azimuthal variation may be determined.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 15; 4; p. (4)123-(4)129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-04-02
    Description: High-resolution, near-infrared (1.09 to 2.5 micrometers) spectra of the night side of Venus have been obtained in 1990 and 1991 using the Fourier Transform Spectrometer at the 3.6-m Canada-France-Hawaii telescope. Absorptions due to H2O were detected in spectral windows near 2.3, 1.74, and 1.18 micrometers. Our analysis of these absorptions constrains the abundance of water vapor in three different altitude ranges located between the clouds and the surface: 30-40 km, 15-25 km and 0-15 km. A constant water vapor mixing ratio of 30 +/- 15 ppm below the clouds can fit the observations. These values are consistent with recent near-infrared studies of the night side of Venus at lower spectral resolution. The atmosphere of Venus appears to be dryer than originally suggested by the in-situ measurements made by the Pioneer Venus and Venera mass-spectrometers and gas-chromatographs.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 15; 4; p. (4)79-(4)88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-04-02
    Description: Using Pioneer Venus data, hydrogen and deuterium ions are shown to escape from the hydrogen bulge region in the nightside ionosphere. The polarization electric field propels these light ions upward through the ionosphere and into the ion-exosphere, where H(+) and D(+) continue to be accelerated away from Venus and move into the ionotail and beyond. The vertical flow speeds of H(+) and D(+) are found to be about the same; therefore, selective escape between H(+) and D(+) is negligible for this mechanism. Present day planetary loss rates of about 8.6 x 10(exp 25)/s and 3.2 X 10(exp 23)/s were obtained for H(+) and D(+), respectively. Such rates, persisting over a few billion years, should have significantly affected the planetary water budget.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 15; 4; p. (4)117-(4)122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-01-25
    Description: A study is made of the accuracy of the steady-state (static) thermoelectroelastic response of multilayered hybrid composite plates predicted by five modeling approaches, based on two-dimensional plate theories. The plates consist of a combination of fiber-reinforced and piezothermoelastic layers. The standard of comparison is taken to be the exact three-dimensional thermoelectroelastic solutions, and the quantities compared include gross response characteristics (e.g., strain energy components, and average through-the-thickness displacements); detailed, through-the-thickness distributions of displacements and stresses; and sensitivity coefficients of the response quantities (derivatives of the response quantities with respect to material parameters of the plate). The modeling approaches considered include first-order theory; third-order theory; discrete-layer theory (with piecewise linear variation of the in-plane displacements, temperature and electric potential, in the thickness direction); and two predictor-corrector procedures.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-01-25
    Description: A computational procedure is presented for evaluating the sensitivity coefficients of the dynamic axisymmetric, fully-coupled, thermoviscoplastic response of shells of revolution. The analytical formulation is based on Reissner's large deformation shell theory with the effects of large-strain, transverse shear deformation, rotatory inertia and moments turning around the normal to the middle surface included. The material model is chosen to be viscoplasticity with strain hardening and thermal hardening, and an associated flow rule is used with a von Mises effective stress. A mixed formulation is used for the shell equations with the fundamental unknowns consisting of six stress resultants, three generalized displacements and three velocity components. The energy-balance equation is solved using a Galerkin procedure, with the temperature as the fundamental unknown. Spatial discretization is performed in one dimension (meridional direction) for the momentum and constitutive equations of the shell, and in two dimensions (meridional and thickness directions) for the energy-balance equation. The temporal integration is performed by using an explicit central difference scheme (leap-frog method) for the momentum equation; a predictor-corrector version of the trapezoidal rule is used for the energy-balance equation; and an explicit scheme consistent with the central difference method is used to integrate the constitutive equations. The sensitivity coefficients are evaluated by using a direct differentiation approach. Numerical results are presented for a spherical cap subjected to step loading.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-01-25
    Description: The results of a detailed study of the buckling and postbuckling responses of composite panels with central circular cutouts are presented. The panels are subjected to combined edge shear and temperature change. The panels are discretized by using a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the panel. The fundamental unknowns consist of the average mechanical strains through the thickness and the displacement components. The effects of geometric nonlinearities and laminated anisotropic material behavior are included. The stability boundary, postbuckling response and the hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the buckling and postbuckling responses to variations in the panel stiffnesses, and the material properties of both the individual layers and the constituents (fibers and matrix). Numerical results are presented for composite panels with central circular cutouts subjected to combined edge shear and temperature change, showing the effects of variations in the hole diameter, laminate stacking sequence and fiber orientation, on the stability boundary and postbuckling response and their sensitivity to changes in the various panel parameters.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-01-25
    Description: A hybrid neurocomputing/numerical strategy is presented for geometrically nonlinear analysis of structures. The strategy combines model-free data processing capabilities of computational neural networks with a Pade approximants-based perturbation technique to predict partial information about the nonlinear response of structures. In the hybrid strategy, multilayer feedforward neural networks are used to extend the validity of solutions by using training samples produced by Pade approximations to the Taylor series expansion of the response function. The range of validity of the training samples is taken to be the radius of convergence of Pade approximants and is estimated by setting a tolerance on the diverging approximants. The norm of residual vector of unbalanced forces in a given element is used as a measure to assess the quality of network predictions. To further increase the accuracy and the range of network predictions, additional training data are generated by either applying linear regression to weight matrices or expanding the training data by using predicted coefficients in a Taylor series. The effectiveness of the hybrid strategy is assessed by performing large-deflection analysis of a doubly-curved composite panel with a circular cutout, and postbuckling analyses of stiffened composite panels subjected to an in-plane edge shear load. In all the problems considered, the hybrid strategy is used to predict selective information about the structural response, namely the total strain energy and the maximum displacement components only.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-01-25
    Description: Three recent developments in the sensitivity analysis for thermomechanical postbuckling response of composite panels are reviewed. The three developments are: (1) effective computational procedure for evaluating hierarchical sensitivity coefficients of the various response quantities with respect to the different laminate, layer, and micromechanical characteristics; (2) application of reduction methods to the sensitivity analysis of the postbuckling response; and (3) accurate evaluation of the sensitivity coefficients to transverse shear stresses. Sample numerical results are presented to demonstrate the effectiveness of the computational procedures presented. Some of the future directions for research on sensitivity analysis for the thermomechanical postbuckling response of composite and smart structures are outlined.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-01-25
    Description: A computational procedure is presented for evaluating the sensitivity coefficients of the viscoplastic response of structures subjected to dynamic loading. A state of plane stress is assumed to exist in the structure, a velocity strain-Cauchy stress formulation is used, and the geometric non-linearities arising from large strains are incorporated. The Jaumann rate is used as a frame indifferent stress rate. The material model is chosen to be isothermal viscoplasticity, and an associated flow rule is used with a von Mises effective stress. The equations of motion emanating from a finite element semi-discretization are integrated using an explicit central difference scheme with an implicit stress update. The sensitivity coefficients are evaluated using a direct differentiation approach. Since the domain of integration is the current configuration, the sensitivity coefficients of the spatial derivatives of the shape functions must be included. Numerical results are presented for a thin plate with a central cutout subjected to an in-plane compressive loading. The sensitivity coefficients are generated by evaluating the derivatives of the response quantities with respect to Young's modulus, and two of the material parameters characterizing the viscoplastic response. Time histories of the response and sensitivity coefficients, and spatial distributions at selected times are presented.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-01-25
    Description: Analytic three-dimensional thermoelasticity solutions are presented for static problems of simply supported sandwich panels and cylindrical shells subjected to mechanical and thermal loads. The panels and shells have laminated composite face sheets of arbitrary thickness separated by a core. Each of the individual layers of the face sheets and the core is modeled as a three-dimensional continuum. Analytic first-order sensitivity coefficients are evaluated to assess the sensitivity of the responses to variations in material parameters of the face sheets and the core, as well as to variations in the curvatures and thicknesses of the sandwich and face sheets. Also, the strain energy associated with various stress components in the face sheets and core are calculated and compared. The information obtained in the present study can aid the development and assessment of two-dimensional models for sandwich structures and illuminate the role of particular material parameters in an equivalent model for the core.
    Keywords: STRUCTURAL MECHANICS
    Type: Center for Computational Structures Technology; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-01-25
    Description: The analyses, which are currently being performed by the LDEF Meteoroid and Debris Principal Investigators and the other LDEF Meteoroid and Debris Special Investigation Group Members of the data derived from the seven meteoroid and debris experiments that were flown on the LDEF and the post-retrieval scans of the impact sites found on other experiment and LDEF surfaces will, when they are completed, result in many very significant contributions to our knowledge of the meteoroid and debris status report on the analyses that have been performed to date and the preliminary contributions indicated by these analyses. This paper also discusses new questions that have been raised by the completed analyses regarding these environments and their effects on spacecraft.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 255
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-06-28
    Description: A direct numerical simulation (DNS) algorithm has been developed and validated for use in the investigation of crossflow instability on supersonic swept wings, an application of potential relevance to the design of the High-Speed Civil Transport (HSCT). The algorithm is applied to the investigation of stationary crossflow instability on an infinitely long 77-degree swept wing in Mach 3.5 flow. The results of the DNS are compared with the predictions of linear parabolized stability equation (PSE) methodology. In-general, the DNS and PSE results agree closely in terms of modal growth rate, structure, and orientation angle. Although further validation is needed for large-amplitude (nonlinear) disturbances, the close agreement between independently derived methods offers preliminary validation of both DNS and PSE approaches.
    Keywords: AERODYNAMICS
    Type: NASA-CR-198267 , NAS 1.26:198267 , NIPS-96-08486
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-06-28
    Description: Three stiffened panel concepts are evaluated to find optimized designs for integral stiffeners in the barrels of Reusable Launch Vehicle fuel tanks. The three panel concepts considered are a T-stiffened panel, a panel with one blade stiffener centered between each pair of T-stiffeners, and a panel with two blade stiffeners equally spaced between each pair of T-stiffeners. The panels are optimized using PASCO for a range of compressive loads, and the computed areal weight for each panel is used to compare the concepts and predict tank weights. The areal weight of the T-stiffened panel with one blade is up to seven-percent lower than the other panel concepts. Two tank construction methods are compared for a representative tank design with three barrels. In the first method, 45-degree circumferential sections of a barrel are each designed to carry the same maximum load in the barrel. In the second method, each barrel section is designed for the maximum load in that section. Representative tanks designed with the first method are over 250 lb heavier than tanks designed using the second method. Optimized panel designs and areal weights are also computed for variation of the nominal panel length and skin thickness.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-110165 , NAS 1.15:110165 , NIPS-96-08490
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-06-28
    Description: A parametric study is presented of the buckling behavior of infinitely long symmetrically laminated anisotropic plates subjected to combined loads. The study focuses on the interaction of a subcritical (stable) secondary loading state of constant magnitude and a primary destabilizing load that is increased in magnitude until buckling occurs. The loads, considered in this report are uniform axial compression, pure in-plane bending, transverse tension and compression, and shear. Results are presented that were obtained by using a special purpose nondimensional analysis that is well suited for parametric studies of clamped and simply supported plates. In particular, results are presented for a +/- 45(sub S) graphite-epoxy laminate that is highly anisotropic and representative of a laminate used for spacecraft applications. In addition, generic buckling-design charts are presented for a wide range of nondimensional parameters that are applicable to a broad class of laminate constructions. These results show the general behavioral trends of specially orthotropic plates and the effects of flexural anisotropy on plates subjected to various combined loading conditions. An important finding of the present study is that the effects of flexural anisotropy on the buckling resistance of a plate can be significantly more important for plates subjected to combined loads than for plates subjected to single-component loads.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TP-3568 , NAS 1.60:3568 , L-17504 , NIPS-96-07316
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: This document contains presentations and discussions from the joint UVA/NASA Workshop on Computational Modeling of Tires. The workshop attendees represented NASA, the Army and Air force, tire companies, commercial software developers, and academia. The workshop objectives were to assess the state of technology in the computational modeling of tires and to provide guidelines for future research.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-CP-3306 , L-17525 , NAS 1.55:3306
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-28
    Description: Substantial evidence suggests that a UV spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAMs exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SaM material. We hope to determine if UV-SAMs on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAMs has been determined, further constraints on their composition cable made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-199361 , NAS 1.26:199361 , SWRI PROJ. 15-5653
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.
    Keywords: AERODYNAMICS
    Type: NASA-TM-104312 , H-2067 , NAS 1.15:104312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198437 , NAS 1.26:198437 , E-10048 , MTI-95TR29 , NIPS-95-06845
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110205 , NAS 1.15:110205 , NIPS-95-06529
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-06-28
    Description: Three critical compression splice joint locations in a stitched graphite-epoxy transport wing stub box have been analyzed to determine their expected structural performance. The wing box is representative of a section of a commercial transport wing box and was designed and constructed by McDonnell Douglas Aerospace Company as part of the NASA Advanced Composites Technology (ACT) program. The results of the finite element analyses of the splice joints are presented. The analysis results indicate that failure will not occur in the splice joint regions for loads less than the Design Ultimate Load of the wing box.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-110170 , NAS 1.15:110170 , NIPS-95-06489
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-06-28
    Description: A multiblock, discrete sensitivity analysis method is used to couple a direct optimization method and a flow analysis method. The domain is divided into smaller subdomains for which the sensitivities are obtained separately. Then, an effective sensitivity equation is solved to complete the coupling of all the sensitivity information. The flow analysis is based on the thin-layer Navier-Stokes equations solved by an implicit, upwind-biased, finite-volume method. The method of feasible directions is used for the present gradient-based optimization approach. First, a transonic airfoil is optimized to investigate the behavior of the method in highly nonlinear flows as well as the effect of different blocking strategies on the procedure. A supercritical airfoil is produced from an initially symmetric airfoil with multiblocking affecting the path but not the final shape. Secondly, a two-element airfoil is shape optimized in subsonic flow to demonstrate the present method's capability of shaping aerodynamically interfering elements simultaneously. For a very low and a very high Reynolds number cases, the shape of the main airfoil and the flap are optimized to yield improved lift-to-drag ratios.
    Keywords: AERODYNAMICS
    Type: NASA-CR-199785 , NAS 1.26:199785 , AIAA PAPER 94-4273 , NIPS-95-06444
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-06-28
    Description: The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-104813 , S-801 , NAS 1.15:104813
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-06-28
    Description: This report summarizes some NASA Lewis (i.e., government owned) computer codes capable of being used for airbreathing propulsion system studies to determine the design geometry and to predict the design/off-design performance of compressors and turbines. These are not CFD codes; velocity-diagram energy and continuity computations are performed fore and aft of the blade rows using meanline, spanline, or streamline analyses. Losses are provided by empirical methods. Both axial-flow and radial-flow configurations are included.
    Keywords: AERODYNAMICS
    Type: NASA-CR-198433 , NAS 1.26:198433 , E-10041 , NIPS-95-06493
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-06-28
    Description: Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investigated. The panel is fastened at its four edges to the substructures under four different edge conditions and is subjected to uniform temperature loading. Minimum potential energy theory and finite element methods were used to calculate the panel buckling temperatures. The two methods gave fairly close buckling temperatures. However, the finite element method gave slightly lower buckling temperatures than those given by the minimum potential energy theory. The reasons for this slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of eigenshifting on the eigenvalue convergence rate is discussed.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-4643 , NAS 1.15:4643 , H-2009 , NIPS-95-06451
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-06-28
    Description: An investigation was performed to ascertain the feasibility of using IPACS (Integrated Probabilistic Assessment of Composite Structures) for probabilistic analysis of a composite fan blade, the development of which is being pursued by various industries for the next generation of aircraft engines. A model representative of the class of fan blades used in the GE90 engine has been chosen as the structural component to be analyzed with IPACS. In this study, typical uncertainties are assumed in the level, and structural responses for ply stresses and frequencies are evaluated in the form of cumulative probability density functions. Because of the geometric complexity of the blade, the number of plies varies from several hundred at the root to about a hundred at the tip. This represents a extremely complex composites application for the IPACS code. A sensitivity study with respect to various random variables is also performed.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-CR-198409 , NAS 1.26:198409 , E-9948 , NIPS-95-06269
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-06-28
    Description: Phase 2 testbed is part of a sequence of laboratory models, developed at NASA Langley Research Center, to enhance our understanding on how to model, control, and design structures for space applications. A key problem with structures that must perform in space is the appearance of unwanted vibrations during operations. Instruments, design independently by different scientists, must share the same vehicle causing them to interact with each other. Once in space, these problems are difficult to correct and therefore, prediction via analysis design, and experiments is very important. Phase 2 laboratory model and its predecessors are designed to fill a gap between theory and practice and to aid in understanding important aspects in modeling, sensor and actuator technology, ground testing techniques, and control design issues. This document provides detailed information on the truss structure and its main components, control computer architecture, and structural models generated along with corresponding experimental results.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-109059 , NAS 1.15:109059 , NIPS-95-06374
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-06-28
    Description: The development of an open-hop guidance architecture is outlined for autonomous rendezvous and docking (AR&D) missions to determine whether the Global Positioning System (GPS) can be used in place of optical sensors for relative initial position determination of the chase vehicle. Feasible command trajectories for one, two, and three impulse AR&D maneuvers are determined using constrained trajectory optimization. Early AR&D command trajectory results suggest that docking accuracies are most sensitive to vertical position errors at the initial conduction of the chase vehicle. Thus, a feasible command trajectory is based on maximizing the size of the locus of initial vertical positions for which a fixed sequence of impulses will translate the chase vehicle into the target while satisfying docking accuracy requirements. Documented accuracies are used to determine whether relative GPS can achieve the vertical position error requirements of the impulsive command trajectories. Preliminary development of a thruster management system for the Cargo Transfer Vehicle (CTV) based on optimal throttle settings is presented to complete the guidance architecture. Results show that a guidance architecture based on a two impulse maneuvers generated the best performance in terms of initial position error and total velocity change for the chase vehicle.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4687 , NAS 1.26:4687
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: Atomic oxygen (AO) fluences and solar exposure have been modeled for selected hardware from the Long Duration Exposure Facility (LDEF). The atomic oxygen exposure was modeled using the microenvironment modeling code SHADOWV2. The solar exposure was modeled using the microenvironment modeling code SOLSHAD version 1.0.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198191 , NAS 1.26:198191
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-28
    Description: Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers are most effective in reducing the energy of neutrons. Once neutrons are reduced to very low energies, the probability for undergoing a reaction with a nucleus (the cross section) becomes very high. The product of such a reaction is often radioactive and can involve the release of a significant amount of energy. Thus, it is important to provide protection from low energy neutrons during a long duration space flight. Among the light elements, lithium and boron each have an isotope with a large thermal neutron capture cross section, Li-6 and B-10. However, B-10 is more abundant in the naturally-occurring element than Li-6, has a thermal neutron capture cross section four times that of Li-6, and produces the stable products, He-4 and Li-7 in the interaction while Li-6 produces radioactive tritium (H-3). Thus, boron is the best light-weight material for thermal neutron absorption in spacecraft. The work on this project was focused in two areas: computer design where existing computer codes were used, and in some cases modified, to calculate the propagation and interactions of high energy charged particles through various media, and materials development where boron was incorporated into high performance materials.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199720 , NAS 1.26:199720 , NIPS-95-06073
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-28
    Description: The article begins by examining the fundamentals of traditional deterministic design philosophy. The initial section outlines the concepts of failure criteria and limit state functions two traditional notions that are embedded in deterministic design philosophy. This is followed by a discussion regarding safety factors (a possible limit state function) and the common utilization of statistical concepts in deterministic engineering design approaches. Next the fundamental aspects of a probabilistic failure analysis are explored and it is shown that deterministic design concepts mentioned in the initial portion of the article are embedded in probabilistic design methods. For components fabricated from ceramic materials (and other similarly brittle materials) the probabilistic design approach yields the widely used Weibull analysis after suitable assumptions are incorporated. The authors point out that Weibull analysis provides the rare instance where closed form solutions are available for a probabilistic failure analysis. Since numerical methods are usually required to evaluate component reliabilities, a section on Monte Carlo methods is included to introduce the concept. The article concludes with a presentation of the technical aspects that support the numerical method known as fast probability integration (FPI). This includes a discussion of the Hasofer-Lind and Rackwitz-Fiessler approximations.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-111139 , NAS 1.26:111139 , NIPS-95-06097
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...