ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (36)
  • Sustainable/low carbon buildings  (21)
  • Solar energy technologies  (15)
  • Oxford University Press  (36)
  • MDPI Publishing
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (36)
  • Natural Sciences in General
Collection
  • Books
  • Articles  (36)
Publisher
  • Oxford University Press  (36)
  • MDPI Publishing
Years
Topic
  • 1
    Publication Date: 2016-08-26
    Description: In the UK, finances and resources are invested into the application of new technologies, construction materials and control systems for homes, with the aim of improving energy efficiency. One such example is the experimental BASF house, built to study the thermal performance to achieve a comfortable home that uses energy efficiently. The house includes low to zero carbon (LZC) technologies that are promoted to reach a higher level within the UK Code for Sustainable Homes (CSH). For this study a mixed-methods sequential explanatory design (Creswell JW. Research Design. Qualitative, Quantitative, and Mixed Methods Approaches, 3rd edn. Sage Publication, 2009; Nataliya VI, Creswell JW, Stick SL. Using mixed-methods sequential explanatory design: from theory to practice. Field Methods 2006;18:3) that has been developed in the field of social and behavioural sciences has been applied, consisting of two distinctive phases: quantitative and qualitative. The rationale behind is for the quantitative data and its analysis is used to understand system performances while the qualitative data explain the numerical results in-depth, through the subjects in study, the occupants' perceptions. This article presents conclusions from an investigation into the use and performance of a biomass boiler and passive design features, derived from a live-in experience in a well-insulated and airtight CSH Level 4 home over two consecutive winter periods (2008–9 and 2009–10), which is part of on-going research project. The study also discusses a number of issues regarding the effective efficiency and appropriateness of the systems, which were selected based on a desire to comply with regulations for a better rated home rather than on their user friendliness and comfort for the occupants of a sustainable home; jeopardizing people's safety in times.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-26
    Description: Metal–ceramic nanocomposite films for solar absorbers have been obtained by electro-deposition. This coating technique uses a mixed solution of nickel nanoparticles and sub-micron alumina particles. The relative ratio of Ni-to-Al in these films is varied by tuning the concentration of nickel and alumina particles in the starting solution. Three films with different Ni/Al ratio have been prepared and characterized with X-ray photo-electron spectroscopy and scanning electron microscope. Even in absence of any heat treatment, significant amount of nickel in metallic state has been found in all three samples.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-08-26
    Description: With the development of the energy demands, solar energy medium-temperature applications (〉80°C) for refrigeration, building heating, seawater desalination, thermal power generation etc. has become popular research fields. The article presents an investigation on a static low-concentration evacuated tube (LCET) solar collector for medium-temperature applications. Ray trace outcome at the incident angles between 0 and 60° shows that the average optical efficiency can reach 76.9%. The experimental testing was conducted in the medium temperature range of 80 and 140°C which indicates the instantaneous thermal efficiency is still larger than about 30.0%, and the instantaneous exergetic efficiency is 〉5.92%. The results comprehensively indicate the good performance of LCET solar collector for medium-temperature applications.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-08-26
    Description: The generation and supply of electricity to residential and commercial/office buildings has been well established in different parts of the world for some decades now. However, sources like coal, nuclear and gas turbine electric generators which constitute most of the technologies applied in grid power stations usually involve fossil fuels and carbon dioxide emissions which are not environmentally friendly. As a solution to reduce the global carbon footprint and provide sustainable source of electricity, building-integrated photovoltaics (BIPV) or solar electricity has been identified as one of the most attractive sustainable energy technologies in the building sectors. This research work aims at assessing the energy impact of a grid connected solar electric system integrated in a commercial/office high-rise building in UK for a period of 1 year, by carrying out a numerical evaluation based on measured daily BIPV system energy outputs and the overall electrical energy demand of the applied building before and after the installation of the BIPV system. The results of the assessment showed that BIPV has the capacity to provide ~0.4% of the total electrical energy required in applied building.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-05
    Description: This work investigated the energy performance of a 6.0 kW el micro-cogeneration device integrated with a multi-family house by using a dynamic simulation software. The analyses were performed upon varying the climatic conditions, the control logic of the cogeneration unit, the number of flats composing the building and the target temperature of hot water produced for heating purposes. The simulation data were used to compare the performance of the proposed system with those of a conventional system composed of a natural gas-fired boiler and a power plant mix connected to the electric grid from an energy point of view.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-05
    Description: In this report, solar radiation and daylight functions for the analysis of shadows, irradiance and radiant exposure on building facades in urban environments are presented. The functions are fully developed in MS Excel using Visual Basic for Applications.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-05
    Description: The impact of environment on building and the impact of building on the environment have necessitated that building envelopes be made sustainable. Besides, the issue of sustainability assessment in building envelopes requires considering many factors including life cycle consideration through an integrated approach. As such, an integrated performance model that combines sustainable development values in a single performance framework was developed. Therefore, the objective of this paper is to apply this model to selected building envelope case studies. The model application indicates that sustainable performance of building envelope in an extreme weather and climatic condition is significantly influenced by the energy efficiency performance of the development.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-05
    Description: A battery of three walk-in-type solar tunnel dryers was commissioned at M/s Cotton Product of India, Udaipur (27' 42°N, 75' 33°E), for drying surgical cotton. Each dryer has a drying capacity of 600 kg of surgical cotton, with moisture content reduction averaging 40 to 5% (wb) in a single solar day. This investigation presents thermal modeling, energy and exergy analyses for a walk-in-type solar tunnel dryer. The predicted drying air temperature was 2–3°C higher than experimental values. The experimental and predicted values for energy efficiency of the drying process were found to vary from 1.051–1.793% and 1.298–2.224%, respectively, whereas those of exergy efficiency were found to vary from 0.039–0.072% and 0.030–0.058%, respectively. An economic analysis of the tunnel dryer under consideration has also been completed, and its greenhouse-gas mitigation potential has been calculated to better determine its usefulness as a replacement for light diesel oil (LDO) and liquefied petroleum gas (LPG) drying units. It was found that the payback periods of the solar tunnel dryer, when replacing LDO and LPG units, were 3.03 and 2.26 years, respectively whereas the benefit–cost ratio was 2.12 with respect to LDO units and 3.03 with respect to LPG units. Additionally, it was determined that a single unit of a tunnel dryer can reduce CO 2 emissions by 12.15 tons per year when replacing an LDO unit, and by 6.72 tons per year when replacing an LPG unit.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-05
    Description: Solar distillation systems have been found economically feasible in desalination of saline water. It is a simple and cost-effective low-carbon technology. Free of cost, non-polluting, non-exhaustible solar energy is used to produce distilled water inside a solar still. In this article, the usual economic analysis model has been modified by incorporating the factor of equivalent cost of environmental degradation and high-grade energy savings for solar stills. The unit cost of desalination of saline water is estimated to be US$ 0.034/L corresponding to 30.42% energy efficiency of a passive solar still. It decreases to US$ 0.024/L using the modified model. Double-slope passive solar stills desalinate at a lowest cost of US$ 0.007/L. Due to higher capital cost of active solar stills, the unit cost of desalination of saline water is higher even if productivity is more. Effects of variation of energy efficiency, useful life, capital cost, etc. are also studied. The payback periods of the passive solar still are found to be in the range of 1.1 to 7.6 years if the selling price of distilled water decreases from US$ 0.18 to 0.04/L.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-08-26
    Description: Evidence suggests that many UK dwellings are subjected to overheating or will be at some point in the future. Dwellings built using modern methods of construction may have a higher overheating risk due to the low levels of thermal mass associated with most of these methods. The Nottingham HOUSE, a prefabricated timber modular building designed to zero-carbon and Passivhaus standards, was examined in terms of overheating occurrence. The ability of a high-density fibreboard and phase change materials to provide additional levels of thermal mass was examined with the results suggesting that these can help regulate internal temperatures with the benefit of being easy to integrate.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-16
    Description: The design of a future building with very high-energy efficiency demands from the architect to study the available solar resources in this urban environment. The purpose of the presented methodology is to study the variations in all components of the incident solar radiation daily, monthly and seasonally for all building facades. This is realized in the computer program 3D–SOLARIA. In the focus of the paper is the estimation of the background component of the incident diffuse solar irradiation on a building facade under orthogonally obstructed sky, using anisotropic sky view factors.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-16
    Description: The assessment of building envelope sustainability using existing building performance assessment methods is still a challenge and yet to be fully addressed. This is due to the single-dimensional nature and lack of integration of sustainable performance values. Besides, the issue of sustainability assessment in the building envelope requires considering many factors including life cycle considerations. As such, in an effort to develop an integrated approach that combines relevant sustainable development factors and life cycles, an integrated performance model (IPM) was developed. The IPM is an essential tool developed to aid the sustainable design of the residential building envelope that can reduce carbon emission and whole residential building energy consumption and ensure sustainable performance of the building envelope.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-16
    Description: The results and considerations on one self-consumption photovoltaic installation with net balance in Granada (South of Spain) are presented and discussed in this paper. The use of the building (one faculty) makes it optimal for this kind of consumption. Finally, the potential benefits and problems of self-consumption with net balance are presented.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-16
    Description: In this paper, solar box cookers with ordinary and finned absorber plates are theoretically investigated in terms of thermodynamic performance parameters. For a typical summer and winter day, temperatures of solar cooker components such as glass cover, internal air, absorber plate, cooking vessel and the liquid are determined theoretically versus time. The analysis is carried out for conventional and finned absorber plates, and accuracy of the results is verified by a previously published experimental work. Energy and exergy efficiencies of box-type solar cookers are plotted versus time for various cases. The methodology presented in this paper enables to make a preliminary evaluation of ordinary and modified solar box cookers with respect to changes in main environmental parameters such as temperature and illumination intensity. Some recommendations are also made to enhance the power outputs of the aforementioned solar cookers.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-16
    Description: The sun is the more plentiful source of natural power that we have in the Earth. However, the amount of radiation reaching the Earth's surface depends on astronomical and climatic factors. One of the factors exerting a greater influence is cloudiness. For that reason, it is important to quantify its influence on solar radiation. According to that, in this work, a prototype to capture images of the celestial vault is designed and implemented to be able to measure parameters related to the cloud properties and, later, to determine their influence on solar radiation.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-16
    Description: Under transient climatic conditions, solar water heaters using heat pipes are more effective at capturing incident solar radiation than other equivalent sized solar water heaters. The cost must be reduced to improve uptake of such systems. To investigate two methods were considered by this study: thermosyphon fluid flow and reflective concentrators. A physical reconfigurable laboratory model of the manifold and associated condensers of a heat-pipe-evacuated tube system were fabricated; fluid circulation was via thermosyphonic action, particle imaging velocimetry derived velocity maps and the use of concentrators was simulated. When condenser spacing was doubled, the Nusselt number increased by 43%, the velocity by 55% but the heat transfer efficiency of the model manifold decreased by 9%. Potential annual energy savings of 10 207 GWh could be realized if such systems could be successfully fabricated.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-16
    Description: In recent years, the concept of green building is becoming popular in China. Architects and engineers have the opportunity to actually implement green building practices. This paper reveals the failure of a naturally ventilated LEED-certified townhouse development project in China mentioned in recent research. The house owners made great alterations for the purpose of decoration, which removed or minimized the effectiveness of natural ventilation elements in the original design. The research shows that the houses show ‘International Style’ because the natural ventilation design principles were not fully applied in the design and the localized natural ventilation strategies were not fully considered by means of computational simulation in the design stage. Also, the lack of communication between designers and the owners caused the removal of most natural ventilation elements of these houses during the occupancy period. The authors advocate three criteria to avoid failures of natural ventilation design: localized/ climate adaptive design, relationship among design elements and design intention awareness.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-16
    Description: Daylighting has an important role in sustainable architecture as it affects the energy consumption in a building. Especially for an office building, daylight helps not only to reduce the load on artificial lighting but also to promote work efficiency through promoting good human health, well-being and user comfort. The objective of this research is to develop an innovative façade design strategy that comes from the development of digital technology and dynamic daylight performance measuring methods. Thus, the various parameters are studied through the computational process of cellular automata (CA) to generate the several alternative opening patterns on the building façade. Each CA design value was tested under static and dynamic sky condition to analyze the quality and quantity of daylight and visual comfort throughout the year. The results were compared to find an optimum alternative design in terms of the daylighting design criteria, from building code, standard and design guidelines for the office building. Finally, research of an adaptive façade design strategy was concluded with the results from the above hybridization of generative and performative design methodology. This study discovers the architectural design approach from the CA and it will make not only progress in building façade esthetics, but also human comfort with building sustainability.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-05-13
    Description: The impact of climatic change through greenhouse gas emission is a recognized major global crisis. Energy use in residential and commercial buildings is a major part of the total consumption in European countries and is estimated to be ~40% of the total load. Currently, the concept of building retrofit has become a top priority for the UK government in order to meet the national plans for reducing CO 2 emissions by 80% compared with 1990 levels by 2050. This study presents the simulation results for a case study of energy and CO 2 emission savings of a nineteenth century semi-detached building in the UK. The building was refurbished to high standards of energy efficiency, with four simulation scenarios developed for analysis: As-built, As-built 1965, As-reality and post-retrofit. DesignBuilder software was used to simulate the annual energy consumption and carbon emissions in all cases. In addition to this, thermal imaging and air-tightness tests were conducted and the results were used to validate the models. The post-retrofit results showed there is a significant reduction in energy consumption that exceeded 80% with carbon emissions being reduced above 70%. Economic analysis of each retrofit scenario was then undertaken, and results showed payback varied between 9 and 40 years due to the fluctuation in fuel prices and construction retrofit materials. The models indicate performance of the building post-retrofit can be significantly improved in terms of energy reduction and CO 2 emission savings. Further research is being performed to improve performance through field monitoring and installation of innovative retrofit technologies.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-05-13
    Description: For the purpose of energy conservation, modern buildings are becoming more and more air-tight and generally rely on a mechanical ventilation system. According to the literature, solar air heating systems can contribute in a cost-effective way to the heating and ventilation of utility buildings. Especially cost-efficient, unglazed, façade-integrated solar air collectors seem to be an attractive new market for façade renovation. To demonstrate the technical feasibility of generating heating energy on facades, a demonstration plant based on an unglazed solar air collector was installed in 2013 in the façade of a demonstration building and was intensively studied using energy metering.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-05-13
    Description: The article describes the innovative solutions of power, heating and cooling generation utilizing low- or medium-grade heat sources. The proposed technology based on the well-known irreversible Brayton cycle and the revolutionary Maisotsenko cycle (M-cycle) operates at atmospheric or sub-atmospheric pressures. Such energetic systems are simple and reliable and utilize moisture-saturated air as a working fluid. The ejector replacing the mechanical compressor in the Brayton cycle system allows increasing the cycle work by three to five times at the constant airflow. At the same time, the utilized heat serves for simultaneous heating and cooling production that makes the system economically viable and environmentally friendly with the increased integral performance. For system's performance improvement, the schematic and the cycle were upgraded allowing the off-the-shelf components to be employed and replace the electrically driven fan with fluidic jet-fan that served for energy saving of the innovative turbo-ejector system operation.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-02-12
    Description: This article is concerned with external ventilation levels within a multi-story Housing and Development Board (HDB) residential estate, focusing toward a deeper understanding of wind flow with respect to different levels of height variation (HV). This study analyzed through parametric study, using numerical simulations with the realizable k – turbulence model, the various scenarios of HV within a typical residential HDB estate or precinct. It is found that external wind flow within the precinct for both the pedestrian and mid-height levels are affected differently by the HV value. Some rules of thumbs can be established for HVs in the efficient use of outdoor ventilation.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-02-12
    Description: The role of the materials used in the urban fabric is highly important for the microclimate and the energy loads of the cities. This has led to the research and development of innovative solutions with advanced thermal and optical properties. Thermochromic coatings that are reflective in summertime and absorptive in wintertime can address the demand for lower surface temperatures and energy savings. The function, however, of thermochromic materials in outdoor spaces is complex as they degrade when interacting with solar radiation. Various techniques with UV absorbers and UV filters prove that ultraviolet radiation is not the only parameter that affects thermochromism. This study aims to go one step forward and investigate the factors that destroy the reversible thermochromic circle besides UV radiation. Combinations of UV and optical filters were used on thermochromic coatings applied on concrete tiles under accelerated aging conditions of a one-month period to isolate the parts of solar spectrum that cause the photodegradation. The measurements of reflectance and color prove that the use of UV filter did not improve significantly the dark phase of thermochromic effect, while at the white phase, SR was reduced by 5% and SRvis was reduced by 9.7% compared with the uncovered sample. Covering the sample with red filter, which cuts off wavelengths below 600nm, protects most efficiently the reversible color change of the thermochromic coating as the solar reflectance at the dark phase remains unaffected during the whole experimental period.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-02-12
    Description: The urban forest is generally decreasing in areal extent. At the same time, human population is urbanizing and urban areal extent per capita is increasing. Eighty percent of North Americans are now living in urbanized areas. Urban forests directly affect quality of life for residents of cities via the ecosystem services and psychosocial restoration they provide. The urban forest canopy is a key component of reducing the urban heat island, slowing stormwater runoff and making urban environments more efficient and livable. Municipalities in North America are reacting to concerns about urbanization and economic trends by permitting an increasing number of compact developments that may conflict with beneficial Green Infrastructure. Compact development may also present challenges to solar access for solar power generation. This paper identifies and illustrates key strategies to increase urban forest cover and decrease infrastructure conflicts by implementing given innovative design details, detailing specific zoning and code language, and providing best practices from multiple disciplines. These strategies to increase urban forest canopy cover frame a coherent set of ideas to decrease the effects of the urban heat island, increase solar power generation and improve urban quality of life in cities.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-11-07
    Description: Existing buildings' operation and maintenance is the key part of improving the buildings' performance and energy consumption saving. Being different from the new building, existing buildings' retrofits have many difficulties and challenges. This paper is based on a real project at the University of Hong Kong, and studies the process of the retrofits and energy audit for the existing buildings. It also studies how to optimize the operation and maintenance of the building and how to measure and verify the results after the retrofits.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-11-07
    Description: Wind-induced natural ventilation tower is one of the effective devices in enhancing indoor air quality. It can be designed and integrated as part of building components. This paper investigates the performance of various design configurations of a wind-induced natural ventilation tower with the focus on Venturi-shaped roofs and towers. The Venturi-shaped roofs and towers are used to create negative pressure in order to enhance the extraction air flow rates of the wind-induced natural ventilation tower. The computational fluid dynamics (CFD) method is used to analyse each of the design configurations. The different design configurations are based on roof tilt angles, roofs' shapes, tower heights and shapes of the wind-induced natural ventilation tower. The parameters analysed are extraction air flow rates and air flow pattern. Based on the CFD simulation results of various design configurations, the ‘biconcave’-shaped wind tower has the best design configuration with 14 568.66 m 3 /h extraction air flow rates at 0.8 m/s external wind velocity.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-11-07
    Description: With buildings accounting for 40% of primary energy requirements in EU and the implementation of the Energy Performance of Buildings Directive (EPBD), developing effective energy alternatives for buildings is imperative. The increasing role for renewables implies that solar thermal systems (STSs) and photovoltaics (PVs) will have a main role as they contribute directly to the heating and cooling of buildings and the provision of electricity and domestic hot water. Meeting building electrical and thermal loads will be primarily achieved through an extensive use of renewables, following standard building energy saving measures, such as good insulation or advanced glazing systems. These systems are typically mounted on building roofs with no attempt to incorporate them into the building envelope creating aesthetic challenges, space availability issues and envelope integrity problems. This paper aims to give a survey of possible solutions of PV and STS integration on the building roofs and façades. The advantages of integration are quantified and suggestions are given to address the possible problems created.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-11-07
    Description: Civil buildings in urban areas are one of the main sources of CO 2 emissions. Many factors in civil buildings cause CO 2 emissions to increase in China's urban areas. Factors that have influenced CO 2 emissions from civil buildings in Chinese cities between 1997 and 2007 are studied using the Logarithmic Mean Divisia Index method. The following factors influence the increase of CO 2 emissions: urban population, per capita floor space, building structure, building energy intensity and carbon emission coefficients. The results show that, between 1997 and 2007, increase in CO 2 emissions by civil buildings in China's urban areas was largely driven by the increasing urban population and per capita floor space, which have contributed 56 and 87%, respectively, and present a trend of significant increase. The structural proportion change of areas of residential buildings and public buildings caused less of an impact of CO 2 emissions. The reduction in the intensity of energy consumption of buildings is the major factor that could deter the increase in the rate of CO 2 emissions, contributing –45%. However, this deterrence is slowing down. While maintaining the speed of urbanization of China, the key measures to suppress the increase in civil building CO 2 emissions in urban areas are to reduce the intensity of building energy consumption and to control the per capita floor space.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-11-07
    Description: With the current aim for a low carbon economy in Scotland, it becomes imperative to ensure that there are adequate workforce skills available to support meeting this aspiration. As such, the Scottish Government has developed a low carbon skills agenda that emphasizes rapidly developing and delivering specialist skills that are needed to enable the adoption of new technologies. Developing and delivering specialist skills are arguably not possible without having an understanding of what these skills are. This paper thus reports on the successful trial of an innovative Canadian insulation technology in a historic listed building in Aberdeenshire with a particular emphasis on providing insights into workforce skills needs. The trial was funded by the Scottish Government and the European Regional Development Fund. An ‘insulation job’ worksheet is developed as a result of the project, which can aid effective project management of insulation jobs in the future. It is evident that the current skills in the industry could be made adaptable to the skills needs for insulating historic listed buildings. Multi-skilling [in particular for small–medium size enterprise (SMEs)] may become inevitable if the size of the project is small as it was the case with the project presented in this paper. Providing learning support for local SMEs, who are still building-up their capability in insulation technologies, is thus essential. Indeed knowledge sharing and dissemination of case studies for successful retrofitting (e.g. insulation) of buildings, in particular historic ones, can inform future development of ‘Low Carbon Skills’ policy and action.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-11-07
    Description: Safe water is fundamental to life and sustainable development. Despite modern civilization pacing into the 21st century, global access to safe water is disparate and inadequate particularly in south Asia and Africa. The need of the hour is to promote appropriate technologies, such as desalination, which are economically viable and environmentally conducive. With increasing stress on renewable energy use, technologies based on effectively harnessing solar energy would prove sustainable. Solar-still is a desalination technology that effectively harnesses solar energy. Solar-stills generate safe water from either contaminated and/or brackish water. They are an enabling domestic technology that can suit de-centralized operation and maintenance. Their fundamental dependence on solar energy and relatively low yield has thus far impeded wide-spread adoption. The current article discusses the prospects of solar-stills as a safe-water technology. Subsequently, an innovative low internal-volume stepped solar-still has been commissioned and tested for its productivity under sealed and unsealed conditions. The results of the experimental investigation have been discussed in this article. The salient contribution in this article pertains to the performance of a stepped solar-still under sealed and unsealed conditions. Such an investigation has been found to be crucial, but hitherto unattended to.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-11-07
    Description: Aerogel glazing system has become a promising energy-efficient window glass owing to its extremely low thermal conductivity and high visual transmittance. Two newly developed aerogel glazing systems (viz. #4 and #5) and three common glazing systems (viz. clear glass #1 and insulating glass #2 and #3) are investigated on the component heating and cooling load of a model building to evaluate their feasibility in various climates in China by using eQuest code. The building energy efficiency of 20, 11 and 9% could be obtained in Harbin, Beijing and Shanghai, respectively, as clear glass #1 were replaced with aerogel glazing system #5. The results demonstrated that the aerogel glazing system was extremely feasible in Severe Cold Region and significantly feasible in Cold and Hot-summer Cold-winter Regions. Effects of heat transfer coefficient ( U ) and shading coefficient (SC) of the glazing system on building energy loads were evaluated to further optimize glazing systems. The results demonstrated that the total heating load in colder climate reduced by 73% as the U of glass was decreased from 5.5 to 0.5 W/(m 2 K). The total cooling load in warmer climate reduced by 16% as the SC was increased from 0.916 to 0.423. The findings could be of great potential in the selection and optimization of the glazing system in different climate zones aiming at building energy efficiency.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-05-15
    Description: A novel solar building is constructed in Hefei, China. The solar energy can supply the building with solar power, solar space heating, solar-cooling and solar-hot water by corresponding novel solar technologies and components. Preliminary simulation by TRNSYS showed that the solar building could reduce 〉30% of the energy consumption compared with the same scale of the office building in Hefei during the heating season. In an experiment performed on 20 February 2013, the max temperatures of both the north room and south room reached 21°C and the average temperatures were 17°C, only using the solar air heating system.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-05-15
    Description: Micro-combined heat and power generation (micro-CHP) based on the organic Rankine cycle (ORC) is a flexible technology that allows saving the environment and promoting the economic growth. However, ORC expanders employed recently suffer from key problems including excessive fluid leakage, thermal losses and low isentropic efficiency, and no commercial micro-scale expanders are available in the market and applicable for ORC applications. The possibility of driving a micro-CHP system by solar thermal energy, biomass combustion, waste heat or other clean energy sources allows attaining diversity and security in energy supply as well as decreasing pollutants and gas emissions. In the current work, a solar-biomass-driven micro-CHP system based on the ORC technology is theoretically and experimentally investigated to provide the thermal and electrical needs for residential applications. The micro-CHP system employs an innovative micro-expander utilizing an environmentally friendly working fluid. A numerical model was developed using the Engineering Equation Solver (EES) software to simulate the thermal and electrical performance of the overall CHP system. A parametric study was conducted to investigate the effect of different operational parameters on the CHP system performance. In addition, an experimental set-up was built to test micro-scale ORC-CHP system performance under different conditions using hydrofluoroether (HFE)-7100 fluid. The maximum electric power generated by the expander was in the range of 500 W under a pressure differential of ~4.5 bars. The expander isentropic efficiency has exceeded 80% at its peak operating conditions with no working fluid leakage.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-05-15
    Description: The utilization of daylight can significantly affect building performance, energy efficiency, productivity, as well as occupants' comfort and satisfaction in buildings. This paper aims to assess daylight performance for tropical office buildings in a parametric approach. Thus, four passive design categories are investigated, namely interior surface reflectance, glazing visual transmittance, light shelves and shading control. The approach is exemplified using the case study of two selected offices in Singapore. This study contributed to the assessment of the daylight performance and prediction of the consequences of retrofitting alternatives toward fostering the utilization of daylight in existing buildings in the tropics.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-05-15
    Description: The efficiency of photovoltaic panels decreases as the panels' temperature increases, which results in deduction of electricity generation. In order to reduce this effect, different cooling methods were proposed and investigated. This paper reviews the previous work on cooling PV cells and concludes that the cost-effectiveness, design feasibility and minimal energy consumption are the important design consideration for cooling systems. Based on these considerations, this paper reports a passive cooling method that utilizes rainwater as cooling media and a gas expansion device to distribute the rainwater. The gas is thermally expanded from receiving solar radiation as such the amount of water it pushes to flow over the PV cells is proportional with the solar radiation it received. The paper reports a design and simulation of such a system for a domestic house application. In the paper, a relationship of the gas chamber size, solar radiation and gas expansion volume was established for evaluation with respect to the variation of gas temperature and the amount of rainwater used for cooling. A heat transfer model was used to evaluate the performance of the cells by cooling with this passive device. The results show that on a design day, the passive cooling system reduces the temperature of the cells and increases electrical efficiency of the PV panel by 8.3%. The payback period of this system is 〈14 years.
    Keywords: Solar energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-05-15
    Description: This paper calculates energy efficiency and exergy efficiency of household energy utilization in rural China. Provincial energy efficiencies and exergy efficiencies for space heating sector, cooking sector and hot water sector are calculated and analyzed. Result shows that national energy efficiencies in space heating, cooking and hot water sector are 27.43, 15.32 and 13.11%, respectively. Exergy efficiencies are 1.63, 4.42 and 1.16%, respectively. Energy efficiencies in Xinjiang, Tianjin, Beijing and Shanxi are higher than other provinces because of the wide utilization of coal. In eastern China like Shanghai, Jiangssu, Fujian, the proportion of biomass is quite large which results in a low efficiency. Furthermore, exergy efficiencies in southern China are much higher than those of northern China because of the climate differences.
    Keywords: Sustainable/low carbon buildings
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...