ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks  (4)
  • 03. Hydrosphere::03.01. General::03.01.03. Global climate models  (2)
  • elsevier  (4)
  • Nature Publishing Group  (2)
  • La Habana
  • Santiago de Chile: Universidad de Chile, Departamento de Economía
  • Washington, DC: Inter-American Development Bank (IDB)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: One of the main objectives of the global ocean modelling activities at Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) is the production of global ocean re-analyses over multidecadal periods to reconstruct the state of the ocean and the large scale cir- culation over the recent past. The re-analyses are used for climate applications and for the assessment of the benefits of assimilating ocean observations on seasonal and longer predictions. Here we present the main characteristics of an optimal interpola- tion based assimilation system used to produce a set of global ocean re-analyses validated against a set of high quality in situ observa- tions and independent data. Differences among the experiments of the set are analyzed in terms of improvements in the method used to assimilate the data and the quality of observations them- selves. For example, the integrated ocean heat content, which can be taken as an indicator of climate changes, is examined to detect possible sources of uncertainty of its long-term changes. Global and basin scale upper ocean heat content exhibits warming trends over the last few decades that still depend in a significant way on the assimilated observations and the formulation of the background covariances. However, all the re-analyses show a global warming trend of the oceanic uppermost 700 m over the last five decades that falls within the range of the most recent observation-based estimates. The largest discrepancies between our estimates and observational based ones are confined in the upwelling regions of the PacificandAtlanticOceans.Finally,theresultsshow that the climatological heat and salt transports as a function of latitude also fall within the range of the estimates based on observations and atmospheric re-analyses.
    Description: The authors wish to thank the Centro Euro-Mediterraneo per i Cambiamenti Climatici for its financial and scientific support of some of the activities presented in this work. The implementation and the following improvements of the global ocean assimilation system were carried out in the framework of the ENACT(EVK2-CT2001-00117)and ENSEMBLES(GOCE-CT-2003-505539)projects.
    Description: Published
    Description: 341– 366
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: partially_open
    Keywords: Data assimilation ; Global ocean ; Numerical models ; Climate ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In recent decades, geophysical investigations have detected wide magma reservoirs beneath quiescent calderas. However, the discovery of partially melted horizons inside the crust is not sufficient to put constraints on capability of reservoirs to supply cataclysmic eruptions, which strictly depends on the chemical-physical properties of magmas (composition, viscosity, gas content etc.), and thus on their differentiation histories. In this study, by using geochemical, isotopic and textural records of rocks erupted from the high-risk Campi Flegrei caldera, we show that the alkaline magmas have evolved toward a critical state of explosive behaviour over a time span shorter than the repose time of most volcanic systems and that these magmas have risen rapidly toward the surface. Moreover, similar results on the depth and timescale of magma storage were previously obtained for the neighbouring Somma-Vesuvius volcano. This consistency suggests that there might be a unique long-lived magma pool beneath the whole Neapolitan area.
    Description: Published
    Description: article 712
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: N/A or not JCR
    Description: open
    Keywords: magma ; campi flegrei caldera ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-10
    Description: We describe numerical simulations designed to help elucidate the role of ocean salinity in climate. Using a general circulation model, we study a 100-year sensitivity experiment in which the global-mean salinity is doubled from its present observed value, by adding 35 psu everywhere. The salinity increase produces a rapid global-mean sea-surface warming of 0.8◦ within a few years, caused by reduced vertical mixing associated with changes in cabbeling. The warming is followed by a gradual global mean sea-surface cooling of 0.4 ◦C over the next few decades, caused by an increase in the vertical (downward) component of the isopycnal diffusive heat flux. We find no evidence of impacts on the variability of either the Atlantic thermohaline circulation or the El Ni ̃no/Southern Oscillation. The mean strength of the Atlantic meridional overturning is slightly reduced and the North Atlantic Deep Water penetrates less deeply. Nevertheless, our results dispute claims that higher salinities for the world ocean have profound consequences for the thermohaline circulation. In additional experiments with doubled atmospheric carbon dioxide, we find that the amplitude and spatial pattern of the global warming signal are modified in the hypersaline ocean. In particular, the ocean’s contribution to the climate sensitivity is significantly reduced. We infer the existence of a non-linear interaction between the climate responses to modified carbon dioxide and modified salinity.
    Description: Published
    Description: 108-123
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Description: reserved
    Keywords: ocean ; salinity ; climate ; thermohaline circulation ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-16
    Description: New 40Ar/39Ar and 14C ages have been found for the Albano multiple maar pyroclastic units and underlying 25 paleosols to document the most recent explosive activity in the Colli Albani Volcanic District (CAVD) near 26 Rome, Italy, consisting of seven eruptions (Albano 1 27 ^ = ^ oldest). Both dating methodologies have been applied on several proximal units and on four mid-distal fall/surge deposits, the latter correlated, according to two 28 current different views, to either the Albano or the Campi di Annibale hydromagmatic center. The 40Ar/39Ar 29 ages on leucite phenocrysts from the mid-distal units yielded ages of ca. 72 ka, 73 ka, 41 ka and 36 ka BP, 30 which are indistinguishable from the previously determined 40Ar/39Ar ages of the proximal Albano units 1, 2, 31 5 and 7, thus confirming their stratigraphic correspondence. 32 Twenty-one 14C ages of the paleosols beneath Albano units 3, 5, 6 and 7 were found for samples collected 33 from 13 proximal and distal sections, some of which were the same sections sampled for 40Ar/39Ar 34 measurements. The 14C ages were found to be stratigraphically inconsistent and highly scattered, and were 35 systematically younger than the 40Ar/39Ar ages, ranging 36 ^ from 35 ka ^ to 3 ka. Considering the significant consistence of the 40Ar/39Ar chronological framework, we interpret the scattered and contradictory 14C ages 37 to be the result of a variable contamination of the paleosols by younger organic carbon deriving from the 38 superficial soil horizons. 39 These results suggest that multiple isotopic systems anchored to a robust stratigraphic framework may need 40 to be employed to determine accurately the geochronology of the CAVD as well as other volcanic districts. 41
    Description: Published
    Description: 203-213
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: open
    Keywords: 40Ar/39Ar 14C geochronology Albano maar Central Italy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We describe the slope processes acting on Camaldoli Hill, the main volcanic feature of the Neapolitan area whose geological evolution and setting have been reconstructed. The backbone of the hill includes the remnants of two partially superposed tuff cones, lying between the Campanian Ignimbrite (CI) and the Neapolitan Yellow Tuff (NYT). This sequence is mantled by pyroclastic, anthropogenic and epiclastic deposits, with abrupt thickness and facies variations. The structural setting of the hill mainly results from several phases of reactivation of the CI caldera faults which were active until about 9.5 ka. Deformation younger than 15 ka is evidenced by landslide deposits, caused by slope instability from volcano-tectonism, and by a high-angle erosional unconformity, formed in response to a base-level lowering. A stratigraphic analysis of the reworked deposits at the foot of the slopes allowed us to define both depositional mechanisms and sedimentation rates. The results of combined volcanological, geomorphological and engineering-geological studies permitted us to constrain and quantify past geological processes and hypothesis about the future evolution of the hill. Present-day slope processes on Camaldoli Hill are largely controlled by the presence of weathered and reworked deposits, whose nature and thickness have been analysed and mapped in detail. Four main kinds of slope processes have been recognized: falls and toppling failures from NYT; small-scale slides in the weathered and pedogenized loose cover; mixed events, represented by slides evolving to hyperconcentrated flows, mud flows and debris flows; and areal and linear erosion. Consequently, a high number of mass movements not previously documented have been mapped. At the same time, an insight into the sedimentation rate due to the overall slope processes, covering a time-span of about 5 ka, was given. Some final considerations regarding landslide hazard are presented in the context of the most suitable remedial works.
    Description: Published
    Description: 132–157
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Slope processes ; Weathering ; Volcaniclastic rocks ; Hazard ; Risk ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...