ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • General Chemistry  (77,717)
  • Organic Chemistry  (68,964)
  • Life and Medical Sciences  (30,791)
  • Chemical Engineering  (17,982)
  • QK1-989
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2024-04-05
    Description: This guide is intended as an aid for managers of sentinel plantings, botanical gardens or arboreta, as well as phytosanitary inspectors, who may have knowledge of common pests and diseases of woody plants, but may not know the likely cause of damage that they have not encountered before. It aims to provide a tentative identification of relatively broad groups of organisms and not definitive identification of the causal agents. Hence, the pictures in this guide need to be regarded as typical examples of the described symptoms. There are chapters that explain how to use the guide, followed by keys (for different organs of conifer and broadleaf species) to guide the user to the relevant sections of the book, based on the questions entomologists and pathologists ask themselves when looking at a damaged or diseased tree in a fashion similar to how a doctor interrogates a patient to arrive at a diagnosis. The largest part of the book is devoted to the description and illustration of damage types and typical causes of the observed damage. The last chapters provide instructions for taking and preserving samples for further identification by an expert, notification of relevant authorities, and a glossary.
    Description: Published
    Keywords: QK1-989 ; SD1-669.5 ; S1-972 ; pests ; injuries ; arthropods ; keys ; trees ; preservation ; sampling techniques ; plants ; woody plants ; plant diseases ; animals ; Pinopsida ; pest arthropods ; broadleaved trees ; eukaryotes ; guide books ; Pinophyta ; gymnosperms ; sampling ; broadleaves ; plant pests ; symptoms ; arthropod pests ; botanic gardens ; arboreta ; Spermatophyta ; botanical gardens ; invertebrates ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TV Agriculture and farming::TVB Agricultural science
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-05
    Description: The impetus for the development of this Field Guide came about as a result of pleas from the community around the village of Doldol, Laikipia County, to initiate a control programme for Australian prickly pear [Opuntia stricta (Haw.) Haw.; Fabaceae], an invasive plant which was having a dramatic impact on livelihoods. However, a number of other exotic plants, which were less widespread, but had the potential of becoming invasive, were not seen as a potential problem. In order to avoid a similar situation from arising in the future, the community expressed a need for a Field Guide, which would include descriptions of naturalized and invasive species already present in, and those that were most likely to invade Laikipia County and, information on how best to manage them. An additional impetus was to contribute to the four main objectives of the National Strategy and Action Plan for the Management of Invasive Species in Kenya's Protected Areas. The Field Guide contributes in some or other way to all of these objectives which are to (i) Enhance awareness of invasive species to relevant actors; (ii) Prevent new invasions, manage established invasions and rehabilitate degraded habitats; (iii) Enhance research, monitoring and information management on invasive species; and (iv) Enhance capacity, resource mobilization and coordination. Extensive surveys revealed the presence of a number of introduced plant species which had escaped cultivation and established populations in the 'wild' to the detriment of natural resources and the people that depend on them. Introduced succulents, especially those in the genus Opuntia (Cactaceae), were found to be the most widespread and abundant invasive species in the semi-arid regions in the north and east of Laikipia County. Other succulents, those in the genus Bryophyllum (Crassulaceae), were also found to have escaped cultivation and were locally abundant. In the higher rainfall areas to the west and southwest, introduced trees such as black wattle (Acacia mearnsii De Wild.; Fabaceae) and Australian blackwood (Acacia melanoxylon R. Br.; Fabaceae) and the shrubs/climbers, Mauritius thorn [Caesalpinia decapetala (Roth) Alston; Fabaceae] and yellow cestrum (Cestrum aurantiacum Lindl.; Solanaceae), were invasive. Introduced plants, which have the potential to become problematic in Laikipia, unless eradicated or controlled, have also been included in the Guide. This includes species such as famine weed (Parthenium hysterophorus L.; Asteraceae) and 'mathenge' [Prosopis juliflora (Sw.) DC.; Fabaceae], which are already abundant in areas adjoining the County.
    Description: Published
    Keywords: QK1-989 ; S1-972 ; invasives ; nonindigenous species ; Solanales ; Prosopis ; eudicots ; Caesalpinia decapetala ; Fabales ; Parthenium hysterophorus ; Asterales ; Opuntia stricta ; exotic species ; ACP Countries ; weeds ; Solanaceae ; invasive organisms ; eukaryotes ; nonindigenous organisms ; Commonwealth of Nations ; Africa ; Mimosoideae ; Acacia mearnsii ; non-native species ; invasions ; invasive alien species ; Caryophyllales ; late black wattle ; Developing Countries ; Opuntia ; East Africa ; non-indigenous species ; non-native organisms ; common prickly pear ; weed control ; Caesalpinia ; blackwood ; plants ; Parthenium ; Acacia melanoxylon ; Bryophyllum ; introduced organisms ; Cestrum ; Cactaceae ; Prosopis juliflora ; Kenya ; invasive species ; Fabaceae ; Africa South of Sahara ; Caesalpinioideae ; angiosperms ; exotic organisms ; Cestrum aurantiacum ; Acacia ; Asteraceae ; subsaharan Africa ; Spermatophyta ; Anglophone Africa ; alien invasive species ; introduced species ; non-indigenous organisms ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences ; thema EDItEUR::1 Place qualifiers::1H Africa::1HF Sub-Saharan Africa::1HFG East Africa::1HFGK Kenya
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2023-06-23
    Description: The aim of this second Eng Special Issue is to collect experimental and theoretical re-search relating to engineering science and technology. The general topics of Eng are as follows: electrical, electronic and information engineering; chemical and materials engineering; energy engineering; mechanical and automotive engineering; industrial and manufacturing engineering; civil and structural engineering; aerospace engineering; biomedical engineering; geotechnical engineering and engineering geology; and ocean and environmental engineering. Therefore, the following editorial is a selection of representative works of these topics.
    Keywords: &nbsp ; Environment Management ; Environmental Engineering ; Chemical Engineering ; Materials Engineering&nbsp ; bic Book Industry Communication::T Technology, engineering, agriculture::TB Technology: general issues ; bic Book Industry Communication::T Technology, engineering, agriculture::TB Technology: general issues::TBX History of engineering & technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-05
    Description: Despite the significant impacts of alien plant species (IAS), there has not been a concerted effort to tackle the problem across the region. This can mainly be ascribed to a lack of policy, little awareness and limited capacity at a national and regional level. The UN Environment-Global Environment Facility project, 'Removing Barriers to Invasive Species Management in Production and Protection Forests in SE Asia', which was active in Cambodia, Indonesia, the Philippines and Vietnam, identified these barriers and produced this Guide which will go a long way to creating awareness about invasive plants, their impacts and how best to manage them. This Guide will serve as an invaluable aid in the identification, mapping, monitoring, and management of IAS that are already present in ASEAN member states, or which may become problematic in the future, due to increased trade and travel, economic development and climate change. It is hoped that this Guide would trigger similar efforts in other countries in Southeast Asia as the region moves toward socio-economic integration.
    Description: Published
    Keywords: QK1-989 ; S1-972 ; invasives ; nonindigenous species ; Viet Nam ; Cambodia ; Indochina ; Least Developed Countries ; weed control ; ASEAN Countries ; recommendations ; South East Asia ; Southeast Asia ; Vietnam ; awareness ; exotic species ; guidelines ; weeds ; Kampuchea ; invasive organisms ; eukaryotes ; introduced organisms ; mapping ; nonindigenous organisms ; Philippines ; cartography ; monitoring ; APEC countries ; invasive species ; non-native species ; invasive alien species ; Asia ; exotic organisms ; Khmer Republic ; Developing Countries ; alien invasive species ; introduced species ; non-indigenous organisms ; non-indigenous species ; non-native organisms ; Indonesia ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences ; thema EDItEUR::1 Place qualifiers::1F Asia::1FM South East Asia
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-05
    Description: Both in Ethiopia and in the countries of East Africa, the continuing proliferation and spread of invasive alien species (IAS) is now recognized as a serious problem, which needs to be addressed. While this situation has improved dramatically over the past 10 years, further progress has been hampered by the absence, hitherto, of a comprehensive IAS database for the region. Countries in the region have repeatedly expressed the need for such a database, as a tool to assist in the identification of naturalized and invasive alien plant species, and in understanding their impacts, both existing and potential, while also providing pointers on what can be done to manage such species. This information is seen as essential, not only in enabling countries to develop effective IAS management strategies, but also in helping them to meet their obligations under various international agreements and treaties, including Article 8 (h) of the Convention on Biological Diversity (CBD) and Target 9 of the 2020 Aichi Biodiversity Targets. In providing such a database, this Guide is intended to give the countries of eastern Africa the information they require, in order to be able to develop effective strategies for combating the growing menace posed by invasive alien plants. It is further hoped that this Guide will foster increased regional collaboration, in responding to the challenges of managing shared invasive plant species. The Guide is based on the findings of extensive roadside surveys, carried out throughout the region, and on a review of the literature pertaining to naturalization and/or invasiveness among alien plants in eastern Africa. By this means, scores of exotic plant species were found to have escaped from cultivation, and to have established populations in the 'wild', to the detriment of natural resources and the millions of people in the region who depend on these resources. Included in the Guide are descriptions of roughly 200 exotic plant species which are either invasive already or which are deemed to have the potential to become invasive in the region. The profiled species include aquatic invasive plants or waterweeds (seven species); vines, creepers or climbers (20 species); terrestrial herbs, shrubs, and succulents (more than 30 species of each), and trees (more than 60 species). Also profiled in this Guide are many exotic plant species which, although their current distribution in the region may still be relatively localized, nevertheless have the potential to become considerably more widespread and problematic. The wide range of habitats and climatic conditions found within Ethiopia and across East Africa make the region as a whole particularly prone to invasions by a host of introduced plant species. Such invasions are being facilitated by increased land degradation, especially through overgrazing and deforestation, and also by climate change.
    Keywords: QK1-989 ; QH540-549.5 ; S1-972 ; invasives ; nonindigenous species ; climatic change ; weed control ; aquatic species ; data banks ; aquatic organisms ; exotic species ; weeds ; aquatic plants ; climate change ; invasive organisms ; eukaryotes ; databases ; introduced organisms ; nonindigenous organisms ; Africa ; Plants ; invasive species ; non-native species ; Africa South of Sahara ; invasive alien species ; exotic organisms ; subsaharan Africa ; alien invasive species ; introduced species ; East Africa ; aquatic weeds ; non-indigenous organisms ; non-indigenous species ; non-native organisms ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences ; thema EDItEUR::1 Place qualifiers::1H Africa::1HF Sub-Saharan Africa::1HFG East Africa
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-26
    Description: Identifcation of ontogenetic age classes plays an important role in the felds of zoology, palaeontology and archaeology, where accurate age classifcations of (sub)fossil remains are a crucial component for the reconstruction \nof past life. Textural ageing\xe2\x80\x94the identifcation of age-related bone surface textures\xe2\x80\x94provides a size-independent \nmethod for age assessment of vertebrate material. However, most of the work so far is limited to qualitative results. \nWhile qualitative approaches provide helpful insights on textural ageing patterns, they are heavily subject to observer \nbias and fall short of quantitative data relevant for detailed statistical analyses and cross-comparisons. Here, we present a pilot study on the application of 3D surface digital microscopy to quantify bone surface textures on the long \nbones of the grey heron (Ardea cinerea) and the Canada goose (Branta canadensis) using internationally verifed \nroughness parameters. Using a standardised measuring protocol, computed roughness values show a strong correlation with qualitative descriptions of textural patterns. Overall, higher roughness values correspond to increased numbers of grooves and pits and vice versa. Most of the roughness parameters allowed distinguishing between diferent \nontogenetic classes and closely followed the typical sigmoidal animal growth curve. Our results show that bone \ntexture quantifcation is a feasible approach to identifying ontogenetic age classes.
    Keywords: General Physics and Astronomy ; General Environmental Science ; General Biochemistry ; Genetics and Molecular Biology ; General Materials Science ; General Chemistry ; Roughness ; Surfaces ; Taphonomy ; Topography ; Bone ; Ontogeny ; Digital microscopy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    De Gruyter | De Gruyter
    Publication Date: 2024-04-05
    Description: The essential principles of green chemistry are the use of renewable raw materials, highly efficient catalysts and green solvents linked with energy efficiency and process optimization in real-time. Experts from different fields show, how to examine all levels from the molecular elementary steps up to the design and operation of an entire plant for developing novel and efficient production processes.
    Keywords: Process Engineering ; Chemical Engineering ; Technical Chemistry ; thema EDItEUR::P Mathematics and Science::PN Chemistry ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RN The environment ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RN The environment::RNU Sustainability ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TD Industrial chemistry and manufacturing technologies::TDC Industrial chemistry and chemical engineering ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials::TGM Materials science ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TQ Environmental science, engineering and technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-11
    Description: It has become more evident that many microalgae respond very differently than land plants to diverse stimuli. Therefore, we cannot reduce microalgae biology to what we have learned from land plants biology. However, we are still at the beginning of a comprehensive understanding of microalgae biology. Microalgae have been posited several times as prime candidates for the development of sustainable energy platforms, making thus the in-depth understanding of their biological features an important objective. Thus, the knowledge related to the basics of microalgae biology must be acquired and shared rapidly, fostering the development of potential applications. Microalgae biology has been studied for more than forty years now and more intensely since the 1970’s, when genetics and molecular biology approaches were integrated into the research programs. Recently, studies on the molecular physiology of microalgae have provided evidences on the particularities of these organisms, mainly in model species, such as Chlamydomonas reinhardtii. Of note, cellular responses in microalgae produce very interesting phenotypes, such as high lipid content in nitrogen deprived cells, increased protein content in cells under high CO2 concentrations, the modification of flagella structure and motility in basal body mutant strains, the different ancient proteins that microalgae uses to dissipate the harmful excess of light energy, the hydrogen production in cells under sulfur deprivation, to mention just a few. Moreover, several research groups are using high-throughput and data-driven technologies, including “omics” approaches to investigate microalgae cellular responses at a system-wide level, revealing new features of microalgae biology, highlighting differences between microalgae and land plants. It has been amazing to observe the efforts towards the development and optimization of new technologies required for the proper study of microalgae, including methods that opened new paths to the investigation of important processes such as regulatory mechanisms, signaling crosstalk, chemotactic mechanisms, light responses, chloroplast controlled mechanisms, among others. This is an exciting moment in microalgae research when novel data are been produced and applied by research groups from different areas, such as bioprocesses and biotechnology. Moreover, there has been an increased amount of research groups focused in the study of microalgae as a sustainable source for bioremediation, synthesis of bioproducts and development of bioenergy. Innovative strategies are combining the knowledge of basic sciences on microalgae into their applied processes, resulting in the progression of many applications that hopefully, will achieve the necessary degree of optimization for economically feasible large-scale applications. Advances on the areas of basic microalgae biology and novelties on the essential cellular processes were revealed. Progress in the applied science showed the use of the basic science knowledge into fostering translational research, proposing novel strategies for a sustainable world scenario. In this present e-book, articles presented by research groups from different scientific areas showed, successfully, the increased development of the microalgae research. Herewith, you will find articles ranging from bioprospecting regional microalgae species, through advances in microalgae molecular physiology to the development of techniques for characterization of biomass and the use of biomass into agriculture and bioenergy production. This e-book is an excellent source of knowledge for those working with microalgae basic and applied sciences, and a great opportunity for researchers from both areas to have an overview of the amazing possibilities we have for building an environmentally sustainable future once the knowledge is translated into novel applications.
    Keywords: TA1-2040 ; TP248.13-248.65 ; QK1-989 ; Q1-390 ; Biotechnology ; biomass ; Hydrogen ; bioenergy ; Nutrients ; Lipids ; Microalgae ; Biofuels ; sustainability ; Carbon Dioxide ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-05
    Description: The purpose of this second edition of The Code Decoded is to serve as a user’s guide to the International Code of Nomenclature for algae, fungi, and plants (“Code”), specifically the Shenzhen Code (Turland & al., 2018).
    Keywords: QK1-989 ; fungi ; numenclature of algae ; and plants ; Shenzhen code ; users' guide ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-05
    Description: Virus-caused asthma, we now call a phenotype of asthma. Regardless of the significance and popularity of this disease, the etiology of the virus-induced asthma have not well understood. In addition, a few effective vaccines have been applied to prevent respiratory virus infection. To solve the issues, it is essential to clarify and delineate both aspects of the virus and host defense systems including acute/chronic inflammation and airway tissue remodeling. To deeply review and discuss pathophysiology and epidemiology of virus-induced asthma, this topics includes new findings of the host immunity, pathology, epidemiology, and virology of asthma/chronic obstructive pulmonary disease (COPD). We believe that these works are well summarized and informative to glimpse the field of virus- associated asthma and COPD, and may help understanding the basic and clinical aspects of the diseases.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; virus-induced asthma ; Pathology ; respiratory virus ; human immunity ; Epidemiology ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Transfer cells are anatomically specialized cells optimized to support high levels of nutrient transport in plants. These cells trans-differentiate from existing cell types by developing extensive and localized wall ingrowth labyrinths to amplify plasma membrane surface area which in turn supports high densities of membrane transporters. Unsurprisingly, therefore, transfer cells are found at key anatomical sites for nutrient acquisition, distribution and exchange. Transfer cells are involved in delivery of nutrients between generations and in the development of reproductive organs and also facilitate the exchange of nutrients that characterize symbiotic associations. Transfer cells occur across all taxonomic groups in higher plants and also in algae and fungi. Deposition of wall ingrowth-like structures are also seen in “syncytia” and “giant cells” which function as feeding sites for cyst and root-knot nematodes, respectively, following their infection of roots. Consequently, the formation of highly localized wall ingrowth structures in diverse cell types appears to be an ancient anatomical adaption to facilitate enhanced rates of apoplasmic transport of nutrients in plants. In some systems a role for transfer cells in the formation of an anti-pathogen protective barrier at these symplastic discontinuities has been inferred. Remarkably, the extent of cell wall ingrowth development at a particular site can show high plasticity, suggesting that transfer cell differentiation might be a dynamic process adapted to the transport requirements of each physiological condition. Recent studies exploiting different experimental systems to investigate transfer cell biology have identified signaling pathways inducing transfer cell development and genes/gene networks that define transfer cell identity and/or are involved in building the wall ingrowth labyrinths themselves. Further studies have defined the structure and composition of wall ingrowths in different systems, leading in many instances to the conclusion that this process may involve previously uncharacterized mechanisms for localized wall deposition in plants. Since transfer cells play important roles in plant development and productivity, the latter being relevant to crop yield, especially so in major agricultural species such as wheat, barley, soybean and maize, understanding the molecular and cellular events leading to wall ingrowth deposition holds exciting promise to develop new strategies to improve plant performance, a key imperative in addressing global food security. This Research Topic presents a timely and comprehensive treatise on transfer cell biology to help define critical questions for future research and thereby generating a deeper understanding of these fascinating and important cells in plant biology.
    Keywords: QK1-989 ; Q1-390 ; Wall ingrowth ; Arabidopsis thaliana ; synctial cells ; Zea mays ; transfer cells ; endosperm transfer cells ; Giant Cells ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-04-05
    Description: Photosystem II is a 700-kDa membrane-protein super-complex responsible for the light-driven splitting of water in oxygenic photosynthesis. The photosystem is comprised of two 350-kDa complexes each made of 20 different polypeptides and over 80 co-factors. While there have been major advances in understanding the mature structure of this photosystem many key protein factors involved in the assembly of the complex do not appear in the holoenzyme. The mechanism for assembling this super-complex is a very active area of research with newly discovered assembly factors and subcomplexes requiring characterization. Additionally the ability to split water is inseparable from light-induced photodamage that arises from radicals and reactive O2 species generated by Photosystem II chemistry. Consequently, to sustain water splitting, a “self repair” cycle has evolved whereby damaged protein is removed and replaced so as to extend the working life of the complex. Understanding how the biogenesis and repair processes are coordinated is among several important questions that remain to be answered. Other questions include: how and when are the inorganic cofactors inserted during the assembly and repair processes and how are the subcomplexes protected from photodamage during assembly? Evidence has also been obtained for Photosystem II biogenesis centers in cyanobacteria but do these also exist in plants? Do the molecular mechanisms associated with Photosystem II assembly shed fresh light on the assembly of other major energy-transducing complexes such as Photosystem I or the cytochrome b6/f complex or indeed other respiratory complexes? The contributions to this Frontiers in Plant Science Research Topic are likely to reveal new details applicable to the assembly of a range of membrane-protein complexes, including aspects of self-assembly and solar energy conversion that may be applied to artificial photosynthetic systems. In addition, a deeper understanding of Photosystem II assembly — particularly in response to changing environmental conditions — will provide new knowledge underpinning photosynthetic yields which may contribute to improved food production and long-term food security.
    Keywords: QK1-989 ; Q1-390 ; Arabidopsis thaliana ; photoactivation ; photosynthesis ; Chlamydomonas reinhardtii ; cyanobacteria ; biogenesis ; Photosystem II ; photodamage ; Nicotiana tabacum ; Synechocystis sp. PCC 6803 ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-04-05
    Description: Biotic and abiotic stress factors deliver a huge impact on plant life. Biotic stress factors such as damage through pathogens or herbivore attack, as well as abiotic stress factors like variation in temperature, rainfall and salinity, have placed the plant kingdom under constant challenges for survival. As a consequence, global agricultural and horticultural productivity has been disturbed to a large extent. Being sessile in nature, plants cannot escape from the stress, and instead adapt changes within their system to overcome the adverse conditions. These changes include physiological, developmental and biochemical alterations within the plant body which influences the genome, proteome and metabolome profiles of the plant. Since proteins are the ultimate players of cellular behavior, proteome level alterations during and recovery period of stress provide direct implications of plant responses towards stress factors. With current advancement of modern high-throughput technologies, much research has been carried out in this field. This e-book highlights the research and review articles that cover proteome level changes during the course or recovery period of various stress factors in plant life. Overall, the chapters in this e-book has provided a wealth of information on how plants deal with stress from a proteomics perspective.
    Keywords: QK1-989 ; Q1-390 ; Infection ; signaling events during stress ; Quantitative Proteomics ; heavy metal stress ; plant proteomics ; drought ; high temperature ; Salinity ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-04-05
    Description: The eastern, largely subtropical KwaZulu-Natal province of South Africa has a varied geology, climate and topography that ranges from high mountain peaks to beaches lapped by the Indian Ocean, so presenting a vast diversity of habitats that support a rich and diverse flora. Aloes are well represented throughout KwaZulu-Natal, with four genera [Aloe L., Aloiampelos Klopper & Gideon F.Sm., Aloidendron (A.Berger) Klopper & Gideon F.Sm. and Aristaloe Boatwr. & J.C.Manning] and 49 infrageneric taxa occurring in the province. The species range from trees that can reach a height of 20 m, through large, iconic single-stemmed plants, to miniatures of only a few centimeters tall. Fourteen of the aloes of KwaZulu-Natal are endemic and eleven near-endemic to the province. This paper presents a complete floristic treatment of the aloes of KwaZulu-Natal in the form of a synoptic review. Included are an identification key to the aloes that occur naturally in the province, morphological descriptions, notes on habitat, conservation status and threats to the survival of each taxon, species-level distribution maps and images of all the taxa, so providing for the first time, an up-to-date, illustrated account of aloe occurrence in this part of the subcontinent.
    Keywords: QK1-989 ; QH540-549.5 ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-04-05
    Description: As a consequence of the global climate change, both the reduction on yield potential and the available surface area of cultivated species will compromise the production of food needed for a constant growing population. There is consensus about the significant gap between world food consumption projected for the coming decades and the expected crop yield-improvements, which are estimated to be insufficient to meet the demand. The complexity of this scenario will challenge breeders to develop cultivars that are better adapted to adverse environmental conditions, therefore incorporating a new set of morpho-physiological and physico-chemical traits; a large number of these traits have been found to be linked to heat and drought tolerance. Currently, the only reasonable way to satisfy all these demands is through acquisition of high-dimensional phenotypic data (high-throughput phenotyping), allowing researchers with a holistic comprehension of plant responses, or ‘Phenomics’. Phenomics is still under development. This Research Topic aims to be a contribution to the progress of methodologies and analysis to help understand the performance of a genotype in a given environment.
    Keywords: QK1-989 ; Q1-390 ; software development ; reverse phenomics ; forward phenomics ; phenotyping ; high-throughput phenotyping ; phenomics ; breeding ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2024-04-05
    Description: Concerns have been raised with respect to the state of high-altitude and high-latitude treelines, as they are anticipated to undergo considerable modifications due to global changes, and especially due to climate warming. As high-elevation treelines are temperature-limited vegetation boundaries, they are considered to be sensitive to climate warming. As a consequence, in this future, warmer environment, an upward migration of treelines is expected because low air and root-zone temperatures constrain their regeneration and growth. Despite the ubiquity of climate warming, treeline advancement is not a worldwide phenomenon: some treelines have been advancing rapidly, others have responded sluggishly or have remained stable. This variation in responses is attributed to the potential interaction of a continuum of site-related factors that may lead to the occurrence of locally conditioned temperature patterns. Competition amongst species and below-ground resources have been suggested as additional factors explaining the variability in the movement of treelines. This Special Issue (book) is dedicated to the discussion of treeline responses to changing environmental conditions in different areas around the globe.
    Keywords: QH301-705.5 ; QK1-989 ; Q1-390 ; n/a ; tree seedling recruitment ; shrubline ; light quality ; higher altitude ; precipitation ; experimental rain exclusion ; Pinus cembra ; Changbai Mountain ; treeline dynamics ; fungal ecology ; thermal continentality ; tree regeneration ; elevational transect ; monitoring ; conifer shrub ; plant water availability ; permafrost ; foehn winds ; treeline ; Holocene ; nitrogen cycling ; carotenoids ; timberline ; 15N natural abundance ; spectrometer ; basal area increment ; palynology ; xylem embolism ; diversity ; elevational treeline ; European Alps ; temperature ; tree line ; winter stress ; photosynthetic pigments ; Pinus sibirica ; westerly winds ; relative air humidity ; ecosystem manipulation ; Larix decidua ; microsite ; polar treeline ; Central Austrian Alps ; Switzerland ; multi-stemmed growth form ; conifers ; forest edge ; history of treeline research ; soil drought ; dendroclimatology ; knowledge engineering ; Rocky Mountains ; apical control ; cloud ; postglacial ; alpine timberline ; space-for-time substitution ; climate change ; expert elicitation ; shoot elongation ; pit aspiration ; climate warming ; climate zone ; alpine treeline ; refilling ; Abies sibirica ; growth trend ; western Montana ; light quantity ; Picea abies ; Mediterranean climate ; forest climatology ; altitude ; environmental stress ; sub-Antarctic ; Erman’s birch ; photoinhibition ; tocopherol ; elevational gradients ; NDVI ; long-term trends ; sap flow ; peat ; tree seedlings ; Southern Ocean ; chlorophyll ; non-structural carbohydrates (NSCs) ; drought ; upward advance ; remote sensing data ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-04-05
    Description: The onset of flowering is an important step during the lifetime of a flowering plant. During the past two decades, there has been enormous progress in our understanding of how internal and external (environmental) cues control the transition to reproductive growth in plants. Many flowering time regulators have been identified from the model plant Arabidopsis thaliana. Most of them are assembled in regulatory pathways, which converge to central integrators which trigger the transition of the vegetative into an inflorescence meristem. For crop cultivation, the time of flowering is of upmost importance, because it determines yield. Phenotypic variation for this trait is largely controlled by genes, which were often modified during domestication or crop improvement. Understanding the genetic basis of flowering time regulation offers new opportunities for selection in plant breeding and for genome editing and genetic modification of crop species.
    Keywords: QH426-470 ; QK1-989 ; Q1-390 ; crop plants ; Phenological development ; Arabidopsis ; floral transition ; Prunus ; barley ; wheat ; rice ; Tomato ; BEET ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAK Genetics (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Autophagy (also known as macroautophagy) is an evolutionarily conserved process by which cytoplasmic components are nonselectively enclosed within a double-membrane vesicle known as the autophagosome and delivered to the vacuole for degradation of toxic components and recycling of needed nutrients. This catabolic process is required for the adequate adaptation and response of the cell, and correspondingly the whole organism, to different types of stress including nutrient starvation or oxidative damage. Autophagy has been extensively investigated in yeasts and mammals but the identification of autophagy-related (ATG) genes in plant and algal genomes together with the characterization of autophagy-deficient mutants in plants have revealed that this process is structurally and functionally conserved in photosynthetic eukaryotes. Recent studies have demonstrated that autophagy is active at a basal level under normal growth in plants and is upregulated during senescence and in response to nutrient limitation, oxidative stress, salt and drought conditions and pathogen attack. Autophagy was initially considered as a non-selective pathway, but numerous observations mainly obtained in yeasts revealed that autophagy can also selectively eliminate specific proteins, protein complexes and organelles. Interestingly, several types of selective autophagy appear to be also conserved in plants, and the degradation of protein aggregates through specific adaptors or the delivery of chloroplast material to the vacuole via autophagy has been reported. This research topic aims to gather recent progress on different aspects of autophagy in plants and algae. We welcome all types of articles including original research, methods, opinions and reviews that provide new insights about the autophagy process and its regulation.
    Keywords: QK1-989 ; Q1-390 ; Lipid degradation ; selective autophagy ; pexophagy ; algae ; Plants ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: In this century the human being must face the challenges of producing enough to feed a growing population in a sustainable and environmentally friendly way. The yields are with increasing frequency affected by abiotic stresses such as salinity, drought, and high temperature or by new diseases and plagues. The Research Topic on Induced Resistance for Plant Defense focuses on the understanding the mechanisms underlying plant resistance or tolerance since these will help us to develop fruitful new agricultural strategies for a sustainable crop protection. This topic and its potential applications provide a new sustainable approach to crop protection. This technology currently can offer promising molecules capable to provide new long lasting treatments for crop protection against biotic or abiotic stresses. The aim of this Research Topic is to review and discuss current knowledge of the mechanisms regulating plant induced resistance and how from our better understanding of these mechanisms we can find molecules capable of inducing this defence response in the plant, thereby contributing to sustainable agriculture we need for the next challenges of the XXI century.
    Keywords: QK1-989 ; Q1-390 ; priming ; plant defence activators ; induced resistance ; elicitors ; abiotic stress ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-04-05
    Description: Phytopathogenic bacteria of the Xanthomonas genus cause severe diseases on hundreds of host plants, including economically important crops, such as bean, cabbage, cassava, citrus, hemp, pepper, rice, sugarcane, tomato or wheat. Diseases occurring in nature comprise bacterial blight, canker, necrosis, rot, scald, spot, streak or wilt. Xanthomonas spp. are distributed worldwide and pathogenic and nonpathogenic strains are essentially found in association to plants. Some phytopathogenic strains are emergent or re-emergent and, consequently, dramatically impact agriculture, economy and food safety. During the last decades, massive efforts were undertaken to decipher Xanthomonas biology. So far, more than one hundred complete or draft genomes from diverse Xanthomonas species have been sequenced (http://www.xanthomonas.org), thus providing powerful tools to study genetic determinants triggering pathogenicity and adaptation to plant habitats. Xanthomonas spp. employ an arsenal of virulence factors to invade its host, including extracellular polysaccharides, plant cell wall-degrading enzymes, adhesins and secreted effectors. In most xanthomonads, type III secretion (T3S) system and secreted effectors (T3Es) are essential to bacterial pathogenicity through the inhibition of plant immunity or the induction of plant susceptibility (S) genes, as reported for Transcription Activation-Like (TAL) effectors. Yet, toxins can also be major virulence determinants in some xanthomonads while nonpathogenic Xanthomonas species do live in sympatry with plant without any T3S systems nor T3Es. In a context of ever increasing international commercial exchanges and modifications of the climate, monitoring and regulating pathogens spread is of crucial importance for food security. A deep knowledge of the genomic diversity of Xanthomonas spp. is required for scientists to properly identify strains, to help preventing future disease outbreaks and to achieve knowledge-informed sustainable disease resistance in crops. This Research Topic published in the ‘Plant Biotic Interactions’ section of Frontiers in Plant Science and Frontiers in Microbiology aims at illustrating several of the recent achievements of the Xanthomonas community. We collected twelve manuscripts dealing with comparative genomics or T3E repertoires, including five focusing on TAL effectors which we hope will contribute to advance research on plant pathogenic bacteria.
    Keywords: QK1-989 ; Q1-390 ; Resistance ; susceptibility ; Xop ; Type III effector ; Immunity ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-04-05
    Description: Over the last decades, nitric oxide (NO) has emerged as an essential player in redox signalling. Reactive oxygen species (ROS) also act as signals throughout all stages of plant life. Because they are potentially harmful for cellular integrity, ROS and NO levels must be tightly controlled, especially by the classical antioxidant system and additional redox-active metabolites and proteins. Recent work provided evidence that NO and ROS influence each other’s biosynthesis and removal. Moreover, novel signalling molecules resulting from the chemical reaction between NO, ROS and plant metabolites have been highlighted, including N2O3, ONOO-, NO2, S-nitrosoglutathione and 8-NO2 cGMP. They are involved in diverse plant physiological processes, the best characterized being stomata regulation and stress defense. Taken together, these new data demonstrate the complex interactions between NO, ROS signalling and the antioxidant system. This Frontiers in Plant Science Research Topic aims to provide an updated and complete overview of this important and rapidly expanding area through original article and detailed reviews.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; plant development ; Reactive Oxygen Species ; plant defense ; antioxidant system ; Nitric Oxide ; Biotic and abiotic stress ; signalling ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-04-05
    Description: Parasitic weeds are severe constraint to agriculture and major crop production, and the efficacy of available means to control them is minimal. Control strategies have centred around agronomic practices, resistant varieties and the use of herbicides. Novel integrated control programmes should be sympathetic to agricultural extensification while exerting minimal harmful effects on the environment. This eBook covers recent advances in biology, physiology of parasitism, genetics, population dynamics, resistance, host-parasite relationships, regulation of seed germination, etc., in order to offer an outstanding windows to these enigmatic plants, and contribute to their practical management.
    Keywords: QK1-989 ; Q1-390 ; parasitic weeds ; striga ; weed management ; broomrape ; resistance ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-04-05
    Description: Plant organ abscission is a developmental process regulated by the environment, stress, pathogens and the physiological status of the plant. In particular, seed and fruit abscission play an important role in seed dispersion and plant reproductive success and are common domestication traits with important agronomic consequences for many crop species. Indeed, in natural populations, shedding of the seed or fruit at the correct time is essential for reproductive success, while for crop species the premature or lack of abscission may be either beneficial or detrimental to crop productivity. The use of model plants, in particular Arabidopsis and tomato, have led to major advances in our understanding of the molecular and cellular mechanisms underlying organ abscission, and now many workers pursue the translation of these advances to crop species. Organ abscission involves specialized cell layers called the abscission zone (AZ), where abscission signals are perceived and cell separation takes place for the organ to be shed. A general model for plant organ abscission includes (1) the differentiation of the AZ, (2) the acquisition of AZ cells to become competent to respond to various abscission signals, (3) response to signals and the activation of the molecular and cellular processes that lead to cell separation in the AZ and (4) the post-abscission events related to protection of exposed cells after the organ has been shed. While this simple four-phase framework is helpful to describe the abscission process, the exact mechanisms of each stage, the differences between organ types and amongst diverse species, and in response to different abscission inducing signals are far from elucidated. For an organ to be shed, AZ cells must transduce a multitude of both endogenous and exogenous signals that lead to transcriptional and cellular and ultimately cell wall modifications necessary for adjacent cells to separate. How these key processes have been adapted during evolution to allow for organ abscission to take place in different locations and under different conditions is unknown. The aim of the current collection of articles is to present and be able to compare recent results on our understanding of organ abscission from model and crop species, and to provide a basis to understand both the evolution of abscission in plants and the translation of advances with model plants for applications in crop species.
    Keywords: QK1-989 ; Q1-390 ; signaling ; transcription ; auxin ; Arabidopsis ; tomato ; Organ abscission ; cell wall ; fruit abscission ; ethylene ; abscission zone ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-04-05
    Description: Many of the most prevalent and devastating human and animal pathogens have part of their lifecycle out-with the animal host. These pathogens have a remarkably wide capacity to adapt to a range of quite different environments: physical, chemical and biological, which is part of the key to their success. Many of the well-known pathogens that are able to jump between hosts in different biological kingdoms are transmitted through the faecal-oral and direct transmission pathways, and as such have become important food-borne pathogens. Some high-profile examples include fresh produce-associated outbreaks of Escherichia coli O157:H7 and Salmonella enterica. Other pathogens may be transmitted via direct contact or aerosols are include important zoonotic pathogens. It is possible to make a broad division between those pathogens that are passively transmitted via vectors and need the animal host for replication (e.g. virus and parasites), and those that are able to actively interact with alternative hosts, where they can proliferate (e.g. the enteric bacteria). This research topic will focus on plants as alternative hosts for human pathogens, and the role of plants in their transmission back to humans. The area is particularly exciting because it opens up new aspects to the biology of some microbes already considered to be very well characterised. One aspect of cross-kingdom host colonisation is in the comparison between the hosts and how the microbes are able to use both common and specific adaptations for each situation. The area is still in relative infancy and there are far more questions than answers at present. We aim to address important questions underlying the interactions for both the microbe and plant host in this research topic.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; Salmonella enterica ; Escherichia coli ; fresh produce ; Effectors ; Plant hosts ; PAMP triggered immunity ; Organic vegetable ; microbiome ; Arabidposis thaliana ; mRNA extraction ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-04-05
    Description: "Parabenizo a todos os botânicos que contribuíram para completar o presente catálogo. O Brasil é o país que provavelmente possui a maior flora do mundo, portanto, a produção de uma lista completa dessa flora é uma extensa tarefa. Os coordenadores mobilizaram uma grande equipe de pessoas para compilar a lista, e é ótimo ver que este projeto, diferentemente do que se observa em outros países, foi coordenado no Brasil. Isto demonstra o alto nível e a capacidade da comunidade botânica brasileira que se desenvolveu rapidamente nas últimas décadas. Este catálogo, por ter sido preparado na sua maioria por especialistas dos grupos estudados, mostra quais espécies são correntemente aceitas pelos botânicos envolvidos. As espécies foram padronizadas por meio da citação de materiais-voucher, a maioria dos quais foi coletada por brasileiros e está alojada em herbários do Brasil. A informação a respeito da distribuição geográfica de cada espécie será extremamente útil para fins de conservação, e é interessante notar o número expressivo de espécies endêmicas do Brasil. Este catálogo certamente será utilizado por estudantes de diversas áreas envolvendo botânica, ecologia e outras, e tenho certeza de que a sua existência estimulará futuras pesquisas a respeito de plantas brasileiras e que a sua versão online o manterá atualizado. O desafio agora é conservar os muitos ecossistemas diferentes nos quais estas espécies ocorrem, para manter a diversidade botânica do país."
    Keywords: QK1-989 ; Botânica – Brasil – Catálogos. Plantas – Brasil – Catálogos. Fungos – Brasil – Catálogos ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: Portuguese
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-04-05
    Description: Due to their bacterial endosymbiotic origin plastids are organelles with both nuclear-encoded and plastid-encoded proteins. Therefore, a highly integrated modulation of gene expression between the nucleus and the plastome is needed in plant cell development. Plastids have retained for the most part a prokaryotic gene expression machinery but, differently from prokaryotes and eukaryotes, they have largely abandoned transcriptional control and switched to predominantly translational control of their gene expression. Some transcriptional regulation is known to occur, but the coordinate expression between the nucleus and the plastome takes place mainly through translational regulation. However, the regulatory mechanisms of plastid gene expression (PGE) are mediated by intricate plastid-nuclear interactions and are still far from being fully understood. Although, for example, translational autoregulation mechanisms in algae have been described for subunits of heteromeric protein complexes and termed control by epistasy of synthesis (CES), only few autoregulatory proteins have been identified in plant plastids. It should be noted of course that PGE in C. reinhardtii is different from that in plants in many aspects. Another example of investigation in this research area is to understand the interactions that occur during RNA binding between nucleus-encoded RNA-binding proteins and the respective RNA sequences, and how this influences the translation initiation process. In addition to this, the plastid retains a whole series of mechanisms for the preservation of its protein balance (proteostasis), including specific proteases, as well as molecular chaperones and enzymes useful in protein folding. After synthesis, plastid proteins must rapidly fold into stable three dimensional structures and often undergo co- and posttranslational modifications to perform their biological mission, avoiding aberrant folding, aggregation and targeting with the help of molecular chaperones and proteases. We believe that this topic is highly interesting for many research areas because the regulation of PGE is not only of wide interest for plant biologists but has also biotechnological implications. Indeed, plastid transformation turns out to be a very promising tool for the production of recombinant proteins in plants, yet some limitations must still be overcome and we believe that this is mainly due to our limited knowledge of the mechanisms in plastids influencing the maintenance of proteostasis.
    Keywords: QK1-989 ; Q1-390 ; plastome ; regulation ; nuclear-plastid interactions ; gene expression ; protein balance ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-04
    Description: The Frontiers in Chemistry Editorial Office team are delighted to present the inaugural “Frontiers in Chemistry: Rising Stars” article collection, showcasing the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers featured within this collection were individually nominated by the Journal’s Chief Editors in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the chemical sciences, and presents advances in theory, experiment and methodology with applications to compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Chemistry Editorial Office team would like to thank each researcher who contributed their work to this collection. We would also like to personally thank our Chief Editors for their exemplary leadership of this article collection; their strong support and passion for this important, community-driven collection has ensured its success and global impact.
    Keywords: Green and Sustainable Chemistry ; Analytical Chemistry ; Theoretical and Computational Chemistry ; Polymer Chemistry ; Medicinal and Pharmaceutical Chemistry ; Organic Chemistry ; Nanoscience ; Catalysis and Photocatalysis ; Supramolecular Chemistry ; Electrochemistry ; Inorganic Chemistry ; Chemical Biology ; thema EDItEUR::P Mathematics and Science::PD Science: general issues
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-04-05
    Description: The flexible filamentous plant viruses are responsible for more than half of all agricultural loss worldwide. Potexvirus is one of the two most important flexible filamentous plant viruses. Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus, is a member of the Potexvirus genus of Alphaflexiviridae. It can infect at least 12 species of bamboo, causing a huge economic impact on the bamboo industry in Taiwan. The study of BaMV did not start extensively until the completion of the full-length sequencing of genomic RNA of BaMV and generation of the BaMV infectious cDNA clone in the early 1990s. Since then, BaMV has been extensively studied at the molecular, cellular and ecological level, covering both basic and applied researches, by a group of researchers in Taiwan. In this eBook, the content comprises 6 reviews and 4 articles. Seven of them are involved in the infection of BaMV covering viral RNA replication, viral RNA trafficking, and the host factors. Two of them are related to the vector transmission and the ecology of BaMV. The last one is the application of using BaMV as a viral vector to produce vaccines in plants.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; host proteins ; replicase ; plant hormone ; bamboo mosaic virus ; insect transmission ; viral trafficking and movement ; viral RNA replication ; viral vector vaccine ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-04-05
    Description: The great diversity of land plants (especially angiosperms) is mainly reflected in the diversity of various reproductive organs of plants. However, despite long time intensive investigations, there are still uncertainties and sometimes misunderstandings over the nature and evolution of reproductive organs in land plants. With the new advances made in various fields of botany (especially at molecular level), there is increasing light shed on some aspects of flowers (reproductive organs of angiosperms). In this ebook, we collect 15 papers reporting new understanding on plant reproductive organs. These works range from morphology and anatomy to molecular regulatory networks underlying traditional observations. We understand this single book cannot reach our goal, but we do hope that this book can contribute to or initiate some efforts leading to the final solution of some problems concerning the homology and evolution of reproductive organs in plants.
    Keywords: QK1-989 ; Q1-390 ; homology ; incompatibility ; seed ; gene ; angiosperm ; insect ; evolution ; fossil ; flower ; carpel ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-04-05
    Description: Until recently, a majority of the applications of X-ray computed tomography (CT) scanning in plant sciences remained descriptive; some included a quantification of the plant materials when the root-soil isolation or branch-leaf separation was satisfactory; and a few involved the modeling of plant biology processes or the assessment of treatment or disease effects on plant biomass and structures during growth. In the last decade, repeated CT scanning of the same plants was reported in an increasing number of studies in which moderate doses of X-rays had been used. Besides the general objectives of Frontiers in Plant Science research topics, “Branching and Rooting Out with a CT Scanner” was proposed to meet specific objectives: (i) providing a non-technical update on knowledge about the application of CT scanning technology to plants, starting with the type of CT scanning data collected (CT images vs. CT numbers) and their processing in the graphical and numerical approaches; (ii) drawing the limits of the CT scanning approach, which because it is based on material density can distinguish materials with contrasting or moderately overlapping densities (e.g., branches vs. leaves, roots vs. non-organic soils) but not the others (e.g., roots vs. organic soils); (iii) explaining with a sufficient level of detail the main procedures used for graphical, quantitative and statistical analyses of plant CT scanning data, including fractal complexity measures and statistics appropriate for repeated plant CT scanning, in experiments where the research hypotheses are about biological processes such as light interception by canopies, root disease development and plant growth under stress conditions; (iv) comparing plant CT scanning with an alternative technology that applies to plants, such as the phenomics platforms which target leaf canopies; and (v) providing current and potential users of plant CT scanning with up-to-date information and exhaustive documentation, including clear perspectives and well-defined goals for the future, for them to be even more efficient or most efficient from start in their research work.
    Keywords: QK1-989 ; Q1-390 ; plant CT scanning data collection and analysis ; phytopathological and environmental stress applications ; plant imaging and phenotyping ; plant structural complexity and fractal geometry ; appropriate statistical methods for plant data ; Computed tomography (CT) ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-04-05
    Description: Growing plants have a constitutive demand for sulfur to synthesize proteins, sulfolipids and other essential sulfur containing molecules for growth and development. The uptake and subsequent distribution of sulfate is regulated in response to demand and environmental cues. The importance of sulfate for plant growth and vigor and hence crop yield and nutritional quality for human and animal diets has been clearly recognized. The acquisition of sulfur by plants, however, has become an increasingly important concern for the agriculture due to the decreasing S-emissions from industrial sources and the consequent limitation of inputs from atmospheric deposition. Molecular characterization involving transcriptomics, proteomics and metabolomics in Arabidopsis thaliana as well as in major crops revealed that sulfate uptake, distribution and assimilation are finely regulated depending on sulfur status and demand, and that these regulatory networks are integrated with cell cycle, photosynthesis, carbohydrate metabolism, hormonal signaling, uptake and assimilation of other nutrients, etc., to enable plant growth, development, and reproduction even under different biotic and abiotic stresses. This knowledge can be used to underpin approaches to enhance plant growth and nutritional quality of major food crops around the world. Although considerable progress has been made regarding the central role of sulfur metabolism in plant growth, development and stress response, several frontiers need to be explored to reveal the mechanisms of the cross-talk between sulfur metabolism and these processes. In this research topic the knowledge on plant sulfur metabolism is reviewed and updated. Focus is put not only on molecular mechanisms of control of sulfur metabolism but also on its integration with other vital metabolic events. The topic covers 4 major areas of sulfur research: sulfate uptake, assimilation and metabolism, regulation, and role in stress response. We hope that the topic will promote interaction between researchers with different expertise and thus contribute to a more integrative approach to study sulfur metabolism in plants.
    Keywords: QK1-989 ; Q1-390 ; sulfate deficiency ; Sulfate assimilation ; Glucosinolates ; Sulfur ; sulfate uptake ; Adenosine Phosphosulfate ; Cysteine synthesis ; Glutathione ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-04-05
    Description: Integrative omics of plants in response to stress conditions play more crucial roles in the post-genomic era. High-quality genomic data provide more deeper understanding of how plants to survive under environmental stresses. This book is focused on concluding the recent progress in the Protein and Proteome Atlas in plants under different stresses. It covers various aspects of plant protein ranging from agricultural proteomics, structure and function of proteins, and approaches for protein identification and quantification.
    Keywords: QH301-705.5 ; QK1-989 ; Q1-390 ; phosphoproteomics ; GLU1 ; somatic embryogenesis ; CHA-SQ-1 ; nitrogen fertilizer ; chilling stress ; differentially abundant proteins ; ATP synthase ; photosynthetic parameters ; photosynthesis ; constitutive splicing ; phosphorylation ; Jatropha curcas ; plants under stress ; postharvest freshness ; Alternanthera philoxeroides ; rubber latex ; Millettia pinnata ; molecular and biochemical basis ; filling kernel ; drought stress ; comparative proteomic analysis ; domain ; micro-exons ; phylogeny ; phos-tagTM ; E. angustifolia ; root cell elongation ; ABA ; pollen abortion ; lncRNA ; transcriptome ; radish ; redox homeostasis ; Nelumbo nucifera ; sugar beet ; shotgun proteomics ; proteomes ; high-temperature stress ; post-genomics era ; model plant ; salt tolerance ; miRNA ; wheat ; physiological response ; stress ; visual proteome map ; transcriptional dynamics ; leaf ; maize ; Dunaliella salina ; phosphatidylinositol ; S-adenosylmethionine decarboxylase ; Gossypium hirsutum ; flavonoid biosynthesis ; phosphatase ; wood vinegar ; heat shock proteins ; silicate limitation ; purine metabolism ; natural rubber biosynthesis ; ancient genes ; cotton ; rubber grass ; abiotic stress ; heat stress ; maturation ; low-temperature stress ; molecular basis ; transcriptome sequencing ; ROS scavenging ; widely targeted metabolomics ; transdifferentiation ; seed development ; alternative splicing ; cultivars ; inositol ; salt stress ; chlorophyll fluorescence parameters ; proteome ; carbon fixation ; AGPase ; transcript-metabolite network ; molecular mechanisms ; Triticum aestivum L. ; Zea mays L. ; ROS ; label-free quantification ; woody oilseed plants ; heat-sensitive spinach variety ; MIPS ; quantitative proteomics ; regulated mechanism ; two-dimensional gel electrophoresis ; potassium ; glutathione ; Salinity stress ; integrated omics ; diatom ; ATP synthase CF1 alpha subunit (chloroplast) ; root ; proteome atlas ; brittle-2 ; mass spectrometry ; genomics ; Taraxacum kok-saghyz ; cytomorphology ; proteomics ; arbuscular mycorrhizal fungi ; signaling pathway ; proteomic ; loss-of-function mutant ; rice ; seedling ; wucai ; leaf sheath ; root and shoot ; antioxidant enzyme ; exon-intron structure diversity ; isobaric tags for relative and absolute quantitation ; regulation and metabolism ; concerted network ; drought ; heat response ; VIGS ; iTRAQ ; nitrogen use efficiency (NUE) ; stem ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-04-05
    Description: The Natural History Museum of the University of Florence, founded in 1775 by Grand-Duke Pietro Leopold, is the oldest scientific museum in Europe. With this second volume on the Botanical Collection, Florence University Press continues its series dedicated to the six Sections of the Museum. The first part of the volume recounts the birth of botanical sciences in Florence and the history of the museum collections from sixteenth century to today. Then follows the second part which describes the historical and modern Herbaria, for each of which the main events that went to their formation, the importance of the plants they contain and biographical information on those who built the collections are described. The third section expounds the other collections in the Botanical Section of the Museum, among which of particular interest are the wax models of plants and fruits, manufactured by the old Grand-ducal Ceroplastics Laboratory, the wood collection, plaster of Paris mushrooms and the eighteenth century still life paintings of fruits and vegetables by Bartolomeo Bimbi. Finally, the last part illustrates the importance that herbaria play today in modern scientific research, drawing attention to the fact that they are an archive that holds taxonomical, chorological and ecological information in function of the plants they contain, as well as historical-biographical information on the scholars who, through their efforts, built up the collections.
    Keywords: QK1-989 ; Firenze ; Museo di storia naturale ; Storia Naturale ; Botanica ; Biologia ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-04-05
    Description: Grain legumes, together with quinoa and amaranth (pseudocereals) and other crops are attractive candidates to satisfy the growing demand for plant protein production worldwide for food and feed. Despite their high value, many protein crops have not been adequately assessed and numerous species are underutilized. Special attention has to be paid to genetic diversity and landraces, and to the key limiting factors affecting yield, including water deficiency and other abiotic and biotic stresses, in order to obtain stable, reliable and sustainable crop production through the introduction and local adaptation of genetically improved varieties. Legumes, the main protein crops worldwide, contribute to the sustainable improvement of the environment due to their ability to fix nitrogen and their beneficial effects on the soil. They play a key role in the crop diversification and sustainable intensification of agriculture, particularly in light of new and urgent challenges, such as climate change and food security. In addition, the role of legumes in nutrition has been recognized as a relevant source of plant protein, together with other benefits for health. Chapters dealing with common bean, lupine, soybean, lentil, cowpea and Medicago are included in this book. Most contributions deal with legumes, but the significant number of papers on different aspects of quinoa gives an idea of the increasing importance of this protein crop. Pseudocereals, such as quinoa and amaranth, are good sources of proteins. Quinoa and amaranth seeds contain lysine, an essential amino acid that is limited in other grains. Nutritional evaluations of quinoa indicate that it constitutes a source of complete protein with a good balance among all of the amino acids needed for human diet, and also important minerals, vitamins, high quality oils and flavonoids. Other protein crops also included in this book are hemp, cotton and cereals (maize, wheat and rice). Although cereals protein content is not high, their seeds are largely used for human consumption. In this book are included articles dealing with all different aspects of protein crops, including nutritional value, breeding, genetic diversity, biotic and abiotic stress, cropping systems or omics, which may be considered crucial to help provide the plant proteins of the future. Overall, the participation of 169 authors in 29 chapters in this book indicates an active scientific community in the field, which appears to be an encouraging reflect of the global awareness of the need for sustainability and the promising future of proteins crops as a source of food and feed.
    Keywords: QK1-989 ; Q1-390 ; Quinoa ; nutrition ; Breeding ; Genetic resources ; legumes ; Plant protein ; Biodiversity ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Mycorrhizal symbiosis is a mutualistic association of plant roots and fungi that plays a major role in ecosystem function and diversification, as well as its stability and productivity. It also plays a key role in the biology and ecology of forest trees, affecting growth, water and nutrient absorption and protection against soil-borne pathogens. However, the mycorrhizal research in tropical and neotropical ecosystems remains largely unexplored despite its importance in tropical and neotropical ecosystems. These ecosystems represent more than 0.6% of the total land ecosystems and they have a crucial role in the Earth’s biogeochemical cycling and climate. Threats to tropical forest biodiversity should therefore encourage investigations and inventories of mycorrhizal diversity, function and ecology in tropical latitudes because they concern ecologically and economically important plant species. This Research Topic aims to provide an overview of the knowledge of mycorrhizal symbioses in tropical and neotropical ecosystems. For this Research Topic, we welcome articles that address the diversity, ecology and function of mycorrhiza associated with plants, the impacts of mycorrhiza on plant diversity and composition, the regeneration and dynamics of ecosystems, and biomass production in ecosystems.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; ectomycorrhiza ; mycorrhizal fungal communities ; biofertilizer in field conditions ; arbuscular mycorrhiza ; abiotic stress ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-04-05
    Description: An increasing population faces the growing demand for agricultural products and accurate global climate models that account for individual plant morphologies to predict favorable human habitat. Both demands are rooted in an improved understanding of the mechanistic origins of plant development. Such understanding requires geometric and topological descriptors to characterize the phenotype of plants and its link to genotypes. However, the current plant phenotyping framework relies on simple length and diameter measurements, which fail to capture the exquisite architecture of plants. The Research Topic “Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences” is the result of a workshop held at National Institute for Mathematical and Biological Synthesis (NIMBioS) in Knoxville, Tennessee. From 2.-4. September 2015 over 40 scientists from mathematics, computer science, engineering, physics and biology came together to set new frontiers in combining plant phenotyping with recent results from shape theory at the interface of geometry and topology. In doing so, the Research Topic synthesizes the views from multiple disciplines to reveal the potential of new mathematical concepts to analyze and quantify the relationship between morphological plant features. As such, the Research Topic bundles examples of new mathematical techniques including persistent homology, graph-theory, and shape statistics to tackle questions in crop breeding, developmental biology, and vegetation modeling. The challenge to model plant morphology under field conditions is a central theme of the included papers to address the problems of climate change and food security, that require the integration of plant biology and mathematics from geometry and topology research applied to imaging and simulation techniques. The introductory white paper written by the workshop participants identifies future directions in research, education and policy making to integrate biological and mathematical approaches and to strengthen research at the interface of both disciplines.
    Keywords: QK1-989 ; Q1-390 ; modeling ; plant morphology ; topology ; geometry ; phenotyping ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-04-05
    Description: Natural diversity has been extensively used to understand plant biology and improve crops. However, studies were commonly based on visual phenotypes or on a few measurable parameters. Nowadays, a large number of parameters can be measured thanks to next generation sequencing, metabolomics, proteomics, and transcriptomics thus providing an unprecedented resolution in the detection of natural diversity. This enhanced resolution offers new possibilities in terms of understanding plant biology. Technology advances also contribute to a better assessment of the biodiversity loss currently taking place. Hence, the topic presents an overview on efforts for maintaining biological diversity in crops, on possibilities offered by recent technologies in the assessment of natural variation, and ends with examples of the diversity found even at the cellular level.
    Keywords: QK1-989 ; Q1-390 ; Genetic Variation ; Natural diversity conservation ; next generation sequencing ; Genetic resources ; Crop genomics ; sustainable agriculture ; crop breeding ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-04-05
    Description: The life of proteins starts and ends as amino acids. In addition to the primary function as protein building blocks, amino acids serve multiple other purposes to make a plant's life worth living. This is true especially for the amino acids of the glutamate family, namely glutamate (Glu), glutamine (Gln), proline (Pro) and arginine (Arg), as well as the product of Glu decarboxylation, ?-aminobutyric acid (GABA). Synthesis, accumulation, interconversion and degradation of these five compounds contribute in many ways to the regulation of plant development and to responses to environmental challenges. Glu and Gln hold key positions as entry points and master regulators of nitrogen metabolism in plants, and have a pivotal role in the regulatory interplay between carbon and nitrogen metabolism. Pro and GABA are among the best-studied compatible osmolytes that accumulate in response to water deficit, yet the full range of protective functions is still to be revealed. Arg, with its exceptionally high nitrogen-to-carbon ratio, has long been recognized as a major storage form of organic nitrogen. Most of the enzymes involved in metabolism of the amino acids of the glutamate family in plants have been identified or can be predicted according to similarity with animal or microbial homologues. However, for some of these enzymes the detailed biochemical properties still remain to be determined in order to understand activities in vivo. Additionally, uncertainties regarding the subcellular localization of proteins and especially the lack of knowledge about intracellular transport proteins leave significant gaps in our understanding of the metabolic network connecting Glu, Gln, Pro, GABA and Arg. While anabolic reactions are distributed between the cytosol and chloroplasts, catabolism of the amino acids of the glutamate family takes place in mitochondria and has been implicated in fueling energy-demanding physiological processes such as root elongation, recovery from stress, bolting and pollen tube elongation. Exceeding the metabolic functions, the amino acids of the glutamate family were recently identified as important signaling molecules in plants. Extracellular Glu, GABA and a range of other metabolites trigger responses in plant cells that resemble the actions of Glu and GABA as neurotransmitters in animals. Plant homologues of the Glu-gated ion channels from mammals and protein kinase signaling cascades have been implicated in these responses. Pollen tube growth and guidance depend on GABA signaling and the root architecture is specifically regulated by Glu. GABA and Pro signaling or metabolism were shown to contribute to the orchestration of defense and programmed cell death in response to pathogen attacks. Pro signaling was additionally proposed to regulate developmental processes and especially sexual reproduction. Arg is tightly linked to nitric oxide (NO) production and signaling in plants, although Arg-dependent NO-synthases could still not be identified. Potentially Arg-derived polyamines constitute the missing link between Arg and NO signaling in response to stress. Taken together, the amino acids of the glutamate family emerge as important signaling molecules that orchestrate plant growth and development by integrating the metabolic status of the plant with environmental signals, especially in stressful conditions. This research topic collects contributions from different facets of glutamate family amino acid signaling or metabolism to bring together, and integrate in a comprehensive view the latest advances in our understanding of the multiple functions of Glu-derived amino acids in plants.
    Keywords: QK1-989 ; Q1-390 ; biochemical pathways ; Regulation of development ; Arginine ; glutamine synthetase ; GABA ; metabolite signaling ; Proline ; Enzyme properties ; Stress tolerance mechanisms ; amino acid transport ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-03-31
    Description: Fleshy Fruits are a late acquisition of plant evolution. In addition of protecting the seeds, these specialized organs unique to plants were developed to promote seed dispersal via the contribution of frugivorous animals. Fruit development and ripening is a complex process and understanding the underlying genetic and molecular program is a very active field of research. Part of the ripening process is directed to build up quality traits such as color, texture and aroma that make the fruit attractive and palatable. As fruit consumers, humans have developed a time long interaction with fruits which contributed to make the fruit ripening attributes conform our needs and preferences. This issue of Frontiers in Plant Science is intended to cover the most recent advances in our understanding of different aspects of fleshy fruit biology, including the genetic, molecular and metabolic mechanisms associated to each of the fruit quality traits. It is also of prime importance to consider the effects of environmental cues, cultural practices and postharvest methods, and to decipher the mechanism by which they impact fruit quality traits. Most of our knowledge of fleshy fruit development, ripening and quality traits comes from work done in a reduced number of species that are not only of economic importance but can also benefit from a number of genetic and genomic tools available to their specific research communities. For instance, working with tomato and grape offers several advantages since the genome sequences of these two fleshy fruit species have been deciphered and a wide range of biological and genetic resources have been developed. Ripening mutants are available for tomato which constitutes the main model system for fruit functional genomics. In addition, tomato is used as a reference species for climacteric fruit which ripening is controlled by the phytohormone ethylene. Likewise, grape is a reference species for non-climacteric fruit even though no single master switches controlling ripening initiation have been uncovered yet. In the last period, the genome sequence of an increased number of fruit crop species became available which creates a suitable situation for research communities around crops to get organized and information to be shared through public repositories. On the other hand, the availability of genome-wide expression profiling technologies has enabled an easier study of global transcriptional changes in fruit species where the sequenced genome is not yet available. In this issue authors will present recent progress including original data as well as authoritative reviews on our understanding of fleshy fruit biology focusing on tomato and grape as model species.
    Keywords: QP1-981 ; QK1-989 ; Q1-390 ; molecular mechanisms ; grapevine ; tomato ; fruit ripening ; metabolic profiling ; fruit quality ; breeding ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-04-05
    Description: One of the distinguishing features of plants is the presence of membrane-bound organelles called plastids. Starting from proplastids (undifferentiated plastids) they readily develop into specialised types, which are involved in a range of cellular functions such as photosynthesis, nitrogen assimilation, biosynthesis of sucrose, starch, chlorophyll, carotenoids, fatty acids, amino acids, and secondary metabolites as well as a number of metabolic reactions. The central role of plastids in many aspects of plant cell biology means an in-depth understanding is key for a holistic view of plant physiology. Despite the vast amount of research, the molecular details of many aspects of plastid biology remains limited. Plastids possess their own high-copy number genome known as the plastome. Manipulation of the plastid genome has been developed as an alternative way to developing transgenic plants for various biotechnological applications. High-copy number of the plastome, site-specific integration of transgenes through homologous recombination, and potential to express proteins at high levels (〉70% of total soluble proteins has been reported in some cases) are some of the technologies being developed. Additionally, plastids are inherited maternally, providing a natural gene containment system, and do not follow Mendelian laws of inheritance, allowing each individual member of the progeny of a transplastomic line to uniformly express transgene(s). Both algal and higher plant chloroplast transformation has been demonstrated, and with the ability to be propagated either in bioreactors or in the field, both systems are well suited for scale up of production. The manipulation of chloroplast genes is also essential for many approaches that attempt to increase biomass accumulation or re-routing metabolic pathways for biofortification, food and fuel production. This includes metabolic engineering for lipid production, adapting the light harvesting apparatus to improve solar conversion efficiencies and engineering means of suppressing photorespiration in crop species, which range from the introduction of artificial carbon concentrating mechanisms, or those pre-existing elsewhere in nature, to bypassing ribulose bisphosphate carboxylase/oxygenase entirely. The purpose of this eBook is to provide a compilation of the latest research on various aspects of plastid biology including basic biology, biopharming, metabolic engineering, bio-fortification, stress physiology, and biofuel production.One of the distinguishing features of plants is the presence of membrane-bound organelles called plastids. Starting from proplastids (undifferentiated plastids) they readily develop into specialised types, which are involved in a range of cellular functions such as photosynthesis, nitrogen assimilation, biosynthesis of sucrose, starch, chlorophyll, carotenoids, fatty acids, amino acids, and secondary metabolites as well as a number of metabolic reactions. The central role of plastids in many aspects of plant cell biology means an in-depth understanding is key for a holistic view of plant physiology. Despite the vast amount of research, the molecular details of many aspects of plastid biology remains limited. Plastids possess their own high-copy number genome known as the plastome. Manipulation of the plastid genome has been developed as an alternative way to developing transgenic plants for various biotechnological applications. High-copy number of the plastome, site-specific integration of transgenes through homologous recombination, and potential to express proteins at high levels (〉70% of total soluble proteins has been reported in some cases) are some of the technologies being developed. Additionally, plastids are inherited maternally, providing a natural gene containment system, and do not follow Mendelian laws of inheritance, allowing each individual member of the progeny of a transplastomic line to uniformly express transgene(s). Both algal and higher plant chloroplast transformation has been demonstrated, and with the ability to be propagated either in bioreactors or in the field, both systems are well suited for scale up of production. The manipulation of chloroplast genes is also essential for many approaches that attempt to increase biomass accumulation or re-routing metabolic pathways for biofortification, food and fuel production. This includes metabolic engineering for lipid production, adapting the light harvesting apparatus to improve solar conversion efficiencies and engineering means of suppressing photorespiration in crop species, which range from the introduction of artificial carbon concentrating mechanisms, or those pre-existing elsewhere in nature, to bypassing ribulose bisphosphate carboxylase/oxygenase entirely. The purpose of this eBook is to provide a compilation of the latest research on various aspects of plastid biology including basic biology, biopharming, metabolic engineering, bio-fortification, stress physiology, and biofuel production.
    Keywords: QK1-989 ; Q1-390 ; plastid transformation ; Metabolic Engineering ; plastid division ; Plastid development ; biopharming ; retrograde signalling ; plastid polymerases ; Plastid biogenesis ; Plastids ; Plastid replication ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-03-31
    Description: Alterations in gene expression are essential during growth and development phases and when plants are exposed to environmental challenges. Stress conditions induce gene expression modifications, which are associated with changes in the biochemical and physiological processes that help plants to avoid or reduce potential damage resulting from these stresses.After exposure to stress, surviving plants tend to flower earlier than normal and therefore transfer the accumulated epigenetic information to their progenies, given that seeds, where this information is stored, are formed at a later stage of plant development.DNA methylation is correlated with expression repression. Likewise, miRNA produced in the cell can reduce the transcript abundance or even prevent translation of mRNA. However, histone modulation, such as histone acetylation, methylation, and ubiquitination, can show distinct effects on gene expression. These alterations can be inherited, especially if the plants are consistently exposed to a particular environmental stress. Retrotransposons and retroviruses are foreign movable DNA elements that play an important role in plant evolution. Recent studies have shown that epigenetic alterations control the movement and the expression of genes harbored within these elements. These epigenetic modifications have an impact on the morphology, and biotic and abiotic tolerance in the subsequent generations because they can be inherited through the transgenerational memory in plants. Therefore, epigenetic modifications, including DNA methylation, histone modifications, and small RNA interference, serve not only to alter gene expression but also may enhance the evolutionary process in eukaryotes.In this E-book, original research and review articles that cover issues related to the role of DNA methylation, histone modifications, and small RNA in plant transgenerational epigenetic memory were published.The knowledge published on this topic may add new insight on the involvement of epigenetic factors in natural selection and environmental adaptation. This information may also help to generate a modeling system to study the epigenetic role in evolution.
    Keywords: QP1-981 ; QK1-989 ; Q1-390 ; replication ; histones ; transgeneration memory ; environmental stresses ; DNA methylation ; evolution ; chromatin ; epigenetics ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Unfolded protein response (UPR) is a cellular adaptive response for restoring endoplasmic reticulum (ER) homeostasis in response to ER stress. Perturbation of the UPR and failure to restore ER homeostasis inevitably leads to diseases. It has now become evident that perturbation of the UPR is the cause of many important human diseases such as neurodegenerative diseases, cystic fibrosis, diabetes and cancer. It has recently emerged that virus infections can trigger the UPR but the relationship between virus infections and host UPR is intriguing. On one hand, UPR is harmful to the virus and virus has developed means to subvert the UPR. On the other hand, virus exploits the host UPR to assist in its own infection, gene expression, establishment of persistence, reactivation from latency and to evade the immune response. When this delicate balance of virus-host UPR interaction is broken down, it may cause diseases. This is particularly challenging for viruses that establish a chronic infection to maintain this balance. Each virus interacts with the host UPR in a different way to suit their life style and how the virus interacts with the host UPR can define the characteristic of a particular virus infection. Understanding how a particular virus interacts with the host UPR may pave the way to the design of a new class of anti-viral that targets this particular pathway to skew the response towards anti-virus. This knowledge can also be translated into the clinics to help re-design oncolytic virotherapy and gene therapy. In this research topic we aimed to compile a collection of focused review articles, original research articles, commentary, opinion, hypothesis and methods to highlight the current advances in this burgeoning area of research, in an attempt to provide an in-depth understanding of how viruses interact with the host UPR, which may be beneficial to the future combat of viral and human diseases.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; ERAD ; virus-host interaction ; innate immunity ; Gene Therapy ; Pathogenesis ; Endoplasmic Reticulum Stress ; Unfolded Protein Response ; Autophagy ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-04-05
    Description: Chloroplasts are plant cell organelles that convert light energy into relatively stable chemical energy via the photosynthetic process. By doing so, they sustain life on Earth. Chloroplasts also provide diverse metabolic activities for plant cells, including the synthesis of fatty acids, membrane lipids, isoprenoids, tetrapyrroles, starch, and hormones. The biogenesis, morphogenesis, protection and senescence of chloroplasts are essential for maintaining a proper structure and function of chloroplasts, which will be the theme of this Research Topic. Chloroplasts are enclosed by an envelope of two membranes which encompass a third complex membrane system, the thylakoids, including grana and lamellae. In addition, starch grains, plastoglobules, stromules, eyespots, pyrenoids, etc. are also important structures of chloroplasts. It is widely accepted that chloroplasts evolved from a free-living photosynthetic cyanobacterium, which was engulfed by a eukaryotic cell. Chloroplasts retain a minimal genome, most of the chloroplast proteins are encoded by nuclear genes and the gene products are transported into the chloroplast through complex import machinery. The coordination of nuclear and plastid genome expressions establishes the framework of both anterograde and retrograde signaling pathways. As the leaf develops from the shoot apical meristem, proplastids and etioplastids differentiate into chloroplasts. Chloroplasts are divided by a huge protein complex, also called the plastid-dividing (PD) machinery, and their division is also regulated by many factors to get an optimized number and size of chloroplasts in the cell. These processes are fundamental for the biogenesis and three-dimensional dynamic structure of chloroplasts. During the photosynthesis, reactive oxygen species (ROS) and other cellular signals can be made. As an important metabolic hub of the plant cell, the chloroplast health has been found critical for a variety of abiotic and biotic stresses, including drought, high light, cold, heat, oxidative stresses, phosphate deprivation, and programmed cell death at sites of infection. Therefore, a better understanding the responses of chloroplasts to these stresses is part of knowing how the plant itself responds. Ultimately, this knowledge will be necessary to engineer crops more resistant to common stresses. With the current global environment changes, world population growth, and the pivotal role of chloroplasts in carbon metabolism, it is of great significance to represent the advancement in this field, for science and society. Tremendous progresses have been made in the field of chloroplast biology in recent years. Through concerted efforts from the community, greater discoveries definitely will emerge in the future.
    Keywords: QK1-989 ; Q1-390 ; envelope ; development ; chloroplast ; thylakoid ; Photosynthesis ; Lipid ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-03-31
    Description: Ethylene is a simple gaseous phytohormone with multiple roles in regulation of metabolism at cellular, molecular, and whole plant level. It influences performance of plants under optimal and stressful environments by interacting with other signaling molecules. Understanding the ethylene biosynthesis and action through the plant’s life can contribute to improve the knowledge of plant functionality and use of this plant hormone may drive adaptation and defense of plants from the adverse environmental conditions. The action of ethylene depends on its concentration in cell and the sensitivity of plants to the hormone. In recent years, research on ethylene has been focused, due to its dual action, on the regulation of plant processes at physiological and molecular level. The involvement of ethylene in the regulation of transcription needs to be widely explored involving the interaction with other key molecular regulators. The aim of the current research topic was to explore and update our understanding on its regulatory role in plant developmental mechanisms at cellular or whole plant level under optimal and changing environmental conditions. The present edited volume includes original research papers and review articles describing ethylene’s regulatory role in plant development during plant ontogeny and also explains how it interacts with biotic and abiotic stress factors. This comprehensive collection of researches provide evidence that ethylene is essential in different physiological processes and does not always work alone, but in coordinated manner with other plant hormones. This research topic is also a source of tips for further works that should be addressed for the biology and molecular effects on plants.
    Keywords: QP1-981 ; QK1-989 ; Q1-390 ; Ethylene ; Phytohormones ; Tolerance ; Physiology ; Metaboilsm ; Signaling molecules ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-04-05
    Description: The state of São Paulo, Brazil, is one of the most densely populated and developed areas in South America. Such development is evident both in terms of industrialization and urbanization, as well as in agriculture, which is heavily based on sugar cane, Eucalyptus plantations and livestock. This intense land use has resulted in great alteration of the original land cover and fragmentation of natural ecosystems. For these reasons, it is almost a paradox that jaguar, a species that requires large areas of pristine forest to exist, is still found in some parts of the state of São Paulo. It is possible that wild animals could leave in coexistence with intense land use, or is it the case that such rare encounters with large wild animals in São Paulo will disappear in the near future? All ecologists are aware of the problems of habitat changes caused by humans, but it was not until recent years that researchers started to consider that the land used for production could also serve as an important habitat for many different kinds of wild species. This book is about this new approach to conservation. It also highlights the important role that sciences could and should have in this discussion in order to better understand the problems and propose possible solutions.
    Keywords: QK1-989 ; QL1-991 ; QH540-549.5 ; Agroecosystems ; Brazil ; Biodiversity ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: "Phenomics" is an emerging area of research whose aspiration is the systematic measurement of the physical, physiological and biochemical traits (the phenome) belonging to a given individual or collection of individuals. Non-destructive or minimally invasive techniques allow repeated measurements across time to follow phenotypes as a function of developmental time. These longitudinal traits promise new insights into the ways in which crops respond to their environment including how they are managed. To maximize the benefit, these approaches should ideally be scalable so that large populations in multiple environments can be sampled repeatedly at reasonable cost. Thus, the development and validation of non-contact sensing technologies remains an area of intensive activity that ranges from Remote Sensing of crops within the landscape to high resolution at the subcellular level. Integration of this potentially highly dimensional data and linking it with variation at the genetic level is an ongoing challenge that promises to release the potential of both established and under-exploited crops.
    Keywords: QK1-989 ; Q1-390 ; RGB data ; Multispectral imaging ; RGB image analysis ; artificial vision ; Phenomics ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-04-05
    Description: Epigenetics is a new field that explains gene expression at the chromatin structure and organization level. Three principal epigenetic mechanisms are known and hundreds of combinations among them can develop different phenotypic characteristics. DNA methylation, histone modifications and small RNAs have been identified, and their functions are being studied in order to understand the mechanisms of interaction and regulation among the different biological processes in plants. Although, fundamental epigenetic mechanisms in crop plants are beginning to be elucidated, the comprehension of the different epigenetic mechanisms, by which plant gene regulation and phenotype are modified, is a major topic to develop in the near future in order to increase crop productivity. Thus, the importance of epigenetics in improving crop productivity is undoubtedly growing. Current research on epigenetics suggest that DNA methylation, histone modifications and small RNAs are involved in almost every aspect of plant life including agronomically important traits such as flowering time, fruit development, responses to environmental factors, defense response and plant growth. The aim of this Research Topic is to explore the recent advances concerning the role of epigenetics in crop biotechnology, as well as to enhance and promote interactions among high quality researchers from different disciplines such as genetics, cell biology, pathology, microbiology, and evolutionary biology in order to join forces and decipher the epigenetic mechanisms in crop productivity.
    Keywords: QK1-989 ; Q1-390 ; Biotechnology ; DNA Methylation ; small non-coding RNAs ; crop ; epigenetics ; Histone posttranslational modifications ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-04-05
    Description: In response to environmental stresses, or during development, plant cells will produce lipids that will act as intracellular or intercellular mediators. Glycerophospholipid and/or sphingolipid second messengers resulting from the action of lipid metabolizing enzymes (e.g. lipid-kinases or lipases) are commonly found within cells. The importance of such mediating lipids in plants has become increasingly apparent. Responses to biotic and abiotic stresses, and to plant hormones, all appear to involve and require lipid signals. Likewise, developmental processes, in particular polarized growth, seem also to involve signalling lipids. Amongst these lipids, phosphatidic acid (PA) has received the most attention. It can be produced by phospholipases D, but also by diacylglycerol kinases coupled to phospholipases C. Proteins that bind phosphatidic acid, and for which the activity is altered upon binding, have been identified. Furthermore, other lipids are also important in signalling processes. PA can be phosphorylated into diacylglycerol-pyrophosphate, and plants are one of the first biological models where the production of this lipid has been reported, and its implication in signal transduction have been demonstrated. PA can also be deacylated into lyso- phosphatidic acid. The phosphorylated phosphatidylinositols, i.e. the phosphoinositides, can act as substrate of phospholipases C, but are also mediating lipids per se, since proteins that bind them have been identified. Other important lipid mediators belong to the sphingolipid family such the phosphorylated phytosphingosine, or long-chain bases. Many questions remain unanswered concerning lipid signalling in plants. Understanding and discussing current knowledge on these mechanisms will provide insights into plant mechanisms in response to constraints, either developmental or environmental.
    Keywords: QK1-989 ; Q1-390 ; lipid-kinases ; Inositolphosphates ; diacylglycerolpyrophosphate ; Phospholipases ; phosphatidic acid ; lipid signaling ; phosphoinositides ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-04-05
    Description: The broad host range pathogenic bacterium Agrobacterium tumefaciens has been widely studied as a model system to understand horizontal gene flow, secretion of effector proteins into host cells, and plant-pathogen interactions. Agrobacterium-mediated plant transformation also is the major method for generating transgenic plants for research and biotechnology purposes. Agrobacterium species have the natural ability to conduct interkingdom genetic transfer from bacteria to eukaryotes, including most plant species, yeast, fungi, and even animal cells. In nature, A. tumefaciens causes crown gall disease resulting from expression in plants of auxin and cytokinin biosynthesis genes encoded by the transferred (T-) DNA. Gene transfer from A. tumefaciens to host cells requires virulence (vir) genes that reside on the resident tumor-inducing (Ti) plasmid. In addition to T-DNA, several Virulence (Vir) effector proteins are also translocated to host cells through a bacterial type IV secretion system. These proteins aid in T-DNA trafficking through the host cell cytoplasm, nuclear targeting, and T-DNA integration. Genes within native T-DNAs can be replaced by any gene of interest, making Agrobacterium species important tools for plant research and genetic engineering. In this research topic, we provided updated information on several important areas of Agrobacterium biology and its use for biotechnology purposes.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; Agrobacterium ; crown gall ; Quorum Sensing ; plant defense ; T DNA ; Virulence ; Biofilm ; Attachment ; genetic transformation ; Membrane lipid ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-12-21
    Description: In all living organisms, essential micronutrients are cofactors of many ubiquitous proteins that participate in crucial metabolic pathways, but can also be toxic when present in excessive concentrations. In order to achieve correct homeostasis, plants need to control uptake of metals from the environment, their distribution to organs and tissues, and their subcellular compartmentalization. They also have to avoid deleterious accumulation of metals and metalloids such as Cd, As and Al. These multiple steps are controlled by their transport across various membrane structures and their storage in different organelles. Thus, integration of these transport systems required for micronutrient trafficking within the plant is necessary for physiological processes to work efficiently. To cope with the variable availability of micronutrients, plants have evolved an intricate collection of physiological and developmental processes, which are under tight control of short- and long-range signaling pathways. Understanding how plants perceive and deal with different micronutrient concentrations, from regulation to active transport, is important to completing the puzzle of plant metal homeostasis. This is an essential area of research, with several implications for plant biology, agriculture and human nutrition. There is a rising interest in developing plants that efficiently mobilize specific metals and prosper in soils with limited micronutrient availability, as well as those that can selectively accumulate beneficial micronutrients in the edible parts while avoiding contaminants such as Cd and As. However, there is still an important gap in our understanding of how nutrients reach the seeds and the relative contribution of each step in the long pathway from the rhizosphere to the seed. Possible rate-limiting steps for micronutrient accumulation in grains should be the primary targets of biotechnological interventions aiming at biofortification. Over the last 10 years, many micronutrient uptake- and transport-related processes have been identified at the molecular and physiological level. The systematic search for mutants and transcriptional responses has allowed analysis of micronutrient-signaling pathways at the cellular level, whereas physiological approaches have been particularly useful in describing micronutrient-signaling processes at the organ and whole-plant level. Large-scale elemental profiling using high-throughput analytical methodologies and their integration with both bioinformatics and genetic tools, along with metal speciation, have been used to decipher the functions of genes that control micronutrients homeostasis. In this research topic, we will follow the pathway of metal movement from the soil to the seed and describe the suggested roles of identified gene products in an effort to understand how plants acquire micronutrients from the soil, how they partition among different tissues and subcellular organelles, and how they regulate their deficiency and overload responses. We also highlight the current work on heavy metals and metalloids uptake and accumulation, the studies on metal selectivity in transporters and the cross-talk between micro and macronutrients. Thus, we believe a continued dialogue and sharing of ideas amongst plant scientists is critical to a better understanding of metal movement into and within the plant.
    Keywords: R5-920 ; QK1-989 ; Q1-390 ; TX341-641 ; Ubiquitination ; mineral accumulation ; biofortification ; Remobilization ; uptake ; partitioning ; transport ; bic Book Industry Communication::M Medicine
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: The plant factory is a facility that aids the steady production of high-quality vegetables all year round by artificially controlling the cultivation environment (e.g., light, temperature, humidity, carbon dioxide concentration, and culture solution), allowing growers to plan production. By controlling theinternal environment,plant factories can produce vegetables about two to four times faster than by typical outdoor cultivation. In addition, as multiple cultivation shelves (a multi-shelf system) are used, the mass production of vegetables in a small space is facilitated. This research topic presents some new trends on intelligent measuring systems; environment controlled and optimization; favonoids; phenylpropanoids, transcriptomes, and bacteria.
    Keywords: QK1-989 ; Q1-390 ; Genetic Engineering ; Environment Controlled and Optimization ; biofertilizers ; pharmaceuticals ; Intelligent systems ; plant factories ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-04-05
    Description: The nucleolus is a prominent nuclear domain that is common to eukaryotes. Since the nucleolus was first described in the 1830s, its identity had remained a mystery for longer than 100 years. Major advances in understanding of the nucleolus were achieved through electron microscopic and biochemical studies in the 1960s to 1970s followed by molecular biological studies. These studies finally established the view of the nucleolus that it is a large aggregate of RNA-protein complexes associated with the rRNA gene region of chromosome DNA, serving mainly as a site of ribosome biogenesis, where pre-rRNA transcription, pre-rRNA processing, and ribosome assembly occur. This function of the nucleolus appears to indicate that the nucleolus plays a constitutive and essential role in fundamental cellular activities by producing ribosomes. Recent research has shown, however, that the nucleolus is more dynamic and can have more specific and wider functions. In plants, nucleolar functions have been implicated in developmental regulations and environmental responses by accumulating pieces of evidence obtained mostly from genetic studies of nucleolar factor-related mutants. Comprehensive analysis of nucleolar proteins and molecular cytological characterization of sub-nucleolar and peri-nucelolar bodies have also provided new insights into behaviors and functions of the plant nucleolus.〈/p〉In this Research Topic, we would like to collect physiological and molecular links between the nucleolus to plant growth and development, shed light on novel aspects of nucleolar functions beyond its classical view, and stimulate research activities focusing on the nucleolus across various fields of plant science, including molecular biology, cell biology, genetics, developmental biology, physiology, and evolutionary biology.
    Keywords: QK1-989 ; Q1-390 ; environmental response ; development ; plant ; nucleolus ; growth ; ribosome biogenesis ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-04-05
    Description: Natural and anthropogenic grasslands such as prairies, meadows, rangelands, and pastures cover more than 40% of the planet’s surface and provide a wealth of ecological services. Grasslands alone store one third of the global carbon stocks and grass roots, through their specific architectures, ensure water cycling and prevent the erosion of fertile topsoil. In addition, grasslands are of vital importance for human food production as vast areas of rangelands and pastures provide feed for livestock. Pastoral legumes mobilize atmospheric nitrogen and improve fertility of arable soils. Not least, grasslands are an essential genetic resource. The three major crop species that feed half of the global population have been bred from wild grasses. Ancestors of our contemporary turf cultivars, common components of urban landscapes and recreation spaces, originated from wild grasslands. Although natural and managed grasslands represent pivotal ecosystems, many aspects of how they function are poorly understood. To date, most attention has focused on grassland primary producers (i.e. forage plants) and mammalian grazers but invertebrates are likely to play an equally, if not more important role in grassland ecosystem functioning. In Australian pastures, for example, the biomass of root-feeding scarab beetles can often exceed that of sheep and plant damage caused by invertebrates is sometimes equivalent to an average dairy cow’s grass consumption. Indeed, grasslands are one of the most densely populated ecosystems with invertebrates being probably the most important engineers that shape both plant communities and the grassland as a whole. In a rapidly changing world with increasing anthropogenic pressure on grasslands, this Research Topic focuses on: 1. How grassland habitats shape invertebrate biodiversity 2. Impacts of climate change on grassland-invertebrate interactions 3. Plant and invertebrate pest monitoring and management 4. Plant-mediated multitrophic interactions and biological control in grasslands 5. Land use and grassland invertebrates 6. Plant resistance to invertebrate pests Given the increasing demand for food and land for human habitation, unprecedented threats to grasslands are anticipated. Resilient to some extent, these key ecosystems need to be better comprehended to guarantee their sustainable management and ecosystem services.
    Keywords: QK1-989 ; QH540-549.5 ; Q1-390 ; plant defense ; grassland management ; root ; plant-insect interaction ; pest management ; grassland ecology ; insect pest ; climate change ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-04-05
    Description: Plants, as sessile organisms, are exposed to a large array of challenging external and internal alterations that may restrict plant growth. These limiting growth conditions activate plant signalling responses which eventually target the protein synthesis machinery to rapidly reprogram plant metabolism to adapt to the new situation. Thus, the control of mRNA translation is one key regulatory step of gene expression and it is an essential molecular mechanism used by plants to bring about impressive growth plasticity. Compared to the vast number of studies aimed to identify plant transcriptional changes upon hormonal or environmental cues, the subsequent steps of mRNA transport, stability, storage, and eventually translational regulation, have been less studied in plants. This lack of knowledge concerns not only the fate of protein-coding transcripts in plants, but also the biogenesis and maturation of rRNAs, tRNAs and the plant translation factors involved. In this eBook we have focused on how internal cues and external signals of either biotic or abiotic origin impact translation to adjust plant growth and development. We have collected altogether ten scientific contributions to extend the knowledge on plant post-transcriptional and translational events that regulate the production of proteins that execute the required cellular functions. We hope that this compilation of original research articles and reviews will provide the readers with a detailed update on the state of knowledge in this field, and also with additional motivation to improve plant growth adaptation to future environmental challenges.
    Keywords: QK1-989 ; Q1-390 ; mRNA translation ; post-transcriptional regulation ; translatome ; translation factors ; organellar gene expression ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-04-05
    Description: Besides increasing crop yield to feed the growing population, improving crop quality is a challenging and key issue. Indeed, quality determines consumer acceptability and increases the attractivity of fresh and processed products. In this respect, fruit and vegetables, which represent a main source of vitamins and other health compounds, play a major role in human diet. This is the case in developing countries where populations are prone to nutritional deficiencies, but this is also a pending issue worldwide, where the growing middle class is increasingly aware and in search of healthy food. So a future challenge for the global horticultural industry will be to answer the demand for better quality food in a changing environment, where many resources will be limited. This e-collection collates state-of-the-art research on the quality of horticultural crops, covering the underlying physiological processes, the genetic and environmental controls during plant and organ development and the postharvest evolution of quality during storage and processing.
    Keywords: QK1-989 ; Q1-390 ; pre- and post-harvest ; modeling ; ripening ; fruit ; taste ; grafting ; horticultural crops ; vegetable ; health value ; aroma ; quality ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-04-05
    Description: Secretomics describes the global study of proteins that are secreted by a cell, a tissue or an organism, and has recently emerged as a field for which interest is rapidly growing. The term secretome was first coined at the turn of the millennium and was defined to comprise not only the native secreted proteins released into the extracellular space but also the components of machineries for protein secretion. Two secretory pathways have been described in fungi: i) the canonical pathway through which proteins bearing a N-terminal peptide signal can traverse the endoplasmic reticulum and Golgi apparatus, and ii) the unconventional pathway for proteins lacking a peptide signal. Protein secretion systems are more diverse in bacteria, in which types I to VII pathways as well as Sec or two-arginine (Tat) pathways have been described. In oomycete species, effectors are mostly small proteins containing an N-terminal signal peptide for secretion and additional C-terminal motifs such as RXLRs and CRNs for host targeting. It has recently been shown that oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment. Other non-classical secretion systems involved in plant-fugal interaction include extracellular vesicles (EVs, Figure 1 from Samuel et al 2016 Front. Plant Sci. 6:766.). The versatility of oomycetes, fungi and bacteria allows them to associate with plants in many ways depending on whether they are biotroph, hemibiotroph, necrotroph, or saprotroph. When interacting with a live organism, a microbe will invade its plant host and manipulate its metabolisms either detrimentally if it is a pathogen or beneficially if it is a symbiote. Deciphering secretomes became a crucial biological question when an increasing body of evidence indicated that secreted proteins were the main effectors initiating interactions, whether of pathogenic or symbiotic nature, between microbes and their plant hosts. Secretomics may help to contribute to the global food security and to the ecosystem sustainability by addressing issues in i) plant biosecurity, with the design of crops resistant to pathogens, ii) crop yield enhancement, for example driven by arbuscular mycorrhizal fungi helping plant hosts utilise phosphate from the soil hence increase biomass, and iii) renewable energy, through the identification of microbial enzymes able to augment the bio-conversion of plant lignocellulosic materials for the production of second generation biofuels that do not compete with food production. To this day, more than a hundred secretomics studies have been published on all taxa and the number of publications is increasing steadily. Secretory pathways have been described in various species of microbes and/or their plant hosts, yet the functions of proteins secreted outside the cell remain to be fully grasped. This Research Topic aims at discussing how secretomics can assist the scientists in gaining knowledge about the mechanisms underpinning plant-microbe interactions.
    Keywords: QK1-989 ; Q1-390 ; secretomics ; extracellular proteins ; Host-fungi interactions ; Secretome ; pathogenic fungi ; Virulence Factors ; protein effectors ; Diseases ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-04-05
    Description: Victoria Island in Canada’s western Arctic is the eighth largest island in the world and the second largest in Canada. Here, we report the results of a floristic study of vascular plant diversity of Victoria Island. The study is based on a specimen-based dataset comprising 7031 unique collections from the island, including some 2870 new collections gathered between 2008 and 2019 by the authors and nearly 1000 specimens variously gathered by N. olunin (in 1947), M. Oldenburg (1940s–1950s) and S. Edlund (1980s) that, until recently, were part of the unprocessed backlog of the National Herbarium of Canada and unavailable to researchers. Results are presented in an annotated checklist, including keys and distribution maps for all taxa, citation of specimens, comments on taxonomy, distribution and the history of documentation of taxa across the island, and photographs for a subset of taxa. The vascular plant flora of Victoria Island comprises 38 families, 108 genera, 272 species, and 17 additional taxa. Of the 289 taxa known on the island, 237 are recorded from the Northwest Territories portion of the island and 277 from the Nunavut part. Thirty-nine taxa are known on the island from a single collection, seven from two collections and three from three collections. Twenty-one taxa in eight families are newly recorded for the flora of Victoria Island, and eight of these are new to the flora of the Canadian Arctic Archipelago. The floristic data presented here represent a new baseline on which continued exploration of the vascular flora of Victoria Island – particularly the numerous areas of the island that remain unexplored or poorly explored botanically – will build.
    Keywords: QK1-989 ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-04-05
    Description: Reversible ubiquitylation plays an important regulatory role in almost all aspects of cellular and organismal processes in plants. Its pervasive regulatory role in plant biology is primarily due to the involvement of a large set of ubiquitin system constituents (encoded by approximately 6% Arabidopsis genome), the huge number of important cellular proteins targeted as substrates, and various drastic effects on the modified proteins. The major components of the ubiquitin system include a large set of enzymes and proteins involved in ubiquitin conjugation (E1s, E2s, and E3s) and deconjugation (deubiquitinases of different classes) and post ubiquitin conjugation components such as ubiquitin receptors, endocytic machineries, and 26S proteasome. The established substrates include transcriptional activators and repressors, signaling components, key metabolic enzymes, and critical mechanistic components of major cellular processes and regulatory mechanisms. Post-translational modification of proteins by reversible ubiquitylation could drastically affects the modified proteins by proteolytic processing and turnover, altering catalytic activity, subcellular targeting, and protein-protein interaction. Continued efforts are being carried out to identify novel substrates critical for various cellular and organismal processes, to determine effects of reversible ubiquitylation on the modified substrates, to determine signaling determinants triggering reversible ubiquitylation of specific substrates, to illustrate individual components of the ubiquitin system for their in vivo functions and involved mechanistic roles, and to determine mechanistic roles of modification acting on critical components of major cellular processes and regulatory mechanisms. The aim of this special topic is to serve as a platform to report most recent advances on those above listed current research endeavors. We welcome article types including original research, review, mini review, method, and perspective/opinion/hypothesis.
    Keywords: QK1-989 ; Q1-390 ; Ubiquitin ; ubiquitin ligase ; plant innate immunity ; NEDD8/RUB ; self-incompatibility ; deubiquitination ; histone ; abiotic stress ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-03-31
    Description: Aquaporins (AQPs), a class of integral membrane proteins, form channels facilitating movement of water and many other solutes. In solute transport systems of all living organisms including plants, animals and fungi, AQPs play a vital role. Plants contain a much higher number of AQP genes compared to animals, the likely consequence of genome duplication events and higher ploidy levels. As a result of duplication and subsequent diversification, plant AQPs have evolved several subfamilies with very diverse functions. Plant AQPs are highly selective for specific solutes because of their unique structural features. For instance, ar/R selectivity filters and NPA domains have been found to be key elements in governing solute permeability through the AQP channels. Combination of conserved motifs and specific amino acids influencing pore morphology appears to regulate the permeability of specific solutes such as water, urea, CO2, H2O2, boric acid, silicic acid and many more. The discovery of novel AQPs has been accelerated over the last few years with the increasing availability of genomic and transcriptomic data. The expanding number of well characterised AQPs provides opportunities to understand factors influencing water transport, nutritional uptake, and elemental balance. Homology-based search tools and phylogenetic analyses offer efficient strategies for AQP identification. Subsequent characterization can be based on different approaches involving proteomics, genomics, and transcriptomic tools. The combination of these technological advances make it possible to efficiently study the inter-dependency of AQPs, regulation through phosphorylation and reversible phosphorylation, networking with other transporters, structural features, pH gating systems, trafficking and degradation. Several studies have supported the role of AQPs in differential phenotypic responses to abiotic and biotic stress in plants. Crop improvement programs aiming for the development of cultivars with higher tolerance against stresses like drought, flooding, salinity and many biotic diseases, can explore and exploit the finely tuned AQP-regulated transport system. For instance, a promising approach in crop breeding programs is the utilization of genetic variation in AQPs for the development of stress tolerant cultivars. Similarly, transgenic and mutagenesis approaches provide an opportunity to better understand the AQP transport system with subsequent applications for the development of climate-smart drought-tolerant cultivars. The contributions to this Frontiers in Plant Science Research Topic have highlighted the evolution and phylogenetic distribution of AQPs in several plant species. Numerous aspects of regulation that seek to explain AQP-mediated transport system have been addressed. These contributions will help to improve our understanding of AQPs and their role in important physiological aspects and will bring AQP research closer to practical applications.
    Keywords: QP1-981 ; QK1-989 ; Q1-390 ; protein interactions ; advanced tools ; Aquaporin evolution ; conserved motifs ; phylogeny ; solute specificity ; omics approaches ; transport system ; physiological processes ; biotic and abiotic stresses ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2023-12-20
    Description: Understanding plant responses to abiotic stresses is central to our ability to predict the impact of global change and environmental pollution on the production of food, feed and forestry. Besides increasing carbon dioxide concentration and rising global temperature, increasingly frequent and severe climatic events (e.g. extended droughts, heat waves, flooding) are expected in the coming decades. Additionally, pollution (e.g. heavy metals, gaseous pollutants such as ozone or sulfur dioxide) is an important factor in many regions, decreasing plant productivity and product quality. This Research topic focuses on stress responses at the level of whole plants, addressing biomass-related processes (development of the root system, root respiration/fermentation, leaf expansion, stomatal regulation, photosynthetic capacity, leaf senescence, yield) and interactions between organs (transport via xylem and phloem, long-distance signaling and secondary metabolites). Comparisons between species and between varieties of the same species are helpful to evaluate the potential for species selection and genetic improvement. This research topic is focused on the following abiotic stresses and interactions between them: - Increased carbon dioxide concentration in ambient air is an important parameter influenced by global change and affects photosynthesis, stomatal regulation, plant growth and finally yield. - Elevated temperature: both the steady rise in average temperature and extreme events of shorter duration (heat waves) must be considered in the context of alterations in carbon balance through increased photorespiration, decreased Rubisco activation and carboxylation efficiency, damage to photosynthetic apparatus, as well as loss of water via transpiration and stomatal sensitivity. - Low temperatures (late frosts, prolonged cold phases, freezing temperature) can decrease overwintering survival rates, productivity of crop plants and species composition in meadows. - Water availability: More frequent, severe and extended drought periods have been predicted by climate change models. The timing and duration of a drought period is crucial to determining plant responses, particularly if the drought event coincides with an increase in temperature. Drought causes stomatal closure, decreasing the cooling potential of transpiration and potentially leading to thermal stress as leaf temperature rises. Waterlogging may become also more relevant during the next decades and is especially important for seedlings and young plants. It is not the presence of water itself that causes the stress, but the exclusion of oxygen from the soil which causes a decrease in respiration and an increase in fermentation rates followed by a period of potential oxidative stress as water recedes. - Salinity: high salt concentration in soil influences soil water potential, the water status of the plant and hence affects productivity. Salt tolerance will become an important trait driven by increased competition for land and the need to exploit marginal lands.
    Keywords: GE1-350 ; QK1-989 ; Q1-390 ; heat ; salt ; Climate Change ; Whole plant physiology ; yield ; Carbon Dioxide ; Low temperature ; water availability ; bic Book Industry Communication::K Economics, finance, business & management::KC Economics::KCN Environmental economics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Competitiveness describes a key ability important for plants to grow and survive abiotic and biotic stresses. Under optimal, but particularly under non-optimal conditions, plants compete for resources including nutrients, light, water, space, pollinators and other. Competition occurs above- and belowground. In resource-poor habitats, competition is generally considered to be more pronounced than in resource-rich habitats. Although competition occurs between different players within an ecosystem such as between plants and soil microorganisms, our topic focusses on plant-plant interactions and includes inter-specific competition between different species of similar and different life forms and intra-specific competition. Strategies for securing resources via spatial or temporal separation and different resource needs generally reduce competition. Increasingly important is the effect of invasive plants and subsequent decline in biodiversity and ecosystem function. Current knowledge and future climate predictions suggest that in some situations competition will be intensified with occurrence of increased abiotic (e.g. water and nutrient limitations) and biotic stresses (e.g. mass outbreak of insects), but competition might also decrease in situations where plant productivity and survival declines (e.g. habitats with degraded soils). Changing interactions, climate change and biological invasions place new challenges on ecosystems. Understanding processes and mechanisms that underlie the interactions between plants and environmental factors will aid predictions and intervention. There is much need to develop strategies to secure ecosystem services via primary productivity and to prevent the continued loss of biodiversity. This Research Topic provides an up-to-date account of knowledge on plant-plant interactions with a focus on identifying the mechanisms underpinning competitive ability. The Research Topic aims to showcase knowledge that links ecological relevance with physiological processes to better understanding plant and ecosystem function.
    Keywords: QK1-989 ; Q1-390 ; conservation ; Global Warming ; Climate Change ; invasion ; plant-plant interactions ; competition ; facilitation ; Allelochemicals ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-04-05
    Description: Fungi of the order Pucciniales cause rust diseases on many plants including important crops and trees widely used in agriculture, forestry and bioenergy programs; these encompass gymnosperms and angiosperms, monocots and dicots, perennial and annual plant species. These fungi are obligate biotrophs and -except for a few cases- cannot be cultivated outside their hosts in a laboratory. For this reason, standard functional and molecular genetic approaches to study these pathogens are very challenging and the means to study their biology, i.e. how they infect, develop and reproduce on plant hosts, are rather limited, even though they rank among the most devastating pathogens. Among fungal plant pathogens, rust fungi display the most complex lifecycles with up to five different spore forms and for many rust fungi, unrelated alternate hosts on which sexual and clonal reproduction are achieved. The genomics revolution and particularly the application of new generation sequencing technologies have greatly changed the way we now address biological studies and has in particular accelerated and made feasible, molecular studies on non-model species, such as rust fungi. The goal of this research topic is to gather articles that present recent advances in the understanding of rust fungi biology, their complex lifecycles and obligate biotrophic interactions with their hosts, through the means of genomics. This includes genome sequencing and/or resequencing of isolates, RNA-Seq or large-scale transcriptome analyses, genome-scale detailed annotation of gene families, and comparative analyses among the various rust fungi and, where feasible, with other obligate biotrophs or fungi displaying distinct trophic modes. This Research Topic provides a great opportunity to provide an up-to-date account of rust fungus biology through the lens of genomics, including state-of-the-art technologies developed to achieve this knowledge.
    Keywords: QK1-989 ; Q1-390 ; fungal genomes ; Genetic Variation ; rust fungi ; Resequencing ; Genomics ; Genome Size ; Obligate biotrophy ; tran ; Basidiomycota ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-03-31
    Description: Chloroplasts and mitochondria both have a prokaryotic origin, carry essential genes on their own highly reduced genome and generate energy in the form of ATP for the plant cell. The ion composition and concentration in these bioenergetic organelles impact photosynthesis, respiration and stress responses in plants. Early electrophysiological and biochemical studies provided strong evidence for the presence of ion channels and ion transporters in chloroplast and mitochondrial membranes. However, it wasn’t until the last decade that the development of model organisms such as Arabidopsis thaliana and Chlamydomonas reinhardtii along with improved genetic tools to study cell physiolgy have led to the discovery of several genes encoding for ion transport proteins in chloroplasts and mitochondria. For the first time, these discoveries have enabled detailed studies on the essential physiological function of the organellar ion flux. This Research Topic welcomed updated overviews and comprehensive investigations on already identified and novel ion transport components involved in physiology of chloroplasts and mitochondria in green organisms.
    Keywords: QP1-981 ; QK1-989 ; Q1-390 ; plant physiology ; Mitochondria ; chloroplast ; stress green organisms ; Ion Transport ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-04-05
    Description: Life presumably arose in the primeval oceans with similar or even greater salinity than the present ocean, so the ancient cells were designed to withstand salinity. However, the immediate ancestors of land plants most likely lived in fresh, or slightly brackish, water. The fresh/brackish water origins might explain why many land plants, including some cereals, can withstand moderate salinity, but only 1 – 2 % of all the higher plant species were able to re-discover their saline origins again and survive at increased salinities close to that of seawater. From a practical side, salinity is among the major threats to agriculture, having been one of the reasons for the demise of the ancient Mesopotamian Sumer civilisation and in the present time causing huge annual economic losses of over 10 billion USD. The effects of salinity on plants include osmotic stress, disruption of membrane ion transport, direct toxicity of high cytoplasmic concentrations of sodium and chloride on cellular processes and induced oxidative stress. Ion transport is the crucial starting point that determines salinity tolerance in plants. Transport via membranes is mediated mostly by the ion channels and transporters, which ensure selective passage of specific ions. The molecular and structural diversity of these ion channels and transporters is amazing. Obtaining the detailed descriptions of distinct ion channels and transporters present in halophytes, marine algae and salt-tolerant fungi and then progressing to the cellular and the whole organism mechanisms, is one of the logical ways to understand high salinity tolerance. Transfer of the genes from halophytes to agricultural crops is a means to increase salt tolerance of the crops. The theoretical scientific approaches involve protein chemistry, structure-function relations of membrane proteins, synthetic biology, systems biology and physiology of stress and ion homeostasis. At the time of compiling this e-book many aspects of ion transport under salinity stress are not yet well understood. The e-book has attracted researchers in ion transport and salinity tolerance. We have combined our efforts to achieve a wider, more detailed understanding of salt tolerance in plants mediated by ion transport, to understand present and future ways to modify and manipulate ion transport and salinity tolerance and also to find natural limits for the modifications.
    Keywords: QK1-989 ; Q1-390 ; systems biology ; synthetic biology ; halotropism ; salinity tolerance ; halophytes ; salt glands ; ion transporters ; ion channels ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-04-05
    Description: China and Vietnam are important center of biodiversity worldwide. Gesneriaceae is a family with extraordinary species richness in China and Vietnam. Within the family, there are more than 600 accepted species in China. The species number will considerably surpass 700 species in China and Vietnam. Furthermore, the massive karst regions between China and Vietnam will provide mega-diverse ecological niches and imply the numerous potential unknown species needing for new discovery. After a long-term collaboration between China and Vietnam, many new findings have been made and research continues even more intensively now-a-days. The special issue will focus on the taxonomy of Gesneriaceae and research progress in China and Vietnam.
    Keywords: QK1-989 ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2024-04-05
    Description: Plants, being sessile in nature, are constantly exposed to environmental challenges resulting in substantial yield loss. To cope with harsh environments, plants have developed a wide range of adaptation strategies involving morpho-anatomical, physiological, and biochemical traits. In recent years, there has been phenomenal progress in the understanding of plant responses to environmental cues at the protein level. This progress has been fueled by the advancement in mass spectrometry techniques, complemented with genome-sequence data and modern bioinformatics analysis with improved sample preparation and fractionation strategies. As proteins ultimately regulate cellular functions, it is perhaps of greater importance to understand the changes that occur at the protein-abundance level, rather than the modulation of mRNA expression. This Special Issue on "Plant Proteomic Research" brings together a selection of insightful papers that address some of these issues related to applications of proteomic techniques in elucidating master regulator proteins and the pathways associated with plant development and stress responses. This Issue includes four reviews and 13 original articles primarily on environmental proteomic studies.
    Keywords: QH301-705.5 ; QK1-989 ; Plant proteomics ; Applications of plant proteomics ; Techniques and protocols of plant proteomics ; Proteomic responses to abiotic stress ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-04-05
    Description: The World population will reach 9 billion by 2050, with the majority of this growth occurring in developing countries. On the other hand, one in nine of the World's population suffers from chronic hunger, the vast majority of which live in developing countries. We therefore need to find new and sustainable solutions to feed this increasing population and alleviate the predicted negative impact of global changes on crop production. This e-Book deals with new strategies to improve food security and livelihoods in rural communities, reduce vulnerability, increase resilience and mitigate lthe impact of climate change and land degradation on agriculture. This collection of 18 articles addresses the major abiotic factors limiting crop production worldwide, how to characterize and exploit the available plant biodiversity to increase production and sustainability in agrosystems, and the use of beneficial microbes to improve production and reduce the use of fertilizers and pesticides.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; biofertilizer ; Ecological intensification ; Inoculation ; Climate Change ; intercropping ; drought ; Breeding ; Salinization ; Biodiversity ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-04-05
    Description: The study of plant cell physiology is currently experiencing a profound transformation. Novel techniques allow dynamic in vivo imaging with subcellular resolution, covering a rapidly growing range of plant cell physiology. Several basic biological questions that have been inaccessible by the traditional combination of biochemical, physiological and cell biological approaches now see major progress. Instead of grinding up tissues, destroying their organisation, or describing cell- and tissue structure, without a measure for its function, novel imaging approaches can provide the critical link between localisation, function and dynamics. Thanks to a fast growing collection of available fluorescent protein variants and sensors, along with innovative new microscopy technologies and quantitative analysis tools, a wide range of plant biology can now be studied in vivo, including cell morphology & migration, protein localization, topology & movement, protein-protein interaction, organelle dynamics, as well as ion, ROS & redox dynamics. Within the cell, genetic targeting of fluorescent protein probes to different organelles and subcellular locations has started to reveal the stringently compartmentalized nature of cell physiology and its sophisticated spatiotemporal regulation in response to environmental stimuli. Most importantly, such cellular processes can be monitored in their natural 3D context, even in complex tissues and organs – a condition not easily met in studies on mammalian cells. Recent new insights into plant cell physiology by functional imaging have been largely driven by technological developments, such as the design of novel sensors, innovative microscopy & imaging techniques and the quantitative analysis of complex image data. Rapid further advances are expected which will require close interdisciplinary interaction of plant biologists with chemists, physicists, mathematicians and computer scientists. High-throughput approaches will become increasingly important, to fill genomic data with ‘life’ on the scale of cell physiology. If the vast body of information generated in the -omics era is to generate actual mechanistic understanding of how the live plant cell works, functional imaging has enormous potential to adopt the role of a versatile standard tool across plant biology and crop breeding. We welcome original research papers, methodological papers, reviews and mini reviews, with particular attention to contributions in which novel imaging techniques enhance our understanding of plant cell physiology and permits to answer questions that cannot be easily addressed with other techniques.
    Keywords: QK1-989 ; Q1-390 ; in vivo imaging ; dynamics ; cell physiology ; Quantitative microscopy ; Fluorescent protein sensors ; Plants ; Organelles ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-04-05
    Description: Plastids are plant cell-specific organelles of endosymbiotic origin that contain their own genome, the so-called plastome. Its proper expression is essential for faithful chloroplast biogenesis during seedling development and for the establishment of photosynthetic and other biosynthetic functions in the organelle. The structural organisation, replication and expression of this plastid genome, thus, has been studied for many years, but many essential steps are still not understood. Especially, the structural and functional involvement of various regulatory proteins in these processes is still a matter of research. Studies from the last two decades demonstrated that a plethora of proteins act as specific regulators during replication, transcription, post-transcription, translation and post-translation accommodating a proper inheritance and expression of the plastome. Their number exceeds by far the number of the genes encoded by the plastome suggesting that a strong evolutionary pressure is maintaining the plastome in its present stage. The plastome gene organisation in vascular plants was found to be highly conserved, while algae exhibit a certain flexibility in gene number and organisation. These regulatory proteins are, therefore, an important determinant for the high degree of conservation in plant plastomes. A deeper understanding of individual roles and functions of such proteins would improve largely our understanding of plastid biogenesis and function, a knowledge that will be essential in the development of more efficient and productive plants for agriculture. The latter represents a major socio-economic need of fast growing mankind that asks for increased supply of food, fibres and biofuels in the coming decades despite the threats exerted by global change and fast spreading urbanisation.
    Keywords: QK1-989 ; Q1-390 ; replication ; transcription ; nucleoids ; endosymbiosis ; Plastids ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    De Gruyter
    Publication Date: 2023-12-21
    Keywords: TP368-456 ; QK1-989 ; bic Book Industry Communication::K Economics, finance, business & management::KN Industry & industrial studies::KND Manufacturing industries::KNDF Food manufacturing & related industries
    Language: German
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-04-05
    Description: The charophytes are the group of green algae that are anestral and most closely related to land plants. Today, these organisms are not only important in evoutionary studies but have become outstanding model organisms for plant research.
    Keywords: QK1-989 ; Q1-390 ; Charophytes ; Micrasterias ; plant ; evolution ; Model organisms ; Chara ; Penium ; Cell Biology ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-04-05
    Description: In this Frontiers topic, we explore how the functions and fates of plant silicon interact with other organisms and ecosystem processes. By bringing together new data from multiple disciplines and scales, we present a cross-section of novel explorations into how plants use silicon and the implications for agriculture and ecosystems. Key aims in this field are to understand the determinants of plant silicon uptake and cycling, and the benefits that silicon uptake confers on plants, including reducing the impacts of stresses such as herbivory. Current research explores inter-specific interactions, including co-evolutionary relationships between plant silicon and animals, particularly morphological adaptations, behavioural responses and the potential for plant silicon to regulate mammal populations. Another emerging area of research is understanding silicon fluxes in soils and vegetation communities and scaling this up to better understand the global silicon cycle. New methods for measuring plant silicon are contributing to progress in this field. Silicon could help plants mitigate some effects of climate change through alleviation of biotic and abiotic stress and silicon is a component of some carbon sinks. Therefore, understanding the role of plant silicon across ecological, agricultural and biogeochemical disciplines is increasingly important in the context of global environmental change.
    Keywords: QK1-989 ; Q1-390 ; Plant silicon ; induced defence ; Phytoliths ; Poaceae ; Herbivory ; rice ; Silicon accumulation ; sugarcane ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-03-31
    Description: In contrast to the situation in heterotrophic organisms, plant genomes code for a significantly larger number of oxidoreductases such as thioredoxins (TRXs) and glutaredoxins (GRXs). These proteins provide a biochemical mechanism that allows the rapid and reversible activation or deactivation of protein functions in response to changing environmental conditions, as oxidative conditions caused by excessive photosynthesis. Indeed, owing to the fact that cysteines are sensitive to oxidation, TRXs and GRXs play an essential role in controlling the redox state of protein thiol groups. These redox-dependent post-translational modifications have proven to be critical for many cellular functions constituting regulatory, signalling or protective mechanisms. The articles contained in this Research Topic provide timely overviews and new insights into thiol-dependent redox regulation mechanisms with a focus on TRX- and GRX-based reduction systems in plants. The different contexts discussed take into account physiological, developmental and environmental conditions.
    Keywords: QP1-981 ; QK1-989 ; Q1-390 ; redox signaling ; redox regulation ; thioredoxin ; Plants ; glutaredoxin ; Glutathione ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-04-05
    Description: This eBook presents all 10 articles published under the Frontiers Research Topic "Evolutionary Feedbacks Between Population Biology and Genome Architecture", edited by Scott V. Edwards and Tariq Ezaz. With the rise of rapid genome sequencing across the Tree of Life, challenges arise in understanding the major evolutionary forces influencing the structure of microbial and eukaryotic genomes, in particular the prevalence of natural selection versus genetic drift in shaping those genomes. Additional complexities in understanding genome architecture arise with the increasing incidence of interspecific hybridization as a force for shaping genotypes and phenotypes. A key paradigm shift facilitating a more nuanced interpretation of genomes came with the rise of the nearly neutral theory in the 1970s, followed by a greater appreciation for the contribution of nonadaptive forces such as genetic drift to genome structure in the 1990s and 2000s. The articles published in this eBook grapple with these issues and provide an update as to the ways in which modern population genetics and genome informatics deepen our understanding of the subtle interplay between these myriad forces. From intraspecific to macroevolutionary studies, population biology and population genetics are now major tools for understanding the broad landscape of how genomes evolve across the Tree of Life. This volume is a celebration across diverse taxa of the contributions of population genetics thinking to genome studies. We hope it spurs additional research and clarity in the ongoing search for rules governing the evolution of genomes.
    Keywords: QK1-989 ; Q1-390 ; Genetic Drift ; intron ; natural selection ; gene ; plant ; vertebrate ; Bacteria ; Sex Chromosomes ; Genome ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-04-05
    Description: Abiotic stresses such as high temperature, low-temperature, drought and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (Arabidopsis and rice were mostly studied) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce low and high temperature, low-water availability (drought), water-submergence, microgravity and salinity signals is still a major question for plant biologist. One major constraint hampering our understanding of these signal transduction processes in plants has been the lack or slow pace of application of molecular genomic and genetics knowledge in the form of gene function. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving not only one gene family but multiple genes or gene families, plant biologist can lay a foundation for designing and generating future crops, which can withstand the higher degree of environmental stresses (especially abiotic stresses, which are the major cause of crop loss throughout the world) without losing crop yield and productivity. Therefore, in this e-Book, we intend to incorporate the contribution from leading plant biologists to elucidate several aspects of stress signaling by functional genomics approaches.
    Keywords: QK1-989 ; Q1-390 ; Signal Transduction ; biotic stress ; Genomics ; unctional Genomics ; Crop Improvement ; abiotic stress ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-03-31
    Description: Mitochondrial biogenesis is an extremely complex process. A hint of this complexity is clearly indicated by the many steps and factors required to assemble the respiratory complexes involved in oxidative phosphorylation. These steps include the expression of genes present in both the nucleus and the organelle, intricate post-transcriptional RNA processing events, the coordinated synthesis, transport and assembly of the different subunits, the synthesis and assembly of co-factors and, finally, the formation of supercomplexes or respirasomes. It can be envisaged, and current knowledge supports this view, that plants have evolved specific mechanisms for the biogenesis of respiratory complexes. For example, expression of the mitochondrial genome in plants has special features, not present in other groups of eukaryotes. Moreover, plant mitochondrial biogenesis and function should be considered in the context of the presence of the chloroplast, a second organelle involved in energetic and redox metabolism. It implies the necessity to discriminate between proteins destined for each organelle and requires the establishment of functional interconnections between photosynthesis and respiration. In recent years, our knowledge of the mechanisms involved in these different processes in plants has considerably increased. As a result, the many events and factors necessary for the correct expression of proteins encoded in the mitochondrial genome, the cis acting elements and factors responsible for the expression of nuclear genes encoding respiratory chain components, the signals and mechanisms involved in the import of proteins synthesized in the cytosol and the many factors required for the synthesis and assembly of the different redox co-factors (heme groups, iron-sulfur clusters, copper centers) are beginning to be recognized at the molecular level. However, detailed knowledge of these processes is still not complete and, especially, little is known about how these processes are interconnected. Questions such as how the proteins, once synthesized in the mitochondrial matrix, are inserted into the membrane and assembled with other components, including those imported from the cytosol, how the expression of both genomes is coordinated and responds to changes in mitochondrial function, cellular requirements or environmental cues, or which factors and conditions influence the assembly of complexes and supercomplexes are still open and will receive much attention in the near future. This Research Topic is aimed at establishing a collection of articles that focus on the different processes involved in the biogenesis of respiratory complexes in plants as a means to highlight recent advances. In this way, it intends to help to construct a picture of the whole process and, not less important, to expose the existing gaps that need to be addressed to fully understand how plant cells build and modulate the complex structures involved in respiration.
    Keywords: QP1-981 ; QK1-989 ; Q1-390 ; cofactor assembly ; supramolecular organization ; maturase ; protein import translocase ; RNA Editing ; respiratory pathway ; coordinated expression ; mitoribosome ; respirasome ; mitochondrion ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-04-05
    Description: Quantifying temporal changes in plant geometry as a result of genetic, developmental, or environmental causes is essential to improve our understanding of the structure and function relationships in plants. Over the last decades, optical imaging and remote sensing developed fundamental working tools to monitor and quantify our environment and plants in particular. Increased efficiency of methods lowered the barrier to compare, integrate, and interpret the optically obtained plant data across larger spatial scales and across scales of biological organization. In particular, acquisition speed at high resolutions reached levels that allow capturing the temporal dynamics in plants in three dimensions along with multi-spectral information beyond human visual senses. These advanced imaging capabilities have proven to be essential to detect and focus on analyzing temporal dynamics of plant geometries. The focus of this Research Topic is on optical techniques developed to study geometrical changes at the plant level detected within the wavelength spectrum between near-UV to near infrared. Such techniques typically involve photogrammetric, LiDAR, or imaging spectroscopy approaches but are not exclusively restricted to these. Instruments operating within this range of wavelengths allow capturing a wide range of temporal scales ranging from sub-second to seasonal changes that result from plant development, environmental effects like wind and heat, or genetically controlled adaption to environmental conditions. The Research Topic covered a plethora of methodological approaches as suggestions for best practices in the light of a particular research question and to a wider view to different research disciplines and how they utilize their state-of-the-art techniques in demonstrating potential use cases across different scales.
    Keywords: QK1-989 ; Q1-390 ; computational plant science ; plant dynamics ; photogrammetry ; phenotyping ; temporal imaging ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-04-05
    Description: There is a scarcity of detailed information regarding the ecophysiology of root systems and the way root system functioning is affected by both internal and external factors. Furthermore, global climate change is expected to increase the intensity of climate extremes, such as severe drought, heat waves and periods of heavy rainfall; in addition other stresses such as salinization of soils are increasing world-wide. Recently an increasing awareness has developed that understanding plant traits will play a major role in breeding of future crop plants. For example, there is increasing evidence that the traits of root systems are defined by the properties of individual roots. However, further knowledge on the functional importance of root segments and the molecular/physiological mechanisms underlying root system functioning and persistence is needed, and would specifically allow modifying (crop) root system functionality and efficiency in the future. Another major gap in knowledge is localized at the root-soil interface and in regard to the potential adaptive plasticity of root-rhizosphere interactions under abiotic stress and/or competition. It is currently unknown whether adaptations in microbe communities occur, for example due to modified exudation rates, and what are the subsequent influences on nutrient mobilization and uptake. Furthermore, uncovering the mechanisms by which roots perceive neighboring roots may not only contribute to our understanding of plant developmental strategies, but also has important implications on the study of competitive interactions in natural communities, and in optimizing plant performance and resource use in agricultural and silvicultural systems. In this Research Topic, we aimed to provide an on-line, open-access snapshot of the current state of the art of the field of root ecology and physiology, with special focus on the translation of root structure to function, and how root systems are influenced by interplay with internal and external factors such as abiotic stress, microbes and plant-plant interaction. We welcomed original research papers, but reviews of specific topics, articles formulating opinions or describing cutting-edge methods were also gladly accepted.
    Keywords: QK1-989 ; Q1-390 ; ectomycorrhiza ; Infertile soils ; plasticity ; deep roots ; earthworms ; rhizosphere ; root systems ; neighbour perception ; root traits ; rhizobacteria ; drought ; heavy metal ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Polyamines are small aliphatic polycations which have been involved in key stress and developmental processes in plants. In the recent years, compelling genetic and molecular evidences point to polyamines as essential metabolites required for resistance to drought, freezing, salinity, oxidative stress among other type of abiotic and biotic stresses. In addition to their role as stress-protective compounds, polyamines participate in key developmental processes mediated by specific signaling pathways or in cross-regulation with other plant hormones. Our Research Topic aims to integrate the multiple stress and developmental regulatory functions of polyamines in plants under a genetic, molecular and evolutionary perspective with special focus on signaling networks, mechanisms of action and metabolism regulation.
    Keywords: QD1-999 ; QK1-989 ; Q1-390 ; stress ; Spermine ; Thermospermine ; Spermidine ; ROS ; Transglutaminase ; Putrescine ; Polyamines ; thema EDItEUR::P Mathematics and Science::PN Chemistry
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-04-05
    Description: Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects.Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions. This ResearchTopic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a)biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. This e-book provides a polyhedral perspective on many issues in which beneficial microorganisms are involved. Data indeed demonstrate that they represent an as yet poorly-explored resource, whose exploitation may actively sustain plant protection and crop production. Given the huge number of microbial species present on the planet, the microorganisms studied represent just the tip of an iceberg. Data produced are, however, informative enough about their genetic and functional biodiversity, as well as about the ecosystem services they provide to underp in crop production. Challenges for future research work concern not only the biology of these species, but also the practices required to protect their biodiversity and to extend their application in the wide range of agricultural soils and systems present in the world. Agriculture cannot remain successfully and sustainable unless plant germplasm and useful microbial species are integrated, a goal for which new knowledge and information-based approaches are urgently needed.Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects.Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions. This ResearchTopic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a)biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. This e-book provides a polyhedral perspective on many issues in which beneficial microorganisms are involved. Data indeed demonstrate that they represent an as yet poorly-explored resource, whose exploitation may actively sustain plant protection and crop production. Given the huge number of microbial species present on the planet, the microorganisms studied represent just the tip of an iceberg. Data produced are, however, informative enough about their genetic and functional biodiversity, as well as about the ecosystem services they provide to underp in crop production. Challenges for future research work concern not only the biology of these species, but also the practices required to protect their biodiversity and to extend their application in the wide range of agricultural soils and systems present in the world. Agriculture cannot remain successfully and sustainable unless plant germplasm and useful microbial species are integrated, a goal for which new knowledge and information-based approaches are urgently needed.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; induced resistance ; omics ; Soil Microbiology ; Rhizosphere Microbiology ; endophyte ; symbosis ; biocontrol ; plant growth promotion ; Plant Microbe Interaction ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-04-05
    Description: This topic covers emerging knowledge about the properties and functions of the outer membranes of chloroplasts and mitochondria. These outer membranes house various processes necessary for efficient communication and thus integration of the organelles with and into their surroundings in the cytoplasm. Such processes include, but are not limited to, protein import, organelle division, organelle movement, metabolism, and metabolite/ion transport. Recent molecular genetic, biochemical and cell biological studies have revealed functions of various outer membrane proteins. These findings have helped address and generate diverse biological and evolutionary questions at molecular, cellular and whole organism levels. The topic should encourage contributions of scientists from various disciplines and thus would provide the field with opportunities to "think outside the box" and to develop potential collaborations. The topic is also aimed to stimulate interests of general audience in the outer membranes of chloroplasts and mitochondria.
    Keywords: QK1-989 ; Q1-390 ; galactolipid ; outer membrane ; Mitochondria ; seedling-lethal ; chloroplast ; Arabidopsis ; Tail-anchor ; TOC ; protein import ; Toc159 ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Pensoft Publishers
    Publication Date: 2024-04-05
    Description: The special issue of plant diversity in Southeast Asia will focus on the documentation of new discoveries in SE Asia. There are four global biodiversity hotspots in Southeast Asia. Although there are many plans to protect this rich biodiversity, however, the rich biodiversity in SE Asia is under threat due to economic development and population growth. There is a huge gap between our knowledge and biodiversity in SE Asia. During the last six investigations, many new taxa, including new species, new genera, have been discovered. This special issue will bring the rich but little known biodiversity to the public and protect them.
    Keywords: QK1-989 ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2023-12-20
    Description: Agricultural land is subjected to a variety of societal pressures, as demands for food, animal feed, and biomass production increase, with an added requirement to simultaneously maintain natural areas and mitigate climatic and environmental impacts. The biotic elements of agricultural systems interact with the abiotic environment to generate a number of ecosystem functions that offer services benefiting humans across many scales of time and space. The intensification of agriculture generally reduces biodiversity including that within soil, and impacts negatively upon a number of regulating and supporting ecosystem services. There is a global need toward achieving sustainable agricultural systems, as also highlighted in the United Nations Sustainable Development Goals. There is hence a need for management regimes that enhance both agricultural production and the associated provision of multiple ecosystem services. The articles of this Research Topic enhance our knowledge of how management practices applied to agricultural systems affect the delivery of multiple ecosystem services and how trade-offs between provisioning, regulating, and supporting services can be handled both above- and below-ground. They also show the diversity of topics that need to be considered within the framework of ecosystem services delivered by agricultural systems, from knowledge on basic concepts and newly-proposed frameworks, to a focus on specific ecosystem types such as grasslands and high nature-value farmlands, pollinator habitats, and soil habitats. This diversity of topics indicates the need for broader-scope research, integrated with targeted scientific research to promote sustainable agricultural practices and to ensure food security.
    Keywords: GE1-350 ; QK1-989 ; QH540-549.5 ; Q1-390 ; soil biodiversity ; pollination ; perennial crops ; scale ; soil ; high-value farmlands ; conceptual frameworks ; bic Book Industry Communication::K Economics, finance, business & management::KC Economics::KCN Environmental economics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: RNA enveloped viruses comprise several families belonging to plus and minus strand RNA viruses, such as retroviruses, flavoviruses and orthomyxoviruses. Viruses utilize cellular lipids during critical steps of replication like entry, assembly and egress. Growing evidence indicate important roles for lipids and lipid nanodomains in virus assembly. This special topic covers key aspects of virus-membrane interactions during assembly and egress, especially those of retroviruses and Ebola virus (EBOV). Virus assembly and release involve specific and nonspecific interactions between viral proteins and membrane compartments. Retroviral Gag proteins assemble predominantly on the PM. Despite the great progress in identifying the factors that modulate retroviral Gag assembly on the PM, there are still gaps in our understanding of precise mechanisms of Gag-membrane interactions. Studies over the last two decades have focused on the mechanisms by which other retroviral Gag proteins interact with membranes during assembly. These include human immunodeficiency virus (HIV), Rous sarcoma virus (RSV), equine infectious anemia virus (EIAV), Mason-Pfizer monkey virus (M-PMV), murine leukemia virus (MLV), and human T-lymphotropic virus type (HTLV-1). Additionally, assembly of filoviruses such as EBOV also occurs on the inner leaflet of the PM. The articles published under this special topic highlight the latest understanding of the role of membrane lipids during virus assembly, egress and release.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; NMR ; Matrix ; membrane ; Gag ; Ebola ; VP40 ; retroviruses ; HIV 1 ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-04-05
    Description: Ecosystems are the stage on which the play of evolution is acted, and ecosystems are complex, spatially structured and temporally varying. The purpose of this Research Topic is to explore critical challenges and opportunities for the transition from landscape genetics to landscape genomics. Landscape genetics has focused on the spatial analysis of small genetic datasets, typically comprised of less than 20 microsatellite markers, taken from clusters of individuals in putative populations or distributed individuals across landscapes. The recent emergence of large scale genomic datasets produced by next generation sequencing methods poses tremendous challenge and opportunity to the field. Perhaps the greatest is to produce, process, curate, archive and analyze spatially referenced genomic datasets in a way such that research is led by a priori hypotheses regarding how environmental heterogeneity and temporal dynamics interact to affect gene flow and selection. The papers in the Research Topic cover a broad range of topics under this area of focus, from reviews of the emergence of landscape genetics, to best practices in spatial analysis of genetic data. The compilation, like the emerging field itself, is eclectic and illustrates the scope of both the challenges and opportunities of this emerging field.
    Keywords: QH426-470 ; QK1-989 ; QH540-549.5 ; Q1-390 ; landscape genomics ; gene flow ; next generation sequencing ; landscape genetics ; evolution ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAK Genetics (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2024-04-05
    Description: Trees are among the longest-living organisms. They are sensitive to extreme climatic events and document the effects of environmental changes in form of structural modifications of their tissues. These modifications represent an integrated signal of complex biological responses enforced by the environment. For example, temporal change in stem increment integrates multiple information of tree performance, and wood anatomical traits may be altered by climatic extremes or environmental stress. Recent developments in preparative tools and computational image analysis enable to quantify changes in wood anatomical features, like vessel density or vessel size. Thus, impacts on their functioning can be related to climatic forcing factors. Similarly, new developments in monitoring (cambial) phenology and mechanistic modelling are enlightening the interrelationships between environmental factors, wood formation and tree performance and mortality. Quantitative wood anatomy is a reliable indicator of drought occurrence during the growing season, and therefore has been studied intensively in recent years. The variability in wood anatomy not only alters the biological and hydraulic functioning of a tree, but may also influence the technological properties of wood, with substantial impacts in forestry. On a larger scale, alterations of sapwood and phloem area and their ratios to other functional traits provide measures to detect changes in a tree’s life functions, and increasing risk of drought-induced mortality with possible impacts on hydrological processes and species composition of plant communities. Genetic variability within and across populations is assumed to be crucial for species survival in an unpredictable future world. The magnitude of genetic variation and heritability of adaptive traits might define the ability to adapt to climate change. Is there a relation between genetic variability and resilience to climate change? Is it possible to link genetic expression and climate change to obtain deeper knowledge of functional genetics? To derive precise estimates of genetic determinism it is important to define adaptive traits in wood properties and on a whole-tree scale. Understanding the mechanisms ruling these processes is fundamental to assess the impact of extreme climate events on forest ecosystems, and to provide realistic scenarios of tree responses to changing climates. Wood is also a major carbon sink with a long-term residence, impacting the global carbon cycle. How well do we understand the link between wood growth dynamics, wood carbon allocation and the global carbon cycle? Papers contribution to this Research Topic will cover a wide range of ecosystems. However, special relevance will be given to Mediterranean-type areas. These involve coastal regions of four continents, making Mediterranean-type ecosystems extremely interesting for investigating the potential impacts of global change on growth and for studying responses of woody plants under extreme environmental conditions. For example, the ongoing trend towards warmer temperatures and reduced precipitation can increase the susceptibility to fire and pests. The EU-funded COST Action STREeSS (Studying Tree Responses to extreme Events: a SynthesiS) addresses such crucial tree biological and forest ecological issues by providing a collection of important methodological and scientific insights, about the current state of knowledge, and by opinions for future research needs.
    Keywords: QK1-989 ; Q1-390 ; Tree response ; Genetic plasticity ; mechanistic modeling ; wood functional traits ; Extreme climate events ; Ecophysiology ; Manipulation experiments ; forest management ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-04-05
    Description: The International Code of Nomenclature for algae, fungi, and plants is a set of voluntary rules that govern the naming of these organisms. These rules are changed via a process that begins with the community suggesting amendments to the current Code and culminates in a meeting at which all the proposed changes are discussed, debated and voted upon, held every six years in association with an International Botanical Congress. The most recent meeting, five days of discussions and decisions of the Nomenclature Section of the XIX International Botanical Congress, took place in Shenzhen, China in July 2017. The resulting Shenzhen Code was published in 2018. This is the official report of the proceedings of the meeting for the historical record, covering the debate and decisions taken. It conveys a true and lively picture of the event, retaining the flavour of goodwill and humour that permeated the Nomenclature Section of the Shenzhen Congress.
    Keywords: QK1-989 ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-04-05
    Description: Plants synthesize a wide variety of unique glycan structures which play essential roles during the life cycle of the plant. Being omnipresent throughout the plant kingdom, ranging from simple green algae to modern flowering plants, glycans contribute to many diverse processes. Glycans can function as structural components in the plant cell wall, assist in the folding of nascent proteins, act as signaling molecules in plant defense responses or (ER) stress pathways, or serve within the energy metabolism of a plant. In most cases, glycans are attached to other macromolecules to form so-called glycoconjugates (e.g. glycoproteins, proteoglycans and glycolipids), but they can also be present as free entities residing in the plant cell. Next to the broad, complex set of glycans, plants also evolved an elaborate collection of lectins or proteins with a lectin-like domain, which can recognize and bind to endogenous (plants-own) or exogenous (foreign) glycans. Though still poorly understood in plants, the dynamic interactions between lectins and carbohydrate structures are suggested to be involved in gene transcription, protein folding, protein transport, cell adhesion, signaling as well as defense responses. As such, a complex and largely undetermined glycan-interactome is established inside plant cells, between cells and their surrounding matrix, inside the extracellular matrix, and even between organisms. Studying the biological roles of plant glycans will enable to better understand plant development and physiology in order to fully exploit plants for food, feed and production of pharmaceutical proteins. In this Research Topic, we want to provide a platform for articles describing the latest research, perspectives and methodologies related to the fascinating world of plant glycobiology, with a focus on following subjects: 1. Identification and characterization of plant glycans, their biosynthetic and degradation enzymes 2. Characterization of plant lectins and glycoproteins 3. Plant glycans in the plant’s energy metabolism 4. Role of plant glycans in plant defense signaling 5. Use of plant lectins in pest control 6. Plant lectins as new tools in human medicine 7. Glyco-engineering in plants
    Keywords: QK1-989 ; Q1-390 ; Cell Wall ; Arabinogalactan proteins ; Protein-carbohydrate interactions ; Glycans and Glycoconjugates ; Glycoengineering ; Lectins ; Hydroxyproline-rich glycoproteins ; Sugar Signaling ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-04-11
    Description: Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.
    Keywords: TP248.13-248.65 ; TA1-2040 ; QK1-989 ; Q1-390 ; plant molecular farming ; Metabolic Engineering ; transient expression ; Genetic Engineering ; recombinant protein ; biopharmaceuticals ; Plant factory ; Biobetter ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TC Biochemical engineering::TCB Biotechnology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-04-05
    Description: Abiotic stresses are the major cause that limits productivity of crop plants worldwide. Plants have developed intricate machinery to respond and adapt over these adverse environmental conditions both at physiological and molecular levels. Due to increasing problems of abiotic stresses, plant biotechnologists and breeders need to employ new approaches to improve abiotic stress tolerance in crop plants. Although current research has divulged several key genes, gene regulatory networks and quantitative trait loci that mediate plant responses to various abiotic stresses, the comprehensive understanding of this complex trait is still not available. This e-book is focused on molecular genetics and genomics approaches to understand the plant response/adaptation to various abiotic stresses. It includes different types of articles (original research, method, opinion and review) that provide current insights into different aspects of plant responses and adaptation to abiotic stresses.
    Keywords: QK1-989 ; Q1-390 ; molecular genetics ; signal transduction ; transcriptional regulatory network ; functional genomics ; virus-induced gene silencing ; abiotic stress ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-11
    Description: The understanding of biological complexity has been greatly facilitated by cross-disciplinary, holistic approaches that allow insights into the function and regulation of biological processes that cannot be captured by dissecting them into their individual components. In addition, the development of novel tools has dramatically increased our ability to interrogate information at the nucleic acid, protein and metabolite level. The integration and interpretation of disparate data sets, however, still remain a major challenge in systems biology. Roots provide an excellent model for studying physiological, developmental, and metabolic processes. The availability of genetic resources, along with sequenced genomes has allowed important discoveries in root biochemistry, development and function. Roots are transparent, allowing optical investigation of gene activity in individual cells and experimental manipulation. In addition, the predictable fate of cells emerging from the root meristem and the continuous development of roots throughout the life of the plant, which permits simultaneous observation of different developmental stages, provide ideal premises for the analysis of growth and differentiation. Moreover, a genetically fixed cellular organization allows for studying the utilization of positional information and other non-cell-autonomous phenomena, which are of utmost importance in plant development. Although their ontogeny is largely invariant under standardized experimental conditions, roots possess an extraordinary capacity to respond to a plethora of environmental signals, resulting in distinct phenotypic readouts. This high phenotypic plasticity allows research into acclimative and adaptive strategies, the understanding of which is crucial for germplasm enhancement and crop improvement. With the aim of providing a current snapshot on the function and development of roots at the systems level, this Research Topic collated original research articles, methods articles, reviews, mini reviews and perspective, opinion and hypotheses articles that communicate breakthroughs in root biology, as well as recent advances in research technologies and data analysis.
    Keywords: TA1-2040 ; TP248.13-248.65 ; QK1-989 ; Q1-390 ; root architecture ; Synthetic Biology ; auxin ; gene co-expression analysis ; nutrient acquisition ; root hairs ; Systems Biology ; regulatory peptides ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: As the amount of biological information and its diversity accumulates massively there is a critical need to facilitate the integration of this data to allow new and unexpected conclusions to be drawn from it. The Semantic Web is a new wave of web- based technologies that allows the linking of data between diverse data sets via standardised data formats (“big data”). Semantic Biology is the application of semantic web technology in the biological domain (including medical and health informatics). The Special Topic encompasses papers in this very broad area, including not only ontologies (development and applications), but also text mining, data integration and data analysis making use of the technologies of the Semantic Web. Ontologies are a critical requirement for such integration as they allow conclusions drawn about biological experiments, or descriptions of biological entities, to be understandable and integratable despite being contained in different databases and analysed by different software systems. Ontologies are the standard structures used in biology, and more broadly in computer science, to hold standardized terminologies for particular domains of knowledge. Ontologies consist of sets of standard terms, which are defined and may have synonyms for ease of searching and to accommodate different usages by different communities. These terms are linked by standard relationships, such as “is_a” (an eye “is_a” sense organ) or “part_of” (an eye is “part_of” a head). By linking terms in this way, more detailed, or granular, terms can be linked to broader terms, allowing computation to be carried out that takes these relationships into account.
    Keywords: QH426-470 ; TP248.13-248.65 ; TA1-2040 ; QK1-989 ; Q1-390 ; Semantic Web ; data representation ; data analysis ; ontologies ; semantic biology ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAK Genetics (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-04-05
    Description: Studijų knyga skirta Agronomijos programos pirmosios studijų pakopos studentams, studijuojantiems Augalų fiziologijos dalyką. Ji tiks pirmosios studijų pakopos Miškininkystės, Taikomosios ekologijos, Atsinaujinančių energijos išteklių programų studentams, studijuojantiems Augalų biologijos dalyką, bei Maisto žaliavų kokybė ir sauga programos studentams, studijuojantiems Augalų fiziologijos dalyką, biologijos žinioms pagilinti. Knyga padės suvokti augaluose, jų ląstelėse vykstančius procesus ir įgytas žinias taikyti tolesnėse studijose. Studijų knygoje teksto išskirtis leis geriau suvokti pateiktą medžiagą, atskirti reikšmingesnes detales nuo mažiau esmingų.
    Keywords: QK1-989 ; Vanduo ; Funkcijos ; Vandens transformacijos ; Balansas ; Dirvožemio vanduo ; Pernašos ; Savybės ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: Lithuanian
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-04-05
    Description: A plant growing under field conditions is not a simple individual; it is a community. We now know that there is a community of microbes associated with all parts of the plant, and that the root associated community is particularly large. This microbial community, the phytomicrobiome, is complex, regulated and the result of almost half a billion years of evolution. Circumstances that benefit the plant generally benefit the phytomicrobiome, and vice versa. Members of the holobiont modulate each other's activities, in part, through molecular signals, acting as the hormones of the holobiont. The plant plus the phytomicrobiome constitute the holobiont, the resulting entity that is that community. The phytomicrobiome is complex, well developed and well-orchestrated, and there is considerable potential in managing this system. The use of “biologicals” will develop during the 21st century and play as large a role as agro-chemistry did in the 20th century. Biologicals can be deployed to enhance plant pathogen resistance, improve plant access to nutrients and improve stress tolerance. They can be used to enhance crop productivity, to meet the expanding demands for plant material as food, fibre and fuel. They can assist crop plants in dealing with the more frequent and more extreme episodes of stress that will occur as climate change conditions continue to develop. The path is clear and we have started down it; there is a considerable distance remaining.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; holobiont ; crop stress ; symbiosis ; advanced biofuels ; Phytomicrobiome ; plant nutrients ; interorganismal signals ; plant microbiome ; climate change ; global food security ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-04-05
    Description: The study of plant-microbe associations by new techniques has significantly improved our understanding of the structure and specificity of the plant microbiome. Yet, microbiome function and the importance of the plant’s microbiome in the context of human and plant health are largely unexplored. Comparable with our human microbiome, millions of microbes inhabit plants, forming complex ecological communities that influence plant growth and health through its collective metabolic activities and host interactions. Viewing the microbiota from an ecological perspective can provide insight into how to promote plant health and stress tolerance of their hosts or how to adapt to a changing climate by targeting this microbial community. Moreover, the plant microbiome has a substantial impact on human health by influencing our gut microbiome by eating raw plants such as lettuce and herbs but also by influencing the microbiome of our environment through airflow. This research topic comprising reviews, original and opinion articles highlights the current knowledge regarding plant microbiomes, their specificity, diversity and function as well as all aspects studying the management of plant microbiomes to enhance plant growth, health quality and stress tolerance.
    Keywords: QR1-502 ; QK1-989 ; Q1-390 ; omics technologies ; plant-microbe interaction ; FISH technology ; bacterial communities ; biocontrol ; plant microbiome ; endophytes ; stress control ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-03-31
    Description: Global warming has dramatically increased the frequency and severity of flooding events worldwide. As a result, many man-made and natural ecosystems have become flood-prone. For plants, the main consequence of flooding is the drastic reduction of oxygen availability that restricts respiratory energy production and finally affects survival. Flooding can negatively influence crop production and wild plant distributions, since most plants are sensitive to excessively wet conditions. However, plants have evolved a broad spectrum of adaptive responses to oxygen deficiency that eventually leads to tolerance. Many of these morphological and physiological adaptations have been described in some crops and wild plant species and considerable progress has been made in understanding the molecular aspects governing tolerance traits. Moreover, the molecular mechanism of plant oxygen sensing has been recently elucidated. However, many other aspects concerning plant acclimation responses to flooding remain unanswered. With this research topic we seek to build an online collection of articles addressing various aspects relating to “plant responses to flooding’’ which will reflect the exciting new developments and current state of the art in this vibrant and dynamic research field. All kinds of articles, including original research articles, short reviews, methods and opinions are welcome, in the attempt to broadly and freely disseminate research information, tools and protocols.
    Keywords: QP1-981 ; QK1-989 ; Q1-390 ; submergence ; hypoxia ; Anoxia ; low oxygen ; waterlogging ; flooding ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-04-05
    Description: Plant architecture is a major determinant of the resource use efficiency of crops. The architecture of a plant shows ontogenetic structural changes which are modified by multiple environmental factors: Plant canopies are exposed to natural fluctuations in light quantity and the dynamically changing canopy architecture induces local variations in light quality. Changing temperature conditions or water availability during growth additionally affect plant architecture and thus crop productivity, because plants have various options to adapt their architecture to the available resources. Meeting the challenge of ensuring food security we must understand the plant’s mechanisms for integrating and responding to an orchestra of environmental factors. ‘Virtual plants’ describe plant architecture in silico. Virtual plants have the potential to help us understanding the complex feedback processes between canopy architecture, multiple environmental factors and crop productivity. As a research tool, they have become increasingly popular within the last decade due to their great power of realistically visualizing the plant’s architecture. This Research Topic highlights current research carried out on modeling plant architecture in changing environments.
    Keywords: QK1-989 ; Q1-390 ; Morphogenesis ; environment ; functional-structural plant model ; simulation ; Interaction ; Light ; Virtual plant ; plasticity ; crop productivity ; Ontogeny ; plant architecture ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-04-05
    Description: With global populations expected to exceed 9.2 billion by 2050 and available land and water resources devoted to crop production dwindling, we face significant challenges to secure global food security. Only 12 plant species feed 80% of the world’s population, with just three crop species (wheat, rice and maize) accounting for food consumed by 50% of the global population. Annual losses to crop pests and pathogens are significant, thought to be equivalent to that required to feed a billion people, at a time when crop productivity has plateaued. With pesticide applications becoming increasingly unfeasible on cost, efficacy and environmental grounds, there is growing interest in exploiting plant resistance and tolerance traits for crop protection. Indeed, mankind has been selectively breeding plants for desirable traits for thousands of years. However, resistance and tolerance traits have not always been those most desired, and in many cases have been inadvertently lost during the domestication process: crops have been effectively ‘disarmed by domestication’. Moreover, mechanistic understanding of how resistance and tolerance traits operate is often incomplete, which makes identifying the right combination for crop protection difficult. We aimed to address this Research Topic by inviting authors to contribute their knowledge of appropriate resistance and tolerance traits, explore what is known about durability and breakdown of defensive traits and, finally, asking what are the prospects for exploiting these traits for crop protection. The research topic summarised in this book addresses some of the most important issues in the future sustainability of global crop production.
    Keywords: QK1-989 ; Q1-390 ; Integrated Pest Management ; crop protection ; Insect herbivore ; pathogen ; biological control ; global climate change ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-04-05
    Description: Terrestrial plants are sessile organisms that, differently from animals, can not move in searching of the nutrients and water they need. Instead, they have to change continuously their physiology and morphology to adapt to the environmental changes. When plants suffer from a nutrient deficiency, they develop physiological and morphological responses (mainly in their roots) aimed to facilitate the acquisition and mobilization of such a nutrient. Physiological responses include some ones like acidification of the rizhosphere and release of chelating agents into the medium; and morphological responses include others, like changes in root architecture and development of root hairs. The regulation of these responses is not totally known but in the last years different plant hormones and signaling substances, such as auxin, ethylene, cytokinins and nitric oxide, have been involved in their control. Besides hormones, oxidative stress has also been related with most of the nutrient deficiencies. The relationship of ethylene with the regulation of responses to nutrient deficiencies came from the nineties, when some works presented data suggesting its involvement in the regulation of responses to Fe and P deficiency. In the last years, the role of ethylene has been extended to many other nutrient deficiencies, such as K deficiency, Mg deficiency, S deficiency, N deficiency, and others. In most of the cases, it has been found that ethylene production, as well as the expression of ethylene synthesis genes, increases under these nutrient deficiencies. Furthermore, it has also been found that ethylene controls the expression of genes related to responses to different deficiencies. The involvement of ethylene in so many deficiencies suggests that it should act in conjunction with other signals that would confer nutrient-specificity to the distinct nutrient responses. These other signals could be plant hormones (auxin, cytokinins, etc) as well as other substances (nitric oxide, microRNAs, peptides, glutathione, etc), either originated in the roots or coming from the shoots through the phloem. The role of ethylene in the mineral nutrition of plants is even more complex that the one related to its role in the responses to nutrient deficiencies. Ethylene has also been implicated in the N2 fixation of legume plants; in salt tolerance responses; and in responses to heavy metals, such as Cd toxicity. All these processes are related to ion uptake and, consequently, are related to plant mineral nutrition. We consider a good opportunity to review all this information in a coordinated way. This Research Topic will provide an overview about the role of the plant hormone ethylene on the regulation of physiological and morphological responses to different nutrient deficiencies. In addition, it will cover other aspects of ethylene related to plant nutrition such as its role on salinity, N2 fixation and tolerance to heavy metals.
    Keywords: QK1-989 ; Q1-390 ; Boron ; heavy metals ; Phosphate ; Iron ; nodulation ; Nitrogen ; Sulfur ; ethylene ; Potassium ; Salinity ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2024-04-05
    Description: The riparian tall herb fringe communities of the order Convolvuletalia sepium represent an integral part of the natural vegetation in river valleys. The major objective of this study was to assess the relationships between the diversity and variability of these communities and various environmental factors. The survey was conducted in northwestern Poland, along 101 randomly selected 1–2-km long sections of 24 rivers and the Szczecin Lagoon. Samples were collected in 2008–2013 in all types of tall herb fringe vegetation found in the surveyed river sections. Data collected included hydrogeomorphic variables, soil parameters, potential and actual vegetation, and dominant land use form. A total of 24 vegetation units were documented, based on 300 sample plots (relevés). Tall herb fringe communities occurring in valleys of large rivers (Senecionetum fluviatilis, Fallopio-Cucubaletum bacciferi, Achilleo salicifoliae-Cuscutetum lupuliformis, Convolvulo sepium-Cuscutetum europaeae typicum and chaerophylletosum bulbosi subass. nov., Rubus caesius community, Solidago gigantea community) exhibited floristic and ecological differences in comparison with plant communities from small rivers (Eupatorietum cannabini typicum, aegopodietosum and cardaminetosum amarae subass. nov., Epilobio hirsuti-Convolvuletum sepium, Soncho palustris-Archangelicetum litoralis, Convolvulo sepium-Cuscutetum europaeae aegopodietosum, Urtico-Convolvuletum sepium typicum and aegopodietosum, Urtica dioica community, Galeopsis speciosa community, Rubus idaeus community). This finding fully justified their division into two alliances: the Senecionion fluviatilis and the Archangelicion litoralis, respectively. Significant differences between the tall herb fringe communities associated with large rivers and the plant communities occurring along small rivers included plant species richness, moss layer cover, contribution of river corridor plants, level of invasion, influence of adjacent plant communities on the floristic composition, relative elevation and distance away from the riverbed, degree of shading, proportions of all grain size fractions, soil pH, contents of organic matter, humus, organic carbon, total nitrogen, bioavailable phosphorus, potassium, magnesium, and calcium in the soil. The differences in environmental characteristics of individual plant communities were significant as well; they showed that most vegetation units were well defined. The variables that best discriminated between riparian tall herb fringe communities included the natural potential vegetation unit Salici-Populetum, headwater seeps, soil pH, sample elevation above the river water level, river size, flooding, degree of shading, soil moisture, K2O and CaO contents, and C/N ratio. The integration of the main riparian gradients (longitudinal, lateral, vertical) and patch perspective (e.g., natural potential vegetation units, and land use forms) significantly improved the comprehensive riparian vegetation patterns, because these two perspectives underpin different processes shaping the vegetation. This study contributed significantly to the knowledge of riparian tall herb fringe communities. Two subassociations are described here for the first time, whereas six others have not been previously reported from Poland. The data summarized in the synoptic table indicated that the species diagnostic for individual plant communities should be revised at the supra-regional scale. Some syntaxonomic issues were also determined. The inclusion of the order Convolvuletalia sepium to the class Epilobietea angustifolii resolved the problem of classifying the community dominated by Eupatorium cannabinum, a species showing two ecological optima: one in riparian tall herb communities and the other in natural gaps of the tree stands and clearings of fertile alder carrs and riparian woodlands. This also resolved the problem of classifying the communities dominated by Galeopsis speciosa and Rubus idaeus, intermediate between riparian tall herb and clearing communities. The results of this study may serve as a reference for management of the vegetation in river valleys and promote their conservation. They may also be essential for any future syntaxonomic revision of riparian tall herb fringe communities at a larger geographical extent.
    Keywords: QK1-989 ; rivers ; alien plants ; riparian vegetation ; level of invasion ; Archangelicion litoralis ; ordination ; Senecionion fluviatilis ; environmental conditions ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...