ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
  • Istituto Nazionale di Geofisica e Vulcanologia  (3)
  • Wiley  (3)
  • Springer  (2)
  • Copernicus
  • MDPI Publishing
Collection
Keywords
Years
  • 1
    Publication Date: 2021-12-16
    Description: We reconstruct the tectonic framework of the 24 August 2016, Amatrice earthquake. At least three main faults, including an older thrust fault (Sibillini Thrust), played an active role in the sequence. The mainshock nucleated and propagated along an extensional fault located in the footwall of the Sibillini Thrust, but due to the preliminary nature of the data the role of this thrust is still unclear. We illustrate two competing solutions: 1) the coseismic rupture started along an extensional fault and then partially used the thrust plane in extensional motion; 2) the thrust fault acted as an upper barrier to the propagation of the mainshock rupture, but was partially reactivated during the aftershock sequence. In both cases our tectonic reconstruction suggests an active role of the thrust fault, providing yet another example of how structures inherited from older tectonic phases may control the mainshock ruptures and the long-term evolution of younger seismogenic faults.
    Description: Published
    Description: 1-10
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: 2016 Amatrice earthquake ; Sibillini thrust ; normal faulting ; extensional reactivation ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We present a collection of pictures of the coseismic secondary geological effects produced on the environment by the 2012 Emilia seismic sequence in northern Italy. The May-June 2012 sequence struck a broad area located in the Po Plain region, causing 26 deaths and hundreds of injured, 15.000 homeless, severe damage of historical centres and industrial areas, and an estimated economic toll of ~2 billion of euros. The sequence included two mainshocks (Figure 1): the first one, with ML 5.9, occurred on May 20 between Finale Emilia, S. Felice sul Panaro and S. Martino Spino; the second one, with ML 5.8, occurred 12 km southwest of the previous mainshock on May 29. Both the mainshocks occurred on about E-W trending, S dipping blind thrust faults; the whole aftershocks area extends in an E-W direction for more than 50 km and includes five ML≥5.0 events and more than 1800 ML〉1.5 events. Ground cracks and liquefactions were certainly the most relevant coseismic geological effects observed during the Emilia sequence. In particular, extensive liquefaction was observed over an area of ~1200 km2 following the May 20 and May 29 events. We collected all the coseismic geological evidence through field survey, helicopter and powered hang-glider trike survey, and reports from local people directly checked in the field. On the basis of their morphologic and structural characteristics the 1362 effects surveyed were grouped into three main categories: a) liquefactions related to overpressure of aquifers, occurring through several aligned vents forming coalescent flat cones (485 effects); b) liquefactions with huge amounts of liquefied sand and fine sand ejected from fractures tens of meters long (768); c) extensional fractures with small vertical throws, apparently organized in an en-echelon pattern, with no effects of liquefaction (109). The photographic dataset consists of 99 pictures of coseismic geological effects observed in 17 localities concentrated in the epicentral area. The pictures are sorted and presented by locality of observation; each photo reports several information such as the name of the site, the geographical coordinates and the type of effect observed. Figure 1 shows a map of the pictures sites along with the location of the two mainshocks; Figure 2 shows a detail of the distribution of the liquefactions in the area of S. Carlo. The complete description of the coseismic geological effects induced by the Emilia sequence, their relation with the aftershock area, the InSAR deformation area and the I〉6 EMS felt area, along with the description of the technologies used for data sourcing and processing are shown in Emergeo Working Group [2012a and 2012b].
    Description: Published
    Description: 1-70
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: liquefaction features ; 2012 Emilia seismic sequence ; survey report ; EMERGEO ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We reply to a comment by Messina et al., who strongly criticized our paper on the San Pio Fault, by showing that in areas of complex geology such as the central Apennines, where the current tectonic setting results from the superposition of different tectonic regimes, the equation: “most visible active fault = major seismogenic fault” can be misleading.
    Description: Published
    Description: 421-423
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismotectonics ; morphotectonics ; active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The elevation of the Capo Vaticano coastal terraces (Tyrrhenian coast, central Calabria) is the combination of regional uplift and repeated coseismic displacement. We subtract the regional uplift from the total uplift (maximum average uplift rates 0.81-0.97 mm/yr since ~0.7 Ma) and obtain a residual fault-related displacement. Then, we model the residual displacement to provide constraints to the location and geometry of the seismogenic source of the 1905 M7 earthquake, the strongest – and still poorly understood – earthquake of the instrumental era in this area. We test four different potential sources for the dislocation modelling and find that 1) three sources are not compatible with the displacement observed along the terraces, and 2) the only source consistent with the local deformation is the 100°-striking Coccorino Fault. We calculate average long-term vertical slip rates of 0.2-0.3 mm/yr on the Coccorino Fault and estimate an average recurrence time of ~one millennium for a 1905-type earthquake
    Description: Published
    Description: 378-389
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: marine terrace ; fault ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In the present work we analyse one of the active normal faults affecting the central Apennines, i.e. the Mt. Morrone normal fault system. This tectonic structure, which comprises two parallel, NW-SE trending fault segments, is considered as potentially responsible for earthquakes of magnitude C 6.5 and its last activation probably occurred during the second century AD. Structural observations performed along the fault planes have allowed to define the mainly normal kinematics of the tectonic structure, fitting an approximately N 20 trending extensional deformation. Geological and geomorphological investigations performed along the whole Mt. Morrone south-western slopes permitted us to identify the displacement of alluvial fans, attributed to Middle and Late Pleistocene by means of tephro-stratigraphic analyses and geomorphological correlations with dated lacustrine sequences, along the western fault branch. This allowed to evaluate in 0.4 ± 0.07 mm/year the slip rate of this segment. On the other hand, the lack of synchronous landforms and/or deposits that can be correlated across the eastern fault segment prevented the definition of the slip rate related to this fault branch. Nevertheless, basing on a critical review of the available literature dealing with normal fault systems evolution, we hypothesised a total slip rate of the fault system in the range of 0.4 ± 0.07 to 0.8 ± 0.09 mm/year. Moreover, basing on the length at surface of the Mt. Morrone fault system (i.e. 22–23 km) we estimated the maximum expected magnitude of an earthquake that might originate along this tectonic structure in the order of 6.6–6.7.
    Description: Dipartimento della Protezione Civile Nazionale
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Active fault ; Slip rate ; Maximum expected magnitude ; Continental stratigraphy ; Sulmona basin ; Central Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Rapid extension and active normal faulting in the western extremity of the Corinth Gulf are accompanied by fast coastal uplift.We investigate Pleistocene uplift west of Aigion, by attempting to date remains of marine terraces and sedimentary sequences by calcareous nannoplankton and U-series analyses. Net uplift initiated recently, due to abandonment of an older rift-bounding fault zone and increase in activity on the presently active, coastal fault zone. This change apparently coincides with an abrupt slow down (or, termination) of secondary fault block tilting within the broader hangingwall block of the older zone, indicated by an angular unconformity that dates in the early part ofMIS10 ( 390–350 ka BP, preferably, in the earlier part of this period). Net uplift driven by the coastal zone resulted in the formation of MIS9c (330 ka) and younger terraces. The formation of the unconformity and the initiation of net uplift coincide temporally with a 300–400 ka unconformity recognized by recent studies in a wide area offshore Aigion i.e. they could be part of an evolutionary event that affected the entirewestern part of the Corinth Rift or, a large area therein. Uplift rate estimates at four locations are discussed with reference to the morphotectonic context of differential uplift of secondary fault blocks, and the context of possible increase in uplift ratewith time. Themost reliable and most useful estimate for uplift rate at the longitude of the studied transect is 1.74–1.85mm/year (time-averaged estimate for the last 240 ka, based on calcareous nannoplankton and sequence-stratigraphic interpretation)
    Description: ‘3HAZ Corinth’ E.U. research project 004043 (GOCE)-3HAZ-Corinth
    Description: Published
    Description: 78 - 104
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: coastal uplift ; marine terraces ; marine sequences ; deformation rate ; Pleistocene ; Corinth Gulf Reef ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-04
    Description: Several Electrical Resistivity Tomography (ERT) surveys have been carried out to study the subsurface structural and sedimentary settings of the upper Ufita River valley, and to evaluate their efficiency to distinguish the geological boundary between shallow Quaternary sedimentary deposits and clayey bedrock characterized by moderate resistivity contrast. Five shallow ERTs were carried out across a morphological scarp running at the foot of the northeastern slope of the valley. This valley shoulder is characterized by a set of triangular facets, that some authors associated to the presence of a SW-dipping normal fault. The geological studies allow us to interpret the shallow ERTs results obtaining a resistivity range for each Quaternary sedimentary deposit. The tomographies showed the geometrical relationships of alluvial and slope deposits, having a maximum thickness of 30-40 m, and the morphology of the bedrock. The resistivity range obtained for each sedimentary body has been used for calibrating the tomographic results of one 3560m-long deep ERT carried out across the deeper part of the intramountain depression with an investigation depth of about 170 m. The deep resistivity result highlighted the complex alluvial setting, characterized by alternating fine grained lacustrine deposits and coarser gravelly fluvial sediments.
    Description: This work was partially funded by INGV-DPC grant to P. Burrato and A. Siniscalchi (Project S2, Research Units 2.4 and 2.16, respectively).
    Description: Published
    Description: 213-223
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: shallow ERT ; deep ERT ; Ufita River valley ; southern Apennines ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-03
    Description: Archaeoseismic research contributes important data on past earthquakes. A limitation of the usefulness of archaeoseismology is due to the lack of continuous discussion about the methodology. The methodological issues are particularly important because archaeoseismological investigations of past earthquakes make use of a large variety of methods. Typical in situ investigations include: (1) reconstruction of the local archaeological stratigraphy aimed at defining the correct position and chronology of a destruction layer, presumably related to an earthquake; (2) analysis of the deformations potentially due to seismic shaking or secondary earthquake effects, detectable on walls; (3) analysis of the depositional characteristics of the collapsed material; (4) investigations of the local geology and geomorphology to define possible natural cause(s) of the destruction; (5) investigations of the local factors affecting the ground motion amplifications; and (6) estimation of the dynamic excitation, which affected the site under investigation. Subsequently, a ‘territorial’ approach testing evidence of synchronous destruction in a certain region may delineate the extent of the area struck by the earthquake. The most reliable results of an archaeoseismological investigation are obtained by application of modern geoarchaeological practice (archaeological stratigraphy plus geological–geomorphological data), with the addition of a geophysicalengineering quantitative approach and (if available) historical information. This gives a basic dataset necessary to perform quantitative analyses which, in turn, corroborate the archaeoseismic hypothesis. Since archaeoseismological investigations can reveal the possible natural causes of destruction at a site, they contribute to the wider field of environmental archaeology, that seeks to define the history of the relationship between humans and the environment. Finally, through the improvement of the knowledge on the past seismicity, these studies can contribute to the regional estimation of seismic hazard.
    Description: Published
    Description: 395-414
    Description: JCR Journal
    Description: reserved
    Keywords: archaeoseismology ; historical seismology ; geoarchaeology ; environmental archaeology ; natural catastrophes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...