ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (9)
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology  (4)
  • Istituto Nazionale di Geofisica e Vulcanologia  (11)
  • American Institute of Physics (AIP)
  • Nature Publishing Group
Collection
Publisher
Years
  • 1
    Publication Date: 2017-04-04
    Description: In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.
    Description: Published
    Description: 30471
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: eruptive potential ; eruptive probability ; open conduit volcanoes ; Etna ; Soil CO2 flux ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Nowadays, thermal imaging has become a common remote sensing tool for monitoring active volcanoes. The study of temperature variations within openconduit systems, at eruptive fissures, active vents, domes, lava lakes, lava fields and other volcanic features has proven fundamental to better understand volcanic system behaviour over the short and long terms (Harris and Stevenson, 1997; Oppenheimer and Yirgu, 2002; Calvari et al., 2004; Wadge et al., 2006). At INGV Catania Section, thermal imaging has been applied at Mt Etna, Stromboli, Vulcano and Panarea since 2001. The instruments used are thermal cameras manufactured by FLIR (Forward Looking InfraRed) and consist in uncooled bolometers that are sensitive within 7.5 and 13 μ wavelengths. Thermal cameras are based on the capability to detect radiation emitted by bodies according to Planck’s Law. In particular, the camera we used is a FLIR thermal camera A 40 M Ethernet with a focal plane array uncooled bolometer (320 x 240 pixels), and a spectral range between 7.5 and 13 micrometers (Figure 1.). It has a standard optics 24° with spatial resolution (IFOV, instantaneous field of view) of 1.3 mrad, a horizontal view of 24° and a vertical view of 18°. This camera has also been equipped with optional filter to measure temperature values up to 1500°C with the possibility of setting up different temperature ranges. The thermal camera can record and transfer in real time via wi-fi radiometric frames in JPG format of the observed eruptive activity according to some environmental parameters, such as external temperature, air humidity and emissivity and allows the vision of volcanic activity both day and night.Temperature range varies between 0 e 500° C and the emissivity value ε = 1. To correct the temperature of all pixels from the atmospheric attenuation effects, we considered atmospheric parameters, such as air temperature and air humidity, in addition to the introduction of the path length (400 m) in the camera software. In fact, the radiations detected by the FLIR thermal cameras, that work in the spectral band between 7.5 e 13 μm, are affected by the absorption factor from the water spectrum, which is predominant in this band; particularly at La Fossa crater where the water content in the fumaroles is higher than the other gas species. Because of the necessity to correct the radiometric data from the atmospheric factors in real-time, we installed a meteorological station able to interface with the camera to provide atmospheric parameters for the auto-calibration.
    Description: Published
    Description: 427 - 434
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: open
    Keywords: thermal cameras and active volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Mt. Vesuvius (southern Italy) is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configu- ration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006- 2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M〈1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section), which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.
    Description: Published
    Description: S0450
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: open
    Keywords: Vesuvius ; seismic network ; volcano monitoring ; network performance ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-07
    Description: The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy) is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Göteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d—1 during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d—1.
    Description: Published
    Description: 301-308
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: SO2 ; Differential optical absorption spectroscopy ; Vulcano Island ; Network for Observation of Volcanic and Atmospheric Change ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Seismological, soil temperature and hydrological data from Mt. Vesuvius are collected to characterize the present-day activity of the volcanic/hydrothermal system and to detect possible unrest-related phenomena. We present patterns of seismicity and soil temperature in the crater area during the period February 2004-December 2011. The temporal distribution of number and depth of Volcano-Tectonic earthquakes and the energy release are considered. Hourly data of soil temperature have been acquired since January 2004 in different locations along the rim and within the crater. The observed changes of temperature are studied to establish a temporal-based correlation with the volcanic activity and/or with external forcing, as variations of the regional and local stress field acting on the volcano or meteorological phenomena. The comparison between seismic activity and temperature data highlights significant variations possibly related to changes in fluid circulation in the hydrothermal system of the volcano. The common continuous observations start just before a very shallow earthquake occurred in August 2005, which was preceded by a thermal anomaly. This coincidence has been interpreted as related to fluid-driven rock fracturing, as observed in other volcanoes. For the successive temporal patterns, the seismicity rate and energy release are characterized by slight variations accompanied by changes in temperature. This evidence of reactivity of the fumarole thermal field to seismic strain can be used to discriminate between tectonic and volcanic signals at Mt. Vesuvius.
    Description: Published
    Description: S0441
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: Surveys, measurements and monitoring ; Seismicity ; Fumarolic thermal regime ; Multidisciplinary data comparison ; Rest state definition ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The availability of the new computing techniques allows to perform advanced analysis in near real time, improving the seismological monitoring systems, which can extract more significant information from the raw data in a really short time. However, the correct identification of the events remains a critical aspect for the reliability of near real time automatic analysis. We approach this problem by using Neural Networks (NN) for discriminating among the seismic signals recorded in the Neapolitan volcanic area (Vesuvius, Phlegraean Fields). The proposed neural techniques have been also applied to other sets of seismic data recorded in Stromboli volcano. The obtained results are very encouraging, giving 100% of correct classification for some transient signals recorded at Vesuvius and allowing the clustering of the large dataset of VLP events recorded at Stromboli volcano.
    Description: Published
    Description: 399-415
    Description: open
    Keywords: Neural Networks ; Italian volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The continuous measurement of ground deformations is an important contribution to the monitoring of volcanic areas. When the volcano is totally or partially submerged, the traditional geodetic methods cannot be applied and the measures of seafloor deformation are extremely difficult and expensive. This paper describes the installation of a continuous GPS station on an elastic beacon. The measurements were conducted in the Campi Flegrei Caldera (Gulf of Pozzuoli, Naples), whose vertical displacements are related to the bradyseismic phenomenon. Experimental observations show that it’s possible to monitor vertical displacement of seafloor with a resolution of a few centimeters, also taking into account for measurement errors (due to weather and sea conditions acting on the elastic beacon). This non expensive technique is relevant at Campi Flegrei area, because it extends the ground deformation monitoring at sea, contributing to a better modeling of the deformation field.
    Description: Published
    Description: 1-18
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: N/A or not JCR
    Description: open
    Keywords: GPS ; Campi Flegrei caldera ; monitoraggio ; deformazioni verticali fondale marino ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We present a collection of pictures of the coseismic secondary geological effects produced on the environment by the 2012 Emilia seismic sequence in northern Italy. The May-June 2012 sequence struck a broad area located in the Po Plain region, causing 26 deaths and hundreds of injured, 15.000 homeless, severe damage of historical centres and industrial areas, and an estimated economic toll of ~2 billion of euros. The sequence included two mainshocks (Figure 1): the first one, with ML 5.9, occurred on May 20 between Finale Emilia, S. Felice sul Panaro and S. Martino Spino; the second one, with ML 5.8, occurred 12 km southwest of the previous mainshock on May 29. Both the mainshocks occurred on about E-W trending, S dipping blind thrust faults; the whole aftershocks area extends in an E-W direction for more than 50 km and includes five ML≥5.0 events and more than 1800 ML〉1.5 events. Ground cracks and liquefactions were certainly the most relevant coseismic geological effects observed during the Emilia sequence. In particular, extensive liquefaction was observed over an area of ~1200 km2 following the May 20 and May 29 events. We collected all the coseismic geological evidence through field survey, helicopter and powered hang-glider trike survey, and reports from local people directly checked in the field. On the basis of their morphologic and structural characteristics the 1362 effects surveyed were grouped into three main categories: a) liquefactions related to overpressure of aquifers, occurring through several aligned vents forming coalescent flat cones (485 effects); b) liquefactions with huge amounts of liquefied sand and fine sand ejected from fractures tens of meters long (768); c) extensional fractures with small vertical throws, apparently organized in an en-echelon pattern, with no effects of liquefaction (109). The photographic dataset consists of 99 pictures of coseismic geological effects observed in 17 localities concentrated in the epicentral area. The pictures are sorted and presented by locality of observation; each photo reports several information such as the name of the site, the geographical coordinates and the type of effect observed. Figure 1 shows a map of the pictures sites along with the location of the two mainshocks; Figure 2 shows a detail of the distribution of the liquefactions in the area of S. Carlo. The complete description of the coseismic geological effects induced by the Emilia sequence, their relation with the aftershock area, the InSAR deformation area and the I〉6 EMS felt area, along with the description of the technologies used for data sourcing and processing are shown in Emergeo Working Group [2012a and 2012b].
    Description: Published
    Description: 1-70
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: liquefaction features ; 2012 Emilia seismic sequence ; survey report ; EMERGEO ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The individuation of areas that are more likely to be affected by new events in volcanic regions is of fundamental relevance for the mitigation of the possible consequences, both in terms of loss of human life and material properties. Here, we describe a methodology for defining flexible high-detail lava-hazard maps and a technique for the validation of the results obtained. The methodology relies on: (i) an accurate analysis of the past behavior of the volcano; (ii) a new version of the SCIARA model for lava-flow simulation (based on the macroscopic cellular automata paradigm); and (iii) high-performance parallel computing for increasing computational efficiency. The new release of the SCIARA model introduces a Bingham-like rheology as part of the minimization algorithm of the differences for the determination of outflows from a generic cell, and an improved approach to lava cooling. The method is here applied to Mount Etna, the most active volcano in Europe, and applications to landuse planning and hazard mitigation are presented.
    Description: This study was sponsored by the Italian National Civil Defence Department and the Istituto Nazionale di Geofisica e Vulcanologia (INGV), project V3_6/09 "V3_6 – Etna".
    Description: Published
    Description: 568-578
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: volcanic risk ; cellular automata ; Algorithms and implementation ; Statistical analysis ; Data processing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-02-24
    Description: Mount Etna produces frequent eruptions from its summit craters and from fissures on its flanks. The flank fissures trend approximately radially to the summit, and are mainly concentrated in three rift zones that are located on the NE, S and W flanks. Many flank eruptions result from lateral magma transfer from the central conduit into fractures intersecting the flanks, although some eruptions are fed through newly formed conduits that are not directly linked to the central conduit. We analyzed the structural features of eruptions from 1900 to the present, one of the most active periods in the documented eruptive history of Etna, which comprised 35 summit and 33 flank events. Except for a small eruption on the W flank in 1974, all of the flank eruptions in this interval occurred on or near the NE and S rifts. Eruptions in the NE sector were generally shorter, but their fissure systems developed more rapidly and were longer than those in the S sector. In contrast, summit eruptions had longer mean durations, but generally lower effusion rates (excluding paroxysmal events characterized by very high effusion rates that lasted only a few hours). This database was examined considering the main parameters (frequency and strike) of the eruptive fissures that were active over the last ~2 ka. The distribution in time and space of summit and flank eruptions appears to be closely linked to the dynamics of the unstable E to S flank sector of Etna, which is undergoing periodic displacements induced by subvolcanic magma accumulation and gravitational pull. In this framework, magma accumulation below Etna exerts pressure against the unbuttressed E and S flanks, which have moved away from the rest of the volcano. This has caused an extension to the detachment zones, and has facilitated magma transfer from the central conduit into the flanks.
    Description: This work was sponsored by the Italian National Civil Defence Department and INGV (Istituto Nazionale di Geofisica e Vulcanologia), project V3-LAVA (RU01–Team 01C).
    Description: Published
    Description: 464-479
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 5.3. TTC - Banche dati vulcanologiche
    Description: JCR Journal
    Description: open
    Keywords: dike ; magmas ; tectonics ; structural geology ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-11-04
    Description: The terrestrial 3D Laser Scanning technique has been applied to analyse the surface roughness of pyroclastic deposits on volcanic surfaces at Mt. Etna. This technique allowed the construction of high accuracy digital elevation models of small surfaces, about 1 m across. Sampled surfaces differ for percentage of coverage and for grain size of the pyroclastic deposits. The change in grain size distribution for the pyroclastic unconsolidated deposits affects the surface roughness. The roughness of the site where the finest pyroclastic deposits occur is mainly governed by large scale wavelength morphology (Hurst exponent H = 0.77 for lengths larger than 16 mm). The other sampled surfaces have self-affine characters with low (0.15) to intermediate (0.35 - 0.38) Hurst exponents for lengths higher than 10 – 22 mm. Here we show results of the analysis of the surface roughness of the pyroclastic deposits emplaced during the 2001 and 2002-2003 eruptions at Mt. Etna. Grain size and thickness of pyroclastic deposits mainly control the overall roughness of such as volcanic surface.
    Description: Published
    Description: 813-822
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: open
    Keywords: surface roughness ; pyroclastic deposits ; Laser 3D ; Mount Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-11-04
    Description: Several Electrical Resistivity Tomography (ERT) surveys have been carried out to study the subsurface structural and sedimentary settings of the upper Ufita River valley, and to evaluate their efficiency to distinguish the geological boundary between shallow Quaternary sedimentary deposits and clayey bedrock characterized by moderate resistivity contrast. Five shallow ERTs were carried out across a morphological scarp running at the foot of the northeastern slope of the valley. This valley shoulder is characterized by a set of triangular facets, that some authors associated to the presence of a SW-dipping normal fault. The geological studies allow us to interpret the shallow ERTs results obtaining a resistivity range for each Quaternary sedimentary deposit. The tomographies showed the geometrical relationships of alluvial and slope deposits, having a maximum thickness of 30-40 m, and the morphology of the bedrock. The resistivity range obtained for each sedimentary body has been used for calibrating the tomographic results of one 3560m-long deep ERT carried out across the deeper part of the intramountain depression with an investigation depth of about 170 m. The deep resistivity result highlighted the complex alluvial setting, characterized by alternating fine grained lacustrine deposits and coarser gravelly fluvial sediments.
    Description: This work was partially funded by INGV-DPC grant to P. Burrato and A. Siniscalchi (Project S2, Research Units 2.4 and 2.16, respectively).
    Description: Published
    Description: 213-223
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: shallow ERT ; deep ERT ; Ufita River valley ; southern Apennines ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...