ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology  (3)
  • Taylor & Francis Group  (2)
  • American Institute of Physics (AIP)
  • Nature Publishing Group
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: High-resolution digital topography is essential for land management and planning in any type of territory as well as the reproduction of the Earth surface in a geocoded digital format that allows several Digital Earth applications. In a volcanic environment, Digital Elevation Models are a valid reference for multi-temporal analyses aimed to observe frequent changes of a volcano edifice and for the relative detailed morphological and structural analyses. For the first time, a DTM (Digital Terrain Model) and a DSM (Digital Surface Model) covering the entire Mt. Etna volcano (Italy) derived from the same airborne Light Detection and Ranging (LiDAR) are here presented. More than 250 million 3D LiDAR points have been processed to distinguish ground elements from natural and anthropic features. The end product is the highly accurate representation of Mt. Etna landscape (DSM) and ground topography (DTM) dated 2005. Both models have a high spatial resolution of 2 m and cover an area of 620 km(2). The DTM has been validated by GPS ground control points. The vertical accuracy has been evaluated, resulting in a root-mean-square-error of +/- 0.24 m. The DTM is available as electronic supplement and represents a valid support for various scientific studies.
    Description: This work was partially supported by the Ministero dell’Istruzione, Università e Ricerca through the Italian Project FIRB FUMO ‘Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali’.
    Description: Published
    Description: 710-732
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: LiDAR ; GPS ; DEM ; Etna ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Geomorphometric parameters (slope, aspect, valley depth, and areal density of cones) derived from a moderate resolution digital elevation model with a grid spacing of 100 m are used in an attempt to interpret the tectonic/structural features related to surface deformation in the Auca Mahuida volcanic terrain (Neuquén Basin, Argentina). The Auca Mahuida (2.03–0.88 Ma) is the southernmost volcanic field of the Payenia volcanic province, in the Andean foreland. The foreland is subjected to an E–W compression related to the eastward migration of the N–S striking thrust front of the Andes. The geomorphometric analysis indicates that the Auca Mahuida consists of a basal, E–W elongated lava field with monogenic vents and a summit, polygenic, also E–W elongated, cone. A N100◦E striking fault controls the southern flank of the field, which is also affected by scarps related to erosional and gravity-controlled processes. The drainage network shows a pseudo-radial pattern around the summit cone, and the Auca Mahuida’s deepest valley is structurally controlled by a NNW–SSE striking fault affecting the sedimentary basement. The volcanic field lies on a NE to E dipping substratum. The areal distribution of the monogenic cones is consistent with ascent of magmas along E–W striking fractures, and with elastic models of a pressurized hole (magma chamber) subjected to an E–W compression. At Auca Mahuida, the ascent of melts from the mantle is controlled, in the overriding crust, by tectonic structures formed in response to the E–W compression of the Andes.
    Description: INGV abd YPF
    Description: Published
    Description: 1469-1480
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: geomorphology ; volcanism ; tectonics ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...