ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Etna  (9)
  • MISCELLANEA INGV  (6)
  • Geological Society of America  (3)
  • American Institute of Physics (AIP)
  • Periodicals Archive Online (PAO)
  • Springer Science + Business Media
Collection
Publisher
  • 1
    Publication Date: 2022-10-28
    Description: In volcanic observatories worldwide, geophysical and geochemical data are usually collected remotely, providing continuous information about the state of volcanoes even in unfavorable conditions with respect to visibility and access to the area of eruptive centers. Early stages of unrest can be detected with high reliability; nonetheless, style and, in particular, intensity of eruptions are diffcult to predict. Consequently, it turns out important to identify critical moments after which the development of a paroxysmal activity becomes highly probable. In this perspective, we exploit a machine learning (ML) method for the analysis of seismic data continuously acquired by the permanent seismic network at Etna, Italy. Threshold criteria, which are based on parameters derived from the ML system and the number of stations where changes are detected, have been established with the scope of automatic alert flagging. As mild unrests may continue for weeks and even months, there is the need to adjust the trigger criteria with respect to style and intensity of the impending phenomenon. Our choice of the criteria was guided by so-called “Receive Operation Characteristics” (ROC) curves. These are based on the trade-off between the rate of False Positives and True Positives. With a more sensitive setting one can flag more paroxysms (True Positives); however, this may have the cost to flag an alert, but no paroxysm occurs. Carrying out various tests considering both the signal characteristics and the number of stations where the thresholds were met, we identified robust configurations allowing us to issue an alert of an impending paroxysm, widely avoiding the risk of false warnings. The system we propose here can provide timely and indicative information on possible eruptive scenarios to Civil Protection and other stakeholders. Also, It can be a guide for fixing onset and end-times of paroxysmal phenomena, which are especially helpful when image-based monitoring is hindered, for instance, by meteorological conditions. Finally, if others the possibility to effectively re-analyze long time spans of data recorded in the past.
    Description: This work was designed within the project IMPACT (A multidisciplinary Insight on the kinematics and dynamics of Magmatic Processes at Mt. Etna Aimed at identifying preCursor phenomena and developing early warning sysTems). IMPACT belongs to the Progetti Dipartimentali INGV [DIP7], https://progetti.ingv.it/index.php/it/progetti-dipartimentali/vulcani/impact#informazioni-sul-progetto.
    Description: Published
    Description: Catania (Italy)
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Keywords: Volcanic tremor ; volcano unrest ; Etna ; volcanic hazard ; eruptive activity ; forecasting ; pattern classification ; 04.08. Volcanology ; 04.06. Seismology ; 05.06. Methods ; 05.08. Risk ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: One of the main aims of the WP5 Task 5.1 “Characterization of the threatening phenomena from space and ground” of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project was the analysis of the Mt. Etna eruptive activity from a multidisciplinary perspective. In this paper, we take into account an eruptive event, which offers an intriguing case study to scrutinize the relationships between a few geochemical and geophysical parameters during a long-lasting (15 months) lava emission. The eruption started on 13 May 2008, three days after a lava fountaining, and finished on 6 July 2009. Based on continuous borehole measurements of in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements), we explore the variations of the gas before and during the eruptive activity in the light of local seismic activity, considering volcanic tremor and earthquakes. We can shed light on the dyke intrusion that fed this eruption also exploiting an exceptional point of view, as the station for the Rn flux measurements is located on a fumarole at an altitude of 2950 m above sea level and near (~1 km) the summit active craters. Accordingly, this study offers new insights on the recharging phases that preceded and accompanied the 2008-2009 eruption.
    Description: Published
    Description: Rome, Italy
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: eruptions ; Radon measurements ; seismic activity ; Etna ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-14
    Description: The eastern flank of the Mount Etna stratovolcano is affected by extension and is slowly sliding eastward into the Ionian Sea. The Pernicana fault system forms the border of the northern part of this sliding area. It consists of three E-W–oriented fault sectors that are seismically active and characterized by earthquakes up to 4.7 in magnitude (M) capable of producing ground rupture and damage located mainly along the western and central sectors, and by continuous creep on the eastern sector. A new topographic study of the central sector of the Pernicana fault system shows an overall bell-shaped profile, with maximum scarp height of 35 m in the center of the sector, and two local minima that are probably due to the complex morphological relation between fault scarp and lava flows. We determined the ages of lava flows cut by the Pernicana fault system at 12 sites using cosmogenic 3He and 40Ar/39Ar techniques in order to determine the recent slip history of the fault. From the displacementage relations, we estimate an average throw rate of ~2.5 mm/yr over the last 15 k.y. The slip rate appears to have accelerated during the last 3.5 k.y., with displacement rates of up to ~15 mm/yr, whereas between 3.5 and 15 ka, the throw rate averaged ~1 mm/yr. This increase in slip rate resulted in significant changes in seismicity rates, for instance, decreasing the mean recurrence time of M ≥ 4.7 earthquakes from ~200 to ~20 yr. Based on empirical relationships, we attribute the variation in seismic activity on the Pernicana fault system to factors intrinsic to the system that are likely related to changes in the volcanic system. These internal factors could be fault interdependencies (such as those across the Taupo Rift, New Zealand) or they could represent interactions among magmatic, tectonic, and gravitational processes (e.g., Kīlauea volcano, Hawaii). Given their effect on earthquake recurrence intervals, these interactions need to be fully assessed in seismic hazard evaluations.
    Description: Published
    Description: 304-317
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: open
    Keywords: Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-21
    Description: Explosive events, lava-fountains and effusions frequently characterize eruptive activity at Etna. Consequently, the town of Catania and many local municipalities are potentially exposed to ash fallout and lava flows. Besides volcanic hazard, earthquakes and landslides affect this volcanic region as well. The Task 5.1 of the European project "MED-SUV'' (Grant Agreement n°. 308665) deals with the observation of these threatening phenomena from space and ground and their characterization and understanding. The Task encompasses six subtasks, which focus on and analyze the aforementioned hazards in terms of their characteristics, duration and spatial dimension: • Test cases for significant eruptive events have been defined by the subtask 5.1.1. The time span from 2005 to 2011 was chosen for its wealth of eruptive episodes and their well-documented evolution; • The mapping of eruptive products from satellite data will allow us the improvement of the interpretation and modeling of the mechanisms of cone-forming and lava flow emplacement. This topic is developed in the subtask 5.1.2; • Multidisciplinary experiments are planned in the subtask 5.1.3, and will be carried out at the North­ East Crater in July 2014; • Another important deliverable is given by tools of data mining proposed by the subtask 5.1.4. These tools will be available for the analysis of parameters of whatever nature (e.g., geochemical, geophysical), providing they are processed in numerical format; • The subtask 5.1.5 provides a characterization of the volcanic plume and eruptive products, with an integrated analysis of atmospheric, satellite and ground-based measurements, which play an important role in ash-cloud dispersal models; • The sub 5.1.6 focuses on landslide susceptibility analysis and zoning. The goal will be to highlight the regional distribution of potentially unstable slopes based on a detailed study of the factors responsible for landslides.
    Description: Published
    Description: Nicolosi (Catania), Italy
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: Etna ; volcanic activity ; threatening phenomena ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Continuous monitoring at Mt. Etna volcano usually unveils remarkable changes in geophysical and geochemical parameters before the onset of volcanic activity. However, signals of apparent impending volcanic unrest are sometimes recorded without being followed by any eruption. Based on data acquired by the permanent monitoring networks run by INGV, we present cases of "failed eruptions" at Mt Etna from February to April 2007. In the time span analyzed, there were recurrent seismic unrest episodes in the form of enhancements of the volcanic tremor amplitude, which did not culminate in eruptive activity. To explain the origin of these variations, we propose a multidisciplinary study, in which we analyze plume S02 flux, in­ soil radon and ambient parameters (pressure and temperature), thermal and volcanic tremor data. A pattern classification method based on Kohonen maps and fuzzy clustering sheds further light on changes in volcanic tremor, radon and ambient parameters. Overall, we conclude that the variations observed were the results of episodes of gas pulses and/or rock fracturing. The fluid pressure build up allowed upraise of magma batches that generally failed to reach the surface. Actually, only two "real eruptions" (with short­-lived lava fountains on March 29 and April 10-11) occurred during the studied period. In summary, the application of unsupervised classification techniques to volcanic tremor, radon data and ambient parameters represent a promising tool for the surveillance of active volcanoes.
    Description: Published
    Description: Nicolosi (Catania), Italy
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: Etna ; data mining ; seismic data ; thermal data ; SO2 flux ; in-situ Radon measurement ; failed eruption ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: In the framework of MED-SUV, WP5 is in charge of studying Mt. Etna's volcanic activity. We defmed periods and phenomena of the volcano activity to be used by the WP5 partners as Test Cases in the time window 2005-2011 i.e. that of the data available in the MED-SUV database. Overall, characterisation of eruptive activity and/or periods of quiescence will improve our knowledge on the geophysical and geochemical processes taking place inside Mt. Etna's volcanic system. These processes to be characterized include: • magma formation and evolution, • conditions of storage and transfer of magma in reservoirs at different levels within the crust; • physical and chemical interaction of magma with surrounding rocks and fracture/fault systems and their effects at the surface; • opening of eruptive vents/fissures as well as eruptive processes (including the formation and evolution of lava fields, volcanic plumes, pyroclastic fallout, etc.). The joint effort around the Test Cases will help the WP5 team addressing key questions such as: • what has determined changes of Mt. Etna eruptive style (mainly effusive vs. short-lasting, frequent paroxysmal events) in the last decades? • how is the shallow plumbing system (-1-4 km from the summit) structured? What are the processes occurring in this portion of the volcano feeding system and the key parameters controlling these processes? How does magma behave at shallow depths? • what is the suitability of cross-correlated parameters/models for shedding light on the relationship between shallow (〈5-6 km) earthquakes of the eastern flank ofMt. Etna and volcanic activity (if any)? For such questions, analysing carefully the periods of "quiescence" that precede eruptions is not less important than analyzing the eruptions themselves.
    Description: Published
    Description: Nicolosi (Catania), Italy
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: open
    Keywords: Etna ; volcanic activity ; test cases ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-03
    Description: A multidisciplinary approach based on image analysis of seismic signals, thermodynamics and mass balance has been here adopted to find quantitative relations between magma degassing at depth and the transition from Strombolian activity to lava fountaining for a set of paroxysmal eruptions occurred at Mt. Etna volcano in March-April 2013. The image processing of the seismogram allows handling of a huge quantity of data, providing a tool for the simple extraction of numerical values. We propose a model based on the consideration that gas outbursts are a vehicle of the transfer of energy tracked by seismic signals during the uprising of magma. Thus, the simple assumption of a relation of proportionality between the energy of the seismic signal and the mass of exsolved gas allows us to interpret transitions of the eruptive style as due to the amount of undegassed magma recharging the feeding system. Changes of this recharge rate in the range of 1:20 control the evolution of the eruptive process, and are evidence for the limited area section of the feeding conduit. Being this transition process observed in volcanic regions worldwide, the model can be successfully applied to other basaltic volcanoes. Furthermore, the image analysis technique may be applied to other contexts in which the interpretation of seismograms is necessary.
    Description: Published
    Description: Nicolosi (Catania), Italy
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: Etna ; magma degassing ; modelling ; image processing ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Although ~50 radiometric age analyses have been performed on Etna, and there are many historical references, these are not enough to temporally constrain the geo- logical evolution of the volcano. In particular, a new stratigraphic framework based on lithostratigraphic and unconformity-bounded units has pointed out the presence of some stratigraphic uncertainty that can be resolved only with radiometric dating. For this reason, a dating project applying the 40 Ar/ 39 Ar incremental heating technique started in 2002. The results obtained improve our understanding and provide con- straints for Etna’s geological evolution; in addition, they show that the applied tech- nique is very useful for dating young basalts and quantifying the hiatus represented by unconformities, as well as for understanding their meaning.
    Description: Published
    Description: 241-248
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: restricted
    Keywords: Ar/Ar dating ; Etna ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: During May 2001 we acquired 2016 thermal images over an ~8-h-long period for a section of active lava channel on Mount Etna (Italy). We used these to extract surface temperature and heat-loss profi les and thereby calculate core cooling rates. Flow surface temperatures declined from ~1070 K at the vent to ~930 K at 70 m. Heat losses were dominated by radiation (5 × 104 W m2) and convection (~104 W/m2). These compare with a heat gain from crystallization of 6 × 103 W/m2. The imbalance between sinks and sources gives core cooling (δT/δx) of ~110 K/km. However, cooling rate per unit distance also depends on fl ow conditions, where we distinguished: (1) unimpeded, high-velocity (~0.2 m/s) fl ow with low δT/δx (0.3 K/m); (2) unimpeded, low-velocity (~0.1 m/s) fl ow with higher δT/δx (0.5 K/m); (3) waning, insulated fl ow at low velocity (~0.1 m/s) with low δT/δx (0.3 K/m); and (4) impeded fl ow at low velocity (〈0.1 m/s) with higher δT/δx (0.4 K/m). Our data allow us to defi ne three thermal states of fl ow emplacement: insulated, rapid, and protected. Insulated is promoted by the formation of hanging blockages and coherent roofs. During rapid emplacement, higher velocities suppress cooling rates, and δT/δx can be tied to mean velocity (Vmean) by δT/δx = aVmean –b. In the protected case, deeper, narrow channels present a thermally effi cient channel, where δT/δx can be assessed using the ratio of channel width (w) to depth (d) in w/d = aδT/δx–b.
    Description: Published
    Description: 125-146
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: reserved
    Keywords: lava channel ; Etna ; heat loss ; cooling ; viscosity ; velocity ; FLIR ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...