ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04.08. Volcanology  (4)
  • Astronomie
  • EGU - Copernicus  (3)
  • American Geophysical Union (AGU)
  • MDPI Publishing
  • Springer Science + Business Media
  • 1
    Publikationsdatum: 2024-03-13
    Beschreibung: In mid-September 2021 there was a rapid increase in geophysical and geochemical parameters on the island of Vulcano, Italy, reaching alarming values. This phase of unrest aroused serious concern among Civil Protection, local authorities and the scientific community due to the risk of phreatomagmatic activity, with potentially serious repercussions on the inhabitants of the island and on visiting tourists. The beginning of the unrest was marked by a high occurrence rate of local micro-seismicity related to fluid dynamics within the shallower hydrothermal system (mainly Long Period and Very Long Period events); Volcano-Tectonic (VT) earthquakes increased in late October after most of the monitored parameters reached their climax. Afterwards, major episodes of VT activity were also recorded from March to April and at the end of the year 2022, when an earthquake of ML 4.6 occurred on December 4, SW of the island of Vulcano. Here, we analyze the VT earthquakes from January 2020 to December 2022, in terms of space-time distribution, energy release and focal mechanisms in the framework of the regional geodynamic context and in the light of the main characteristics of the seismic activity recorded in the Vulcano area over the past 36 years.
    Beschreibung: Published
    Beschreibung: San Francisco, California, USA
    Beschreibung: OST3 Vicino alla faglia
    Schlagwort(e): earthquakes ; monitoring ; volcano unrest ; Vulcano ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-01-19
    Beschreibung: Excessive numerical diffusion is one of the major limitations in the representation of long-range transport by chemistry transport models. In the present study, we focus on excessive diffusion in the vertical direction, which has been shown to be a major issue, and we explore three possible ways of addressing this problem: increasing the vertical resolution, using an advection scheme with anti-diffusive properties and more accurately representing the vertical wind. This study was carried out using the CHIMERE chemistry transport model for the 18 March 2012 eruption of Mount Etna, which released about 3 kt of sulfur dioxide into the atmosphere in a plume that was observed by satellite instruments (the Infrared Atmospheric Sounding Interferometer instrument, IASI, and the Ozone Monitoring Instrument, OMI) for several days. The change from the classical Van Leer (1977) scheme to the Després and Lagoutière (1999) anti-diffusive scheme in the vertical direction was shown to provide the largest improvement to model outputs in terms of preserving the thin plume emitted by the volcano. To a lesser extent, the improved representation of the vertical wind field was also shown to reduce plume dispersion. Both of these changes helped to reduce vertical diffusion in the model as much as a brute-force approach (increasing vertical resolution).
    Beschreibung: Published
    Beschreibung: 5707–5723
    Beschreibung: 5V. Processi eruttivi e post-eruttivi
    Beschreibung: JCR Journal
    Schlagwort(e): 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-11-25
    Beschreibung: The equilibrium composition of volcanic gaseswith their magma is often overprinted by interaction with ashallow hydrothermal system. Identifying the magmatic sig-nature of volcanic gases is critical to relate their composi-tion to properties of the magma (temperature,fO2, gas-meltsegregation depth). We report measurements of the chemi-cal composition and flux of the major gas species emittedfrom Turrialba Volcano during March 2013. Measurementswere made of two vents in the summit region, one of whichopened in 2010 and the other in 2012. We determined an av-erage SO2flux of 5.2±1.9 kg s−1using scanning ultravio-let spectroscopy, and molar proportions of H2O, CO2, SO2,HCl, CO and H2gases of 94.16, 4.03, 1.56, 0.23, 0.003 and0.009 % respectively by open-path Fourier transform infrared(FTIR) spectrometry and a multi-species gas-sensing system.Together, these data imply fluxes of 88, 8, 0.44, 5×10−3and1×10−3kg s−1for H2O, CO2, HCl, CO and H2respectively.Although H2S was detected, its concentration could not beresolved. HF was not detected. The chemical signature of thegas from both vents was found to be broadly similar. Follow-ing the opening of the 2010 and 2012 vents we found limitedto negligible interaction of the magmatic gas with the hy-drothermal system has occurred and the gas composition ofthe volcanic plume is broadly representative of equilibriumwith the magma. The time evolution of the gas composition,the continuous emission of large quantities of SO2, and thephysical evolution of the summit area with new vent open-ings and more frequent eruptions all point towards a continu-ous drying of the hydrothermal system at Turrialba’s summitat an apparently increasing rate.
    Beschreibung: This research was supported by the RoyalGeographical Society (with IBG) with a Geographical FieldworkGrant. Y. Moussallam and N. Peters were additionally supportedby the Philip Lake funds from the Department of Geography,University of Cambridge. Y. Moussallam acknowledges a researchgrant from Mazamas and support through ERC project #279790.We thank the NERC Field Spectroscopy Facility for the loanof their infrared spectrometer. A. Aiuppa acknowledges supportthrough ERC grant no. 305377 (BRIDGE)
    Beschreibung: Published
    Beschreibung: 1341–1350
    Beschreibung: 4V. Processi pre-eruttivi
    Beschreibung: JCR Journal
    Schlagwort(e): volcanic degassing ; Multi-GAS ; UV spectroscopy ; FTIR ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-10
    Beschreibung: This manuscript presents FALL3D-8.0, the last version release of an open-source code with 15+ years of track record and a growing number of users in the vol- canological and atmospheric communities. The code has been redesigned and rewritten from scratch in the framework of the EU Center of Excellence for Exascale in Solid Earth (ChEESE) in order to overcome legacy issues and allow for successive optimisations that are already planned in the preparation of the code towards extreme-scale computing. However, this baseline version already contains substantial improvements in terms of model physics, solving algorithms, and code accuracy and performance. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. The solving strategy has also been changed, replacing the former central-differences scheme for a high-resolution central-upwind scheme derived from finite volumes, which minimises numerical diffusion even in presence of sharp concentration gradients and discontinuities. The parallelisation strategy, Input/Output (I/O), model pre-process workflows and memory management have also been reconsidered, leading to substantial improvements on code scalability, efficiency, and overall capability to han- dle much larger problems. This paper details the FALL3D-8.0 model physics and the numerical implementation of the code.
    Beschreibung: Published
    Beschreibung: 1431–1458
    Beschreibung: 5V. Processi eruttivi e post-eruttivi
    Beschreibung: JCR Journal
    Schlagwort(e): Atmospheric transport ; Radionuclides ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Journal cover
    Unbekannt
    American Geophysical Union (AGU) | Wiley-Blackwell
    Online: 1(1).2014 –
    Verlag: American Geophysical Union (AGU) , Wiley-Blackwell
    Körperschaft: American Geophysical Union, AGU 〈Washington, DC〉
    Digitale ISSN: 2333-5084
    Thema: Geologie und Paläontologie , Physik
    Schlagwort(e): Geophysik ; Planetologie ; Astronomie
    Akronym/Kurzwort: ESS
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...