ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (6)
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
  • Springer Verlag  (5)
  • American Chemical Society (ACS)
  • Nature Publishing Group
Collection
Years
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group
    Publication Date: 2017-04-04
    Description: One of the key issues in forecasting volcanic eruptions is to detect signals that can track the propagation of dykes towards the surface. Continuous monitoring of active volcanoes helps significantly in achieving this goal. The seismic data presented here are unique, as they document surface faulting processes close (tens to a few hundred meters) to their source, namely the dyke tip. They originated nearby - and under - a seismic station that was subsequently destroyed by lava flows during eruptive activity at Etna volcano, Italy, in 2013. On February 20, a ~600 m-long and ~120 m wide NW-SE fracture field opened at an altitude between 2750 and 2900 m. The consequent rock dislocation caused the station to tilt and offset the seismic signal temporarily. Data acquisition continued until the arrival of the lava flow that led to the breakdown of the transmission system. Shallow ground fracturing and repeated low-frequency oscillations occurred during two stages in which the seismic signal underwent a maximum offset ~2.57 E+04 nm/s. Bridging instrumental recordings, fieldwork and conceptual modelling, these data are interpreted as the seismic footprints of a magmatic dyke intrusion that moved at speed ~0.02 m/s (first stage) and 0.46 m/s (second stage).
    Description: This work was supported by the MED-SUV project, which has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 308665.
    Description: Published
    Description: 11908
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: dyke propagation ; Etna ; seismic signals ; ground fracturing ; conceptual modelling ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Previous studies performed on Mt. Etna on short and discontinuous time intervals indicate the North East Crater (NEC) as the most active source of infrasound. The source mechanism of NEC infrasound events was modeled as a double resonance. This lead to infer the connection between the NEC and both the southeast crater (SEC) and the eruptive fissure (EF), that opened at the beginning of the 2008–2009 eruption. Nevertheless, there are still several open questions that need to be addressed. For instance, the steadiness of NEC event features should be studied, as well as the orderliness of spectral changes of NEC events time-related to eruptive activity of other vents. The investigation of such topics is strongly enhanced by the possibility of analysing infrasound signals during year-long time periods. With this aim about 40,000 infrasound events, recorded at Mt. Etna from August 2007 to December 2009 were analysed by using spectral and location techniques. It was noted in particular that the NEC events featured periods with very steady waveforms and spectral characteristics lasting from days to months with slow or sudden variations. The most important eruptive episodes occurring at the SEC or the EF were accompanied by significant spectral changes in NEC events. In light of such systematic behaviour the connection between the NEC and the SEC/EF plumbing systems was not considered temporary but rather stable even during a relatively long time interval (2006–2009). Moreover, study of NEC event spectral features and their changes over multiple years supports the double resonance source model. Such a model, together with the inferred connections between NEC and SEC/EF feeding systems, implies that level fluctuations of a magma column inside the NEC conduit correspond to magmastatic pressure decrease/increase inside the main plumbing system. These findings open up new and interesting possibilities for monitoring magma pressure changes inside the Mt. Etna plumbing system.
    Description: Published
    Description: 473–490
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Infrasound ; plumbing system geometry ; Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We investigated the Campi Flegrei caldera using a quantitative approach to retrieve the spatial and temporal variations of the stress field. For this aim we applied a joint inversion of geodetic and seismological data to a dataset of 1,100 optical levelling measurements and 222 focal mechanisms, recorded during the bradyseismic crisis of 1982–1984. The inversion of the geodetic dataset alone, shows that the observed ground deformation is compatible with a source consisting of a planar crack, located at the centre of the caldera at a depth of about 2.56 km and a size of about 4 × 4 km. Inversion of focal mechanisms using both analytical and graphical approaches, has shown that the key features of the stress field in the area are: a nearly subvertical σ 1 and a sub-horizontal, roughly NNE-SSW trending σ 3. Unfortunately, the modelling of the stress fields based only upon the retrieved ground deformation source is not able to fully account for the stress pattern delineated by focal mechanism inversion. The introduction of an additional regional background field has been necessary. This field has been determined by minimizing the difference between observed slip vectors for each focal mechanism and the theoretical maximum shear stress deriving from both the volcanic (time-varying) and the regional (constant) field. The latter is responsible for a weak NNE-SSW extension, which is consistent with the field determined for the nearby Mt. Vesuvius volcano. The proposed approach accurately models observations and provides interesting hints to better understand the dynamics of the volcanic unrest and seismogenic processes at Campi Flegrei caldera. This procedure could be applied to other volcanoes experiencing active ground deformation and seismicity.
    Description: Published
    Description: 3247–3263
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Stress field inversion ; Campi Flegrei ; volcano deformation ; volcanic seismicity ; joint inversion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Volcanoes generate a broad range of seismo-volcanic and infrasonic signals, whose features and variations are often closely related to volcanic activity. The study of these signals is hence very useful in the monitoring and investigation of volcano dynamics. The analysis of seismo-volcanic and infrasonic signals requires specifically developed techniques due to their unique characteristics, which are generally quite distinct compared with tectonic and volcano-tectonic earthquakes. In this work, we describe analysis methods used to detect and locate seismo-volcanic and infrasonic signals at Mt. Etna. Volcanic tremor sources are located using a method based on spatial seismic amplitude distribution, assuming propagation in a homogeneous medium. The tremor source is found by calculating the goodness of the linear regression fit (R2) of the log-linearized equation of the seismic amplitude decay with distance. The location method for long-period events is based on the joint computation of semblance and R2 values, and the location method of very long-period events is based on the application of radial semblance. Infrasonic events and tremor are located by semblance–brightness- and semblance-based methods, respectively. The techniques described here can also be applied to other volcanoes and do not require particular network geometries (such as arrays) but rather simple sparse networks. Using the source locations of all the considered signals, we were able to reconstruct the shallow plumbing system (above sea level) during 2011.
    Description: Published
    Description: 1751-1771
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic tremor ; LP events ; VLP events ; infrasound ; Mt. Etna ; source location ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We carried out a study of the seismicity and ground deformation occurring on Mount Etna volcano after the end of 2002-2003 eruption and before the onset of 2004-2005 eruption. Data were recorded by the permanent local seismic network run by Istituto Nazionale di Geofisica e Vulcanologia –Sezione di Catania and by the geodetic surveys carried out in July 2003 and July 2004 on the GPS network. Most of the earthquakes are grouped in two main clusters located in the northeastern and southeastern sectors of the volcano. Furthermore, the areal distribution of seismic energy associated with the recorded earthquakes allowed us to highlight the main seismogenic areas of Mt. Etna. In order to better understand the kinematic processes of the volcano, 3D seismic locations were used to compute fault plane solutions and a selected dataset was inverted to determine stress and strain tensors. The focal mechanisms, in the northeastern sector, show a clear left-lateral kinematic along an E-W fault plane, in good agreement with the Pernicana Fault system. The fault plane solutions, in the southeastern sector, show a main right-lateral kinematics along a NE-SW fault plane suggesting a roughly E-W oriented compression. Surface ground deformation affecting Mt. Etna and measured by GPS surveys highlighted a marked inflation during the same period and exceptionally strong seawards motion of its eastern flank. The 2D geodetic strain tensor distribution was calculated and the results evidenced a main ENE-WSW extension coupled with a WNW-ESE contraction, indicating a right-lateral shear along a NW-SE oriented fault plane. The different deformation of the eastern sector of the volcano, as measured by seismicity and ground deformation, must be interpreted by considering the different depths of the two signals. Seismic activity along the NW-SE alignment is, in fact, located between 3 and 8 km b.s.l. and it is then affected by the very strong additional E-W compression induced by the pressurizing source located by inverting GPS data just westwards and at the same depth. Ground deformation measured by GPS at the surface, on the contrary, is mainly affected by the shallower dynamics of the eastern flank, fast moving towards East, that produces an opposite (extension) shallower E-W strain. The entire dataset shows that two different processes affect the eastern flank at the same time but at different depths; the boundary is clearly located at a depth of 3 km and could represent the decollement surface of the mobile flank.
    Description: Published
    Description: 869-885
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano ; Inter-eruptive seismicity ; Earthquake location ; fault plane solutions ; Seismogenic stress ; Seismic strain ; geodetic strain ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Algorithms searching for similar patterns are widely used in seismology both when the waveforms of the events of interest are known and when there is no a priori-knowledge. Such methods usually make use of the cross-correlation coefficient as a measure of similarity; if there is no a-priori knowledge, they behave as brute-force searching algorithms. The disadvantage of these methods, preventing or limiting their application to very large datasets, is computational complexity. The Mueen–Keogh (MK) algorithm overcomes this limitation by means of two optimization techniques—the early abandoning concept and space indexing. Here, we apply the MK algorithm to amplitude time series retrieved from seismic signals recorded during episodic eruptive activity of Mt Etna in 2011. By adequately tuning the input to the MK algorithm we found eight motif groups characterized by distinct seismic amplitude trends, each related to a different phenomenon. In particular, we observed that earthquakes are accompanied by sharp increases and decreases in seismic amplitude whereas lava fountains are accompanied by slower changes. These results demonstrate that the MK algorithm, because of its particular features, may have wide applicability in seismology.
    Description: Published
    Description: 529-545
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Motif discovery ; pattern recognition ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...