ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (4)
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology  (1)
  • SEISMOLOGICAL SOC AMER  (3)
  • American Chemical Society (ACS)
  • Nature Publishing Group
Collection
Years
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group
    Publication Date: 2017-04-04
    Description: One of the key issues in forecasting volcanic eruptions is to detect signals that can track the propagation of dykes towards the surface. Continuous monitoring of active volcanoes helps significantly in achieving this goal. The seismic data presented here are unique, as they document surface faulting processes close (tens to a few hundred meters) to their source, namely the dyke tip. They originated nearby - and under - a seismic station that was subsequently destroyed by lava flows during eruptive activity at Etna volcano, Italy, in 2013. On February 20, a ~600 m-long and ~120 m wide NW-SE fracture field opened at an altitude between 2750 and 2900 m. The consequent rock dislocation caused the station to tilt and offset the seismic signal temporarily. Data acquisition continued until the arrival of the lava flow that led to the breakdown of the transmission system. Shallow ground fracturing and repeated low-frequency oscillations occurred during two stages in which the seismic signal underwent a maximum offset ~2.57 E+04 nm/s. Bridging instrumental recordings, fieldwork and conceptual modelling, these data are interpreted as the seismic footprints of a magmatic dyke intrusion that moved at speed ~0.02 m/s (first stage) and 0.46 m/s (second stage).
    Description: This work was supported by the MED-SUV project, which has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 308665.
    Description: Published
    Description: 11908
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: dyke propagation ; Etna ; seismic signals ; ground fracturing ; conceptual modelling ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-30
    Description: Mt. Vesuvius (southern Italy) is one of the volcanoes that poses the greatest risk in the world because of its highly explosive eruptive style and its proximity to densely populated areas. The urbanization around Mt. Vesuvius began in ancient times, and the impact of eruptions on human activities has been severe. This is testified to by the ruins of Pompeii, which are covered by the products of the plinian eruption that took place in A.D. 79 (Sigurdsson et al. 1985), and more recently by the published reports of the eruptions that occurred from 1631 to 1944. For these reasons, Mt. Vesuvius was also one of the first volcanoes to be equipped with monitoring instruments. Pioneering instrumental observations began just before the second half of the 1800s, when the Vesuvius Observatory was founded in 1841 (Imbò 1949). At that time, Vesuvius was very active (Ricciardi 2009), and its effusive and explosive eruptions often caused damage to the surrounding areas. At the same time, it was a famous tourist attraction that drew travelers from all over the world (Gasparini and Musella 1991). Since the middle of the 1800s, at least 12 eruptions have occurred that have been superimposed on persistent intra-crater activity that has been characterized by Strombolian explosions and by the formation of small lava lakes. The last eruption occurred on 18 March 1944 and marked a change in the status of Mt. Vesuvius, as it entered a closed-conduit phase that persists today. Following this last eruption, a change occurred in the 1960s, as documented by an increase in the occurrence rate of earthquakes. Since 1972, the monitoring of Mt. Vesuvius has improved over time and become more systematic, so that there is a remarkable dataset relating to the current phase of quiescence. Over more than a century and a half of observations, many monitoring instruments have been used for Mt. Vesuvius, including early seismometers, several of which are now kept in the Museum of Volcanology of the Vesuvius Observatory. The present monitoring system is based on seismological, geodetical geodetical, and geochemical observations performed using an instrumental network that was designed on the basis of the current state of the volcano while also taking into account the likely scenario of future unrest.
    Description: Published
    Description: 625-634
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Seismological Monitoring ; Mount Vesuvius ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We propose a method for analyzing the polarization of three-component digital recordings using the discrete wavelet transform (DWT). This method allows for the automatic detection and separation of seismic phases that have a coherent linear or elliptical polarization. It can be correctly used in the analysis of seismic signals relating to volcanic activity because they arise from a complex wave field that consists of near-field and far-field components that have frequency-dependent polarization. First, the analytic extension of the signal is decomposed using DWT, then each single component is used to determine a local complex polarization vector in the timescale domain. This analysis reveals the presence of seismic phases with coherent polarization over a range of DWT scales and finite temporal intervals. Using the orthogonality property of the DWT, it is possible to isolate a single coherent component, reconstructing it in the time domain and computing the full polarization tensor. This procedure can be fully automated, introducing a quantitative definition of wavelet polarization coherence on the DWT dyadic grid. A recursive algorithm (called POLWAV) starts from the wavelet coefficient with the highest modulus, and then selects all of the neighbors that show coherence with it above a given threshold. We show how the POLWAValgorithm can be used for separating wave-field components and for detecting coherent seismic phases on continuous recordings. Example applications to actual seismic recordings at Stromboli Volcano (Tyrrhenian Sea) are presented.
    Description: Published
    Description: 670–683
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Polarization Analysis ; Discrete Wavelet Domain ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The surface-wave field associated with the explosive activity at Stromboli volcano is investigated using data recorded by two short-period seismic arrays, deployed on the north and west flanks of the volcano. The group-velocity dispersion curves for Rayleigh waves are derived using the multiple filter technique. The phasevelocity dispersion curves are recovered using a phase match filter and compared with that inferred from zero-lag cross-correlation analysis applied to the array data. These analyses indicate Rayleigh-wave group velocities ranging from 0.29 to 0.24 km/sec in the 1.5- to 8.0-Hz frequency band, and phase velocities ranging from 1 km/sec at 1.5 Hz to about 0.3 km/sec at frequencies above 5 Hz. In addition, the dispersive properties of the attenuation coefficient (c) for Rayleigh waves are inferred from application of the multiple filter technique to seismograms recorded at different distances from the source. These results are validated through examination of the spectral amplitude decay with distance for both body and Rayleigh waves. The values of the body-wave quality factor thus obtained are Qa=20 and Qa=6 for the north and west side of the island, respectively. The velocity and attenuation dispersion curves are inverted for the shear-wave velocity and Qb structures down to a depth of about 200 m. Shear-wave velocities for the west flank range from about 0.3 km/ sec for the uppermost 17-m-thick layer to 1.9 km/sec at depths greater than 200 m. Comparison with previous studies indicates a similar velocity structure for the north and west flanks. The attenuation structure for the west flank is described by a shallower, 36-m-thick layer with Qb=9, underlain by a half-space with Qb=50. On the north flank, Qb=40 for the shallower 30-m-thick layer and Qb=44 for the underlying half-space. Residuals from analysis of the spectral decay with distance are used to quantify site effects affecting the different array elements on the west flank. Local amplifications at that array are interpreted in terms of an edge effect associated with concave topography. Velocity similarities observed at the north and west flanks are compatible with surface geologic data. Discrepancies in attenuation properties at the two sites are interpreted in terms of different degrees of heterogeneity and crack density controlling the scattering quality factor Qs.
    Description: Published
    Description: 1102-1116
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; sesimic attenuation ; velocity model ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...