ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (24)
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
  • Data analysis / ~ processing
  • Textbook of informatics
  • Elsevier Science Limited  (20)
  • AGU  (16)
  • Wiley  (10)
  • American Institute of Physics (AIP)
  • Nature Publishing Group
  • Periodicals Archive Online (PAO)
Collection
Keywords
Publisher
  • 1
    Publication Date: 2017-04-04
    Description: Episodic aseismic slip events have recently been detected at a variety of tectonic and volcanic environments, sparking the curiosity of seismic and geodetic communities. Here, a sequence of 7 slow slip events occurring at Mt. Etna since mid-2009 has been analyzed. Observed displacement fields evidence that the sequence involves two contiguous sectors of the unstable eastern flank, delimited by the Timpe faults. The tectonic control played by these faults can also be recognized on the long-term (2003–2015) velocity field. Elastic modelling of the long-term velocity field infers a sub-horizontal plane slightly dipping eastward and located within the sedimentary basement at shallow depth. Slip distribution models for each slow-slip event highlight how the largest slip values were centred on the SE edge of the sub-horizontal plane during 4 events and on the NE edge during the remaining 3 ones. The recognized events do not appear correlated with volcanic activity, although there is a possible correlation between slow-slip events and inflating episodes of the volcano.
    Description: Published
    Description: 8-14
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Slow slip event ; Unstable flank ; Decollement ; Distributed slip model ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-08
    Description: A combined GPS velocity solution covering a wide area from Egypt to Middle East allowed us to infer the current rates across the main, already well known, tectonic features. We have estimated 126 velocities from time series of 90 permanent and 36 non permanent GPS sites located in Africa (Egypt), Eurasia and Arabia plates in the time span 1996–2015, the largest available for the Egyptian sites. We have combined our velocity solution in a least-squares sense with two other recent velocity solutions of networks located around the eastern Mediterranean, obtaining a final IGb08 velocity field of about 450 sites. Then, we have estimated the IGb08 Euler poles of Africa, Sinai and Arabia, analyzing the kinematics of the Sinai area, particular velocity profiles, and estimating the 2D strain rate field. We show that it is possible to reliably model the rigid motion of Sinai block only including some GPS sites located south of the Carmel Fault. The estimated relative motion with respect to Africa is of the order of 2–3 mm/yr, however there is a clear mismatch between the modeled and the observed velocities in the southern Sinai sites. We have also assessed the NNE left shear motion along the Dead Sea Transform Fault, estimating a relative motion between Arabia and Africa of about 6 mm/yr in the direction of the Red Sea opening.
    Description: Published
    Description: 231-238
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Africa; Arabia; Sinai; Gulf of Aqaba; Gulf of Suez; GPS; Combined velocity field; Euler poles ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-25
    Description: In this paper, the relationship between the dike-forming magmatic intrusions and the faulting process at Mount Etna is investigated in terms of Coulomb stress changes. As case study, a complete time-dependent 3-D finite element model for the 2002-2003 eruption at Mount Etna is presented. In the model, which takes into account the topography, medium heterogeneities and principal fault systems in a viscoelastic/plastic rheology, we sequentially activated three dike-forming processes and looked at the induced temporal evolution of the Coulomb stress changes, during the co-intrusive and post-intrusive periods, on Pernicana and Santa Venerina faults. We investigated where and when fault slips were encouraged or not, and consequently how earthquakes may have been triggered. Results show positive Coulomb stress changes for the Pernicana Fault in accordance to the time, location and depth of the 27th October 2002 Pernicana earthquake (Md = 3.5). The amount of Coulomb stress changes in the area of Santa Venerina Fault, as induced by dike-forming intrusions only, is instead almost negligible and, probably, not sufficient to trigger the 29th October Santa Venerina earthquake (Md = 4.4), occurred two days after the start of the eruption. The necessary Coulomb stress change value to trigger this earthquake is instead reached if we consider it as induced by the 27th October Pernicana biggest earthquake, combined with the dike-induced stresses.
    Description: MED-SUV FP7 Project (Grant number 308665)
    Description: Published
    Description: 185-196
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Coulomb stress changes ; Finite Element Model ; Viscoelasticity ; Earthquakes ; Mount Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-12
    Description: Slip rate is a critical parameter for describing geologic and earthquake rates of known active faults. Although faults are inherently three-dimensional surfaces, the paucity of data allows for estimating only the slip rate at the ground surface and often only few values for an entire fault. These values are frequently assumed as proxies or as some average of slip rate at depth. Evidence of geological offset and single earthquake displacement, as well as mechanical requirements, show that fault slip varies significantly with depth. Slip rate should thus vary in a presumably similar way, yet these variations are rarely considered. In this work, we tackle the determination of slip rate depth distributions by applying the finite element method on a 2D vertical section, with stratification and faults, across the central Apennines, Italy. In a first step, we perform a plane-stress analysis assuming visco-elasto-plastic rheology and then search throughout a large range of values to minimize the RMS deviation between the model and the interseismic GPS velocities. Using a parametric analysis, we assess the accuracy of the best model and the sensitivity of its parameters. In a second step, we unlock the faults and let the model simulate 10 kyr of deformation to estimate the fault long-term slip rates. The overall average slip rate at depth is approximately 1.1 mm/yr for normal faults and 0.2 mm/yr for thrust faults. A maximum value of about 2 mm/yr characterizes the Avezzano fault that caused the 1915, Mw 7.0 earthquake. The slip rate depth distribution varies significantly from fault to fault and even between neighbouring faults, with maxima and minima located at different depths. We found uniform distributions only occasionally. We suggest that these findings can strongly influence the forecasting of cumulative earthquake depth distributions based on long-term fault slip rates.
    Description: Project “Abruzzo” (code: RBAP10ZC8K_ 003) funded by the Italian Ministry of Education, University and Research (MIUR).
    Description: Published
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: slip rate ; numerical model ; fault ; rheology ; central Italy ; active tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  This work has been supported by the Spanish MINECO research projects AYA2010-17448 and ESP2013-47780-C2-1-R. It is a contribution for the Moncloa Campus of International Excellence.
    Publication Date: 2017-04-04
    Description: A spatially dense GNSS-based crustal velocity field for the Iberian Peninsula and Northern Africa allow us to provide new insights into two main tectonic processes currently occurring in this area. In particular, we provide, for the first time, clear evidence for a large-scale clockwise rotation of the Iberian Peninsula with respect to stable Eurasia (Euler pole component: N42.612°, W1.833°, clockwise rotation rate of 0.07 deg/Myr). We favour the interpretation that this pattern reflects the quasi-continuous straining of the ductile lithosphere in some sectors of South and Western Iberia in response to viscous coupling of the NW Nubia and Iberian plate boundary in the Gulf of Cádiz. We furnish evidence for a fragmentation of the western Mediterranean basin into independent crustal tectonic blocks, which are delimited by inherited lithospheric shear structures. Among these blocks, an (oceanic-like western) Algerian one is currently transferring a significant fraction of the Nubia-Eurasia convergence rate into the Eastern Betics (SE Iberia) and likely causing the eastward motion of the Baleares Promontory. These processes can be mainly explained by spatially variable lithospheric plate forces imposed along the Nubia-Eurasia convergence boundary.
    Description: Published
    Description: 439-447
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: GNSS velocity field ; crustal rotation ; quasi-continuous straining ; Iberia ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Using a multidisciplinary dataset based on gravimetric, seismic, geodetic and geological observations,we provide an improved picture of the shallow structure and dynamics of the southern edge of the Tyrrhenian subduction zone.With a local earthquake tomographywe clearly identify twomain crustal domains in the upper 15 kmcharacterized by different P-wave velocity values: a high-velocity domain comprising southeasternmost Tyrrhenian Sea, NE Sicily and Messina Straits, and a low-velocity domain comprising Mt. Etna and eastern Sicily. The transition between the two domains shows a good spatial correspondence with a wider set of faults including the Taormina Fault System (TFS) and the Aeolian–Tindari–Letojanni Fault System (ATLFS), two nearly SE-striking fault systems crossing northeastern Sicily and ending on the Ionian shoreline of Sicily according to many investigators. Within this set of faults, most of the deformation/seismicity occurs along the northern and central segments of ATLFS, compared to lowactivity along TFS. A lack of seismicity (both recent and historical) is observed in the southern sector of ATLFS where, however, geodetic data reveal significant deformation. Ourmultidisciplinary dataset including offshore observations suggests the southeastward continuation of the ATLFS into the Ionian Sea until joiningwith the faults cutting the Ionian accretionarywedge described in the recent literature. Our findings imply the existence of a highly segmented crustal shear zone extending from the Aeolian Islands to the Ionian Abyssal plain, that we believe plays the role of accommodating differential motion between the Southern Tyrrhenian unit and the western compressional domain of Sicily. The ATLFS, which is a main part of the inferred shear zone, behaves similarly to what often observed at the edges of retreating subduction
    Description: Published
    Description: 205-218
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: subduction edge ; seismic velocity structure ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We document quantitatively observations of quasi-Love waves obtained at permanent (Italian National Seismic Network) and temporary seismic stations deployed in Italy between 2003 and 2006 (Retreat, CAT/SCAN projects). We analyzed large earthquakes with source parameters that favor quasi-Love wave generation within this time-span, including the Sumatra–Andaman earthquake of 12/26/04. The presence or the absence of the quasi-Love phase is compared to the smoothed anisotropic pattern defined by the numerous SKS splitting measurements obtained in peninsular Italy, and to the Italian upper mantle structure as defined by seismic tomography. The large-scale anisotropic features, responsible for shear-wave splitting and documented also by Pn and surface-wave anisotropy, generally display the correct geometry to explain the scattered quasi-Love waves. Quasi-Love observations do not demand a tilted-axis anisotropic geometry. We argue instead for anisotropy with laterally-variable horizontal symmetry axis in the upper mantle below the Italian peninsula.
    Description: Published
    Description: 26-38
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic anisotropy ; Quasi-Love ; Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: An automatic analysis code called ANISOMAT+ has been developed and improved to automatically retrieve the crustal anisotropic parameters fast polarization direction (ϕ) and delay time (δt) related to the shear wave splitting phenomena affecting seismic S-wave. The code is composed of a set of MatLab scripts and functions able to evaluate the anisotropic parameters from the three-component seismic recordings of local earthquakes using the cross-correlation method. Because the aim of the code is to achieve a fully automatic evaluation of anisotropic parameters, during the development of the code we focus our attention to devise several automatic checks intended to guarantee the quality and the stability of the results obtained. The basic idea behind the development of this automatic code is to build a tool able to work on a huge amount of data in a short time, obtaining stable results and minimizing the errors due to the subjectivity. These behaviors, coupled to a three component digital seismic network and a monitoring system that performs automatic pickings and locations, are required to develop a real-time monitoring of the anisotropic parameters.
    Description: Published
    Description: 62-68
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: shear wave splitting, Earthquake forecast, Anisotropy, Cross-correlation method ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We use velocity measurements from a network of continuous GPS sites spanning the Apennines of peninsular Italy to test the hypothesis that the active deformation of the region is explained by variations in gravitational potential energy of the lithosphere. The simple geometry of the mountain chain allows us to treat the deformation as two-dimensional, neglecting gradients of velocity along the strike of the chain. Under this assumption, the integral of gravitational potential energy per unit area of the lithosphere (GPE) in the direction perpendicular to the chain is related by a simple expression to the velocity in the same direction. We show that the observed velocities match this expression with an RMS misfit of 0.5 mm/yr. This agreement suggests that deformation of the Apennines reflects a balance, within the mountain chain itself, between lateral variations in GPE and the stresses required to deform the lithosphere. Forces arising from processes external to the belt are not required to explain the observations.
    Description: Published
    Description: 121-132
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Apennines ; tectonics ; gravitational potential energy ; seismic hazard ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Competing geodynamic scenarios proposed for northern Apennines (Italy) make very different predictions for the orientation of strain in the upper mantle. Constraints on the pattern are offered by observations of seismic anisotropy. Previous study of the anisotropy beneath the northern Apennines used birefringence of core-refracted shear waves (SKS phases), and demonstrated the presence of two domains: Tuscan and Adria. In the transition between the two domains, across the Apennines orogen, anisotropy measurements reflect a complex deep structure. To define better the upper-mantle structure beneath this area we analyze seismological data recorded by a set of seismic stations that operated for 3 years, between 2003 and 2006, located in the outer part of the Apennines belt, in the Adria terrane, collected by the RETREAT Project. Directionally distributed sets of SKS records were inverted for layered anisotropic structures with a well-tested method, adding new results to previous hypotheses for this area. New data analysis argues for two-layer anisotropy for sites located on the Apennines wedge and also one site in the Tuscan terrane. Beneath the wedge an upper layer with nearly north-south fast polarization pervades the lithospheric mantle, while at depth a nearly NW–SE Apennines-parallel direction is present in the lower layer. Beneath Tuscany a shallower NW–SE direction and a deeper E–W one suggest the deeper strain from active slab retreat, with a mantle-wedge circulation (i.e. an east–west corner flow), overlain by an Apennines-parallel fast polarization that could be a remnant of lower-crust deformation.
    Description: Published
    Description: 39-51
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Subduction zones ; Seismic anisotropy ; Northern Apennines ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-06-25
    Description: The 11 March 2011 Tohoku earthquake was the strongest event recorded in recent historic seismicity in Japan. Several researchers reported the deformation and possible mechanism as triggered by a mega thrust fault located offshore at the interface between the Pacific and the Okhotsk Plate. The studies to estimate the deformation in detail and the dynamics involved are still in progress. In this paper, coseismic GPS displacements associated with Tohoku earthquake are used to infer the amount of slip on the fault plane. Starting from the fault displacements configuration proposed by Caltech-JPL ARIA group and Geoazur CNRS, an optimization of these displacements is performed by developing a 3D finite element method (FEM) model, including the data of GPS-acoustic stations located offshore. The optimization is performed for different scenarios which include the presence of topography and bathymetry (DEM) as well as medium heterogeneities. By mean of the optimized displacement distribution for the most complete case (heterogeneous with DEM), a broad slip distribution, not narrowly centered east of hypocenter, is inferred. The resulting displacement map suggests that the beginning of the area of subsidence is not at east of MYGW GPS-acoustic station, as some researchers have suggested, and that the area of polar reversal of the vertical displacement is rather located at west of MYGW. The new fault slip distribution fits well for all the stations at ground and offshore and provides new information on the earthquake generation process and on the kinematics of Northern Japan area.
    Description: Published
    Description: 25-39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 2011 Tohoku earthquake ; Fault slip distribution ; Numerical FEM optimization ; Upper plate rebound ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-06-15
    Description: Active deformation in southern Italy is accommodated by a distributed number of faults with low–moderate slip rates. Outcropping extensional faults and mostly blind transcurrent faults are mapped within a western (or axial) and an eastern domain, respectively. We use a combination of continuous (2001.00–2011.84) and episodic (1995.68–2010.79) GNSS observations to firstly estimate the geodetic deformation rate on 32 faults. Geodetic results were successively compared with geological displacement estimates. In agreement with seismological and geological information, a net spatial segregation emerges between the extensional axial belt, and the eastern domain where strike–slip faults are geodetically active. Although uncertainties are at times large, average displacement rates show broadly consistent patterns within both domains. A longitudinal gradient in extension rate is observed for the axial fault array, with two sectors of higher magnitude (~ 0.8–1.7 mm/yr for individual faults). This result is consistent with geological observations and supports the notion that extension occurs in discrete patches. Faults of the eastern domain have lower (few 0.1 to ~ 1.2 mm/yr) strike–slip rates and an eastward-decreasing extensional component, but significant geodetic displacement is detected in areas lacking clear evidence of activity. Few faults with 1–2 mm/yr extension rate are locally found in the eastern domain, but, based on their limited length and on inconsistency with seismology and geology, they are considered as due to deep-seated gravitational spreading. For crustal faults, although geodetic slip and moment rates are larger than geological rates, the broad trend of long- to short-term rates is similar, indicating the feasibility of geodetic analysis to contribute estimating fault slip rate and testing tectonic models in the region. Whereas the western domain extension is thought to be controlled by potential energy related to the Tyrrhenian Moho uplift beneath the Apennines, strike–slip in the east is related to shear on inherited faults within the Adriatic crust.
    Description: Published
    Description: 101-122
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: GNSS velocity ; Active fault ; Geodetic slip rate ; Southern Italy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-06-07
    Description: After the April 6th 2009 MW 6.3 (ML 5.9) L'Aquila earthquake (central Italy), we re-measured more than 100 km of high-precision levelling lines in the epicentral area. The joint inversion of the levelling measurements with InSAR and GPS measurements, allowed us to derive new coseismic and post-seismic slip distributions and to de- scribe, with high resolution details on surface displacements, the activation and the slip distribution of a second- ary fault during the aftershock sequence that struck the Campotosto area (major event MW 5.2). Coseismic slip on the Paganica fault occurred on one main asperity, while the afterslip distribution shows a more complex pattern, occurring on three main patches, including both slips on the shallow portions and on the deeper parts of the rup- ture plane. The comparison between coseismic and post-seismic slip distributions strongly suggests that afterslip was triggered at the edges of the coseismic asperity. The activation of a segment of the Campotosto fault during the aftershock sequence, with a good correlation between the estimated slipping area, moment release and distribution of aftershocks, raises the opportunity to discuss the local seismic hazard following the occurrence of the 2009 L'Aquila mainshock. The Campotosto fault appears capable of generating earthquakes as large as his- torical events in the region (M N 6.5) or as small as the ones associated with the 2009 sequence. In the case that the Campotosto fault is accumulating a significant portion of the current interseismic deformation, the 2009 MW N 5 events will have released only a small amount of the accumulated elastic strain, and then a significant hazard still remains in the area. Continuing geodetic monitoring and a densification of the GPS networks in the region are therefore needed to estimate the tectonic loading across the different recognized active fault systems in this part of the Apennines.
    Description: Published
    Description: 168-185
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: High-precision leveling; InSAR; GPS; Earthquake source; Normal faulting; Seismic hazard ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: The stress and strain-rate fields characterizing the Dead Sea Fault System are investigated by using seismological and geodetic observations. In order to assess spatial variations in the regional stress field, we compiled a multidisciplinary dataset of well-constrained horizontal indicators, by merging all available data reported in literature with the data obtained in this study through weighted stress inversions of focal plane solutions. Our findings indicate that the state of stress is characterized by the coexistence of a normal faulting stress regime with the primarily strike-slip one, according to the regional frame illustrated by previous geological and seismological observations. An updated velocity field computed from new observations and earlier published data, depicts the general left-lateral motion of the Dead Sea fault system well. In agreement with previous studies, we detected some differences in the slip-rate pattern between the northern and the southern sectors of the fault system. The geodetic strain-rate field highlights how much of the deformation is accommodated along the fault system itself in a narrow region. The comparison between the stress and the strain-rate directions reveals that both orientations are near-parallel, clearly indicating that present-day crustal stress and ground deformation patterns are chiefly driven by the same tectonic processes.
    Description: Published
    Description: 305-316
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Focal mechanisms ; stress ; GPS ; strain-rate ; Dead Sea Fault System ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Analysis of 1549 DInSAR interferograms, covering the period from 2003 to 2010, has highlighted significant motion along the entire set of the active faults identified by advanced DInSAR analyses (i.e. Permanent Scatterers Features, PSF), affecting the Mount Etna volcano, in eastern Sicily. In the analysed period, the absence of significant seismicity producing co-seismic ground deformation suggests that the overall deformation that has been recognized on the interferograms is to be associated with interseismic, almost continuous creep which is, well documented along most of the active faults. According to field evidence, the structures should accumulate displacements resulting in their permanent visibility on the interferograms, progressively increases through time. This expected behaviour has been recognised only for part of the entire set of structures. Other tectonic features, in fact, show episodic appearances, alternating with periods of absence of ground displacement on the interferograms, simulating a stick-slip mechanism of deformation, conflicting with field evidence. This apparently incongruous behaviour can be interpreted as the result of topographic changes due to the combination of the tectonic displacements with related amounts of the differential erosion and deposition across the fault line. The comparison between the history of the appearances and the monthly rainfall in the region seems to demonstrate that these structures appear when one of the two interacting processes governing the topographic changes around the fault, i.e. tectonic vs. erosional, prevails over the other. Otherwise, the same structures are not evident on the interferograms when the two components are in balance.
    Description: Published
    Description: 128-137
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Description: restricted
    Keywords: fault ; slip rates ; InSAR ; ground deformation ; erosion ; volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: In the present study the attenuation mechanism of seismic wave energy in and around the source area of the Chamoli earthquake of 29th March 1999 is estimated using the aftershock data. Most of the analyzed events are from the vicinity of the Main Central Thrust (MCT), which is a well-defined tectonic discontinuity in the Himalayas. Separation of intrinsic (Q 1 i ) and scattering (Q 1 s ) attenuation coefficient is done over the frequencies 1, 2, 4, 8 and 16 Hz using Multiple Lapse Time Window Analysis (MLTWA) method. It is observed that S-waves and their coda are primarily attenuated due to scattering attenuation and seismic albedo is very high at all the frequencies. A comparison of attenuation characteristics obtained using these aftershock data with those obtained using data of general seismicity of this region reveal that at lower frequencies both intrinsic and scattering attenuation for Chamoli was much higher compared to those for Garwhal-Kumaun region using general seismicity data. At higher frequencies intrinsic attenuation for Chamoli is lower than and scattering attenuation is comparable to those obtained using general seismicity data of Garwhal-Kumaun region.
    Description: A partial support has been given by Italy INGV-DPC (Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento di Protezione Civile) Projects UNREST and SPEED, and by Italy’s Ministry of Education PRIN project (Seismic Hazard in Central Apennines, UR Del Pezzo).
    Description: Published
    Description: 446-454
    Description: 1T. Geodinamica e interno della Terra
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: MLTWA ; Intrinsic attenuation ; Scattering attenuation ; Chamoli Himalayas ; Himalayas ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Calabria is one of themost complex geological regions of the Mediterranean basin, which experienced large earthquakes and uplift and is still undergoing active tectonics. Along its coasts are located archaeological sites that can be used as powerful indicators of the relative vertical movements between land and sea since their construction. This paper presents and discusses data on the relative sea-level change as estimated from maritime archaeological indicators of the last w2.0 ka BP existing along the Tyrrhenian coast of Briatico. These sites still showthe remnants of a Roman age fish tank and a submerged breakwater about 320mlong. The palaeo sea level has been obtained measuring the functional elevation of the significant archaeological markers. Their elevationwas compared against the latest predicted sea level curve for the Holocene along the Tyrrhenian coast of Calabria. As this coastal area is affected by significant and continuous vertical tectonic uplift during Pleistocene, the data show the counterbalance between coastal uplift and relative sea level change caused by the glacio-hydro-isostasy, acting since the construction of these archaeological sites. The sum of these movements determined an about null relative sea level change for this location. These data are in contrast with other part of the tectonically stable areas of the Mediterranean and provide evidence that crustal uplift continued in the last 1806+/- 50 y at a rate of 0.65 mm/y.
    Description: Published
    Description: 158-167
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Calabria, archaeology, vertical tectonics, sea level ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: According to the most common interpretation, the Apennines developed in Neogene and Quaternary times in the hanging wall of a west directed subduction zone. Seismic tomography is the most powerful tool to investigate large volume of Earth at depth, and it has been extensively applied to shed light on the geometry and shape of the subduction under the Italian peninsula. The various experiments were able to display the slab under the Southern Apennines, but even the most recent tomographic images were non-uniquely interpretable and left open questions about the characteristics of the subduction in the Northern-Central sector of the chain. We here present the results of an improved inversion experiment focused on the Northern and Central Apennines. The results do not show any pronounced subduction slab and the most evident anomaly is a low velocity body extending down to 100 km depth, located in a relatively small area under the western Tuscany. On the basis of accurate synthetic tests, we assess that, if established, a subduction like geometry should be visible in our tomographic images. We then conclude that no subduction is imaged in the Northern and Central Apennines. We thus interpret this anomaly as an asthenospheric flow. However, we cannot exclude that our result is due to intrinsic limitations of the methodology. In fact in response to the original question about the capability of local earthquake tomography to settle the matter about subduction, we underline that the absence of deep earthquakes to illuminate the model from below, the existence of seismic gaps in some sectors of the area under study even at shallow depth and the non uniqueness of interpretation of the tomographic images make local tomography unable to give alone definitive information on the deep structure of the Northern and Central Apennines.
    Description: Published
    Description: 63-73
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic tomography ; Apennines ; Subduction ; Asthenospheric upwelling ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2, radon and structural field surveys were performed on Mt. Etna, in order to acquire insights into active tectonic structures in a densely populated sector of the south-eastern flank of the volcano, which is involved in the flank dynamics, as highlighted by satellite data (InSAR). The studied area extends about 150 km2, in a sector of the volcano where InSAR results detected several lineaments that were not well-defined from previous geological surveys. In order to validate and better constrain these features with ground data evidences, soil CO2 and soil radon measurements were performed along transects roughly orthogonal to the newly detected faults, with measurement points spaced about 100 m. In each transect, the highest CO2 values were found very close to the lineaments evidenced by InSAR observations. Anomalous soil CO2 and radon values were also measured at old eruptive fractures. In some portions of the investigated area soil gas anomalies were rather broad over transects, probably suggesting a complex structural framework consisting of several parallel volcano-tectonic structures, instead of a single one. Soil gas measurements proved particularly useful in areas at higher altitude on Mt. Etna (i.e. above 900 m asl), where InSAR results are not very informative/ are fairly limited, and allowed recognizing the prolongation of some tectonic lineaments towards the summit of the volcano. At a lower altitude on the volcanic edifice, soil gas anomalies define the active structures indicated by InSAR results prominently, down to almost the coastline and through the northern periphery of the city of Catania. Coupling InSARwith soil gas prospectingmethods has thus proved to be a powerful tool in detecting hidden active structures that do not show significant field evidences.
    Description: This work was funded by the DPC-INGV project “Flank”
    Description: Published
    Description: 27-40
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 ; Radon ; InSAR ; Faults ; Etna ; Volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: To obtain accurate and reliable estimations of the major lithological properties of the rock within a studied volume, geophysics uses the joint information provided by different geophysical datasets (e.g. gravimetric, magnetic, seismic). Representation of the different types of information entering the problem using probability density functions can provide the mathematical framework to formulate their combination. The maximum likelihood estimator of the resulting joint posterior probability density functions leads to the solution of the problem. However, one key problem appears to limit the use of this solver to an extensive range of real applications: information coming from potential fields that implies the presence of dense matrices in the resolving estimator. It is well known that dense matrix systems rapidly challenge both the algorithms and the computing platforms, and are not suited to high-resolution 3D geophysical analysis. In this study, we propose a procedure that allows us to obtain fast and reliable solutions of the joint posterior probability density functions in the presence of large gravity datasets and using sophisticated model parametrization. As it is particularly CPUconsuming, this 3D problem makes use of parallel computing to improve the performance and the accuracy of the simulations. Analysis of the correctness of the results, and the performance on different parallel environments, shows the portability and the efficiency of the code. This code is applied to a real experiment, where we succeed in recovering a 3D shear-wave velocity and density distribution within the upper mantle of the European continent, satisfying both the seismological and gravity data. On a multiprocessor machine, we have been able to handle forward and inverse calculations with a dense matrix of 215.66 Gb in 18 min, 20 s and 20 min, 54 s, respectively.
    Description: NERIES INFRAST-2.1-026130, MERG-CT-2007-046522
    Description: Published
    Description: 143-156
    Description: 2.1. TTC - Laboratorio per le reti informatiche, GRID e calcolo avanzato
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Parallel ; Dense matrix ; Block-cyclic distribution ; Inverse problem ; Probability density function ; ScaLAPACK ; Gravity field ; Shear-wave velocity structure ; Density structure ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-02-24
    Description: We propose a new quantitative approach for the joint interpretation of velocity and attenuation tomography images, performed through the lateral separation of scattering and intrinsic attenuation. The horizontal P-wave scattering attenuation structure below Campi Flegrei Caldera (CFC) is imaged using the autocorrelation functions (ACF) of P-wave vertical velocity fluctuations. Cluster analysis (CA) is then applied to interpret the images derived from ACF and the available P-wave total attenuation images at 2000m quantitatively. The analysis allows the separation of intrinsic and scattering attenuation on a 2-D plane, adding new geophysical constraints to the present knowledge about this volcanic area. The final result is a new, quantitative image of the past and present tectonic and volcanological state of CFC. P-wave intrinsic dissipation dominates in an area approximately located under the volcanic centre of Solfatara, as expected in a region with a large presence of fluids and gas. A north–south scattering attenuation region is mainly located below the zone of maximum uplift in the 1982–1984 bradiseismic crisis, in the sea side of the Pozzuoli bay, but also extending below Mt Nuovo. This evidence favours the interpretation in terms of a hard but fractured body, contoured by strong S-wave scatterers, corresponding to the Caldera rim: the region is possibly a section of the residual magma body, associated with the 1538 eruption of Mt Nuovo.
    Description: Published
    Description: 1304-1310
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Probability distributions ; Seismic attenuation ; Seismic tomography ; Statistical seismology ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: Accepted for publication in Tectonics. Copyright (2010) American Geophysical Union
    Description: The study of geodynamics relies on an understanding of the strength of the lithosphere. However, our knowledge of kilometer-scale rheology has generally been obtained from centimeter-sized laboratory samples or from microstructural studies of naturally deformed rocks. In this study, we present a method that allows rheological examination at a larger scale. Utilizing forward numerical modeling, we simulated lithospheric deformation as a function of heat flow and rheological parameters and computed several testable predictions including horizontal velocities, stress directions, and the tectonic regime. To select the best solutions, we compared the model predictions with experimental data. We applied this method in Italy and found that the rheology shows significant variations at small distances. The strength ranged from 0.60.2 TN/m within the Apennines belt to 216 TN/m in the external Adriatic thrust. These strength values correspond to an aseismic mantle in the upper plate and to a strong mantle within the Adriatic lithosphere, respectively. With respect to the internal thrust, we found that strike-slip or transpressive, but not compressive, earthquakes can occur along the deeper portion of the thrust. The differences in the lithospheric strength are greater than our estimated uncertainties and occur across the Adriatic subduction margin. Using the proposed method, the lithospheric strength can be also determined when information at depth is scarce but sufficient surface data are available.
    Description: DPC-INGV project S1 (2008-2010)
    Description: In press
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: Continental neotectonics ; Rheology and friction of fault zones ; Rheology: crust and lithosphere ; Mechanics, theory and modeling ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Accepted for publication in Journal of Geophysical Researches. Copyright (2010) American Geophysical Union
    Description: Two critical items in the energetic budget of a seismic province are the strain rate, which is measured geodetically on the Earth’s surface, and the yearly number of earthquakes exceeding a given magnitude. Our study is based on one of the most complete and recent seismic catalogs of Italian earthquakes and on the strain rate map implied by a multi-year velocity solution for permanent GPS stations. For 36 homogeneous seismic zones, we used the appropriate Gutenberg Richter relation based on the seismicity catalog to estimate a seismic strain rate, which is the strain rate associated with the mechanical work due to a co-seismic displacement. The volume storing most of the elastic energy is associated with the long-term deformation of each seismic zone, and therefore, the seismic strain rate is inversely proportional to the static stress drop. The GPS-derived strain rate for each seismic zone limits the corresponding seismic strain rate, and an upper bound for the average stress drop is estimated. These results demonstrated that the implied regional static stress drop ranged from 0.1 to 5.7 MPa for catalog earthquakes in the moment magnitude range [4.5–7.3]. These results for stress drop are independent of the “a” and “b” regional parameters and heat flow but are very sensitive to the assumed maximum magnitude of a seismic province. The data do not rule out the hypothesis that the stress drop positively correlates with the time elapsed after the largest earthquake recorded in each seismic zone.
    Description: The research was supported by Project S1 2007-2009 of Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento della Protezione Civile, Rome.
    Description: In press
    Description: 1.9. Rete GPS nazionale
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: earthquakes ; seismic hazard ; geodesy ; b-value ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: We investigate in detail the crustal layering of the ‘Val di Chiana Basin’ (Northern Apennines, Tuscany, Italy) through receiver functions and seismic anisotropy with hexagonal symmetry. The teleseismic data set is recorded in correspondence of a typical foreland basin resulting by the progressive eastward retreat of a regional-scale subduction zone trapped between two continents. We study the azimuthal variations of the computed and binned receiver functions associated to a harmonic angular analysis to emphasize the presence of the dipping and the anisotropic structures. The resulting S-wave velocity model shows interesting and new results for this area that we discuss in a regional geodynamic contest contributing to the knowledge of the structure of the forearc of the subduction zone. A dipping interface (N192°E strike, 18° dip) has been revealed at about 1.5 km depth, that separates the basin sediments and flysch from the carbonates and evaporites. Moreover, we interpret the two upper-crust anisotropic layers (at about 6 and 17 km depth) as the Hercynian Phyllites and Micaschists, of the Metamorphic Tuscan Basement. At relatively shallow depths, the presence of these metamorphic rocks causes the seismic anisotropy in the upper crust. The presence of shallow anisotropic layers is a new and interesting feature, first revealed in the study area. Beneath the crust–mantle transition (Moho), located about 28 km depth, our analysis reveals a 7-km-thick anisotropic layer.
    Description: Published
    Description: 545-556
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic anisotopy ; Computational Seismology ; Wave propagation ; Subduction zone process ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: We present the surface wave dispersion results of the application of the ambient noise method to broad-band data recorded at 114 stations from the Istituto Nazionale di Geofisica e Vul- canologia (INGV) national broad-band network, some stations of the Mediterranean Very Broadband Seismographic Network (MedNet) and of the Austrian Central Institute for Me- teorology and Geodynamics (ZAMG). Vertical-component ambient noise data from 2005 October to 2007 March have been cross-correlated for station-pairs to estimate fundamental mode Rayleigh wave Green’s functions. Cross-correlations are calculated in 1-hr segments, stacked over periods varying between 3 months and 1.5 yr. Rayleigh wave group dispersion curves at periods from 8 to 44 s were determined using the multiple-filter analysis technique. The study region was divided into a 0.2◦ × 0.2◦ grid to invert for group velocity distribu- tions. Checkerboard tests were first carried out, and the lateral resolution was estimated to be about 0.6◦. The resulting group velocity maps from 8 to 36 s show the significant difference of the crustal structure and good correlations with known geological and tectonic features in the study region. The Po Plain and the Southern Alps evidence lower group veloci- ties due to soft alluvial deposits, and thick terrigenous sediments. Our results also clearly showed that the Tyrrhenian Sea is characterized with much higher velocities below 8 km than the Italian peninsula and the Adriatic Sea which indicates a thin oceanic crust beneath the Tyrrhenian Sea.
    Description: Published
    Description: 1242-1252
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Tomography ; Surface waves and free oscillations ; Crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: A crustal tomography of seismic wave velocity was performed in the contact zone between the southern Tyrrhenian, Sicilian and Ionian tectonic units, a zone where the lithospheric structure can be expected to furnish evident signatures of dynamics related to the Tyrrhenian subduction process. A dataset of 10241 P and 5597 S readings from 932 local earthquakes recorded between 1978 and 2001 by stations operating in Sicily and Calabria was inverted by the SIMULPS12 algorithm for simultaneous computation of hypocenter parameters and Vp and Vp/Vs three dimensional distributions. The study brought significant improvement in the knowledge of the local velocity structure, furnishing new information useful to better identify the local tectonic units. The results appear to be compatible with the most recent hypotheses regarding the geodynamics of the study region.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Continental crust ; Oceanic crust ; Body wave propagation ; Evolution of the Earth: Tomography ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: We study five high precision leveling lines located around the epicentral area of 13 January 1915, Mw = 6.7 Fucino earthquake (Italy), that possibly recorded late stage postseismic relaxation movements. The geodetic signal is expected to comprise both large-scale uplift of the Apennines and postseismic relaxation effects. In order to verify this hypothesis and to estimate the amount of each contribution, we compute gravitational visco-elastic postseismic relaxation by inverting leveling data. Results indicate that the elastic upper crust is relatively thin (about 10 km) and post-seismic contribution could be set at 30% of the geodetic signal. Model parameters are consistent with previous knowledge of the 1915 Fucino earthquake source, local seismic hypocentral determinations and crustal models derived from surface waves.
    Description: Published
    Description: L22307
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: postseismic slip ; leveling data ; 1915 Fucino earthquake ; modeling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: We studied 1951-1992 elevation changes recorded by a first order leveling line that intercepts the surface projection of the 26 Sep. 1997, Mw 6.0, Umbria-Marche earthquake causative fault. The line documents 1951-1992 localized subsidence along a 12 km section above the fault. We calculated the expected 1997 coseismic elevation changes along the line using standard dislocation modeling and found that their trend has an amplitude three times larger than the trend of the observed pre-1997 signal but with a similar shape. We suggest that this signal is the result of 10 cm of pre-1992 slip along the northernmost 5 km of the 1997 earthquake fault, where coseismic slip was found to be less than the average estimated for the entire fault. This result implies unusually fast slip along this section of the fault and may suggest slip acceleration in preparation for the impending failure.
    Description: Published
    Description: 1953-1956
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: reserved
    Keywords: pre-seismic slip ; leveling ; 1997 Umbria-Marche earthquake ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: During the effusive phase of the Stromboli 2007 eruption, the GPS and tilt stations recorded small but significant changes which, for the first time at this volcano, clearly indicated a deflation. We modeled the deflation, inferring a depressurizing vertically elongated source with centre under the volcano edifice about 2.8 km below sea level. The model, whose position is above the magma source region inferred by petrological studies, and the associated rapid deflation suggest a near free pathway for magma ascent from this source to the upper shallow conduit.
    Description: Published
    Description: L06311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; 2007 eruption ; ground deformation ; modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: We present paleoseismological trenching results for the active Skinos Fault, which ruptured the surface on the Alkyonides Gulf basin margin in the 1981 Gulf of Corinth earthquake sequence. Three trenches expose evidence of up to six previous events which are comparable to the 1981 deformation in terms of size and geometry. Vertical displacement produced by the 1981 earthquake ranged from 0.45 to 1.3 m at the Bambakies Fan trench sites, decreasing towards the eastern fault tip east of the trenches. Trench 1 reveals two previous events with vertical displacements between 0.5 and 1.2 m since 390 A.D. Trench 2 reveals five or six previous events, but these are not dated. Trench 3 reveals four previous events since 670 A.D. Vertical displacements associated with interpreted paleoearthquakes at the trench sites are ≤1.2 m. The recurrence interval on the Skinos Fault is estimated to average 330 years. However, significant variation in recurrence interval is allowed by the available radiometric dates. Average vertical displacement rates derived from the trenches are in the range 0.7-2.5 mm/yr. A similar long-term average vertical displacement rate of 1.2-2.3 mm/yr is estimated for the lifespan of the basin-bounding fault. This equates to a horizontal seismic strain contribution of ≤2.5 mm/yr from the Skinos Fault. This local seismic strain rate overlaps, within error, with geodetically determined velocities across the Alkyonides Gulf assumed to represent uniform deep-crustal strain. Thus seismic deformation on the basin-bounding fault system may take up the major part of extension across the basin, and aseismic strain is not necessitated by the data. If correct, this would imply that geodetically determined strain rates may be used as a proxy for potential seismic moment release in seismic hazard analyses for this region.
    Description: Published
    Description: 30,001-30,019
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: reserved
    Keywords: palaeoseismology ; 1981 Corinth earthquake ; extensional strain ; Greece ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-06-21
    Description: We have processed thirty Global Positioning System (GPS) campaigns carried out at Etna from 1994 to early 2001 between the last two main flank eruptions of the Mt. Etna (Sicily, Italy). This rest period allowed us to investigate the deep magma plumbing system of the Mt. Etna. The temporal dynamics of twenty-three points observed three times or more were analyzed. All the time series show a first-order linear trend during the five years period. It suggests that the volcano was continuously deformed by the action of a deep source while a discrete activity of the volcano was observed at the summit. We have interpreted the residual deformation field as the result of an major eastward motion of the eastern flank of the volcano.
    Description: Published
    Description: L02309
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 201609 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: SKS splitting at the Calabrian subduction zone, with delay times (δt) up to 3s, reveals the presence of a strong anisotropic fabric. Fast directions (ϕ) are oriented NNE-SSW in the Calabrian Arc (C.A.) and rotate NNW-SSE to the north following the arcuate shape of the subducting plate. We interpret the trench-parallel ϕ as local-scale mantle flow driven by the retrograde motion of the slab; the absence of trench perpendicular ϕ below the Southern Apennines (S.A.) excludes the presence of a seismically detectable return flow at its NE edge. This may be due to the relative youth and limited width of the S.A. slab tear. A possible return flow is identified farther north at the boundary of the S.A. and Central Apennines. Different and weaker anisotropy is present below the Apulian Platform (A.P.). This implies that the influence of the slab rollback in the sub-slab mantle is limited to less then 100 km from the slab.
    Description: Published
    Description: L05302
    Description: JCR Journal
    Description: open
    Keywords: shear-wave splitting, calabrian subduction zone ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1261235 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: A new 3-D model for the P-wave velocity structure of the Southern Tyrrhenian Subduction Zone (STSZ) is determined from nonlinear inversion of relative arrival times of teleseismic events. The data used in the imaging are the travel time residuals of both direct, P and PKPdf, and secondary pP, sP, PcP, PKPbc phases, computed with respect to the global 1-D velocity model ak135. 2308 teleseismic waveforms were collected for this study from 109 events recorded by the Italian National Seismic Network (RSNC) during 1988-1998. The velocity perturbation eld is reconstructed gradually by means an iterative sequence of linearized inversions, incorporating a 3-D minimum travel time ray tracing. The tomographic images reveal a broad highvelocity zone dominating the pattern of lateral variations beneath the Southern Tyrrhenian Sea and Calabria. This fast structure extends laterally for a maximum of 350 km, from northern Sicily to southern Campania, and vertically for at least 400 km, from the uppermost mantle down to 500 km depth. Below 350 km the geometry of the depicted slab is characterized by horizontal deflection of the subducting lithosphere towards the central Tyrrhenian basin.
    Description: Published
    Description: 3709-3712
    Description: JCR Journal
    Description: reserved
    Keywords: P-wave velocity ; teleseismic tomography ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: We present new tomographic images for the Pwave velocity structure in the upper mantle beneath centralsouthern Apennines down to 510 km depth. The model is computed by nonlinear inversion of relative arrival times of both direct and secondary teleseismic phases, handpicked from over 2800 waveforms recorded by the Italian seismic network during 1988-2000. Beneath central Apennines, the images reveal a continuous, SW-dipping high-velocity body, from 150 km down to 500 km. At shallower depths, a pronounced low-velocity zone is recognized from the uppermost mantle beneath the Apenninic belt down to 200 km below the Tyrrhenian area. This feature is proposed to affect the seismic structure of the downgoing slab, weakening its velocity signature. Beneath southern Apennines, highvelocity anomalies are reconstructed in the uppermost mantle of the Apulian foreland and below the belt in the range 100 400 km. Low-velocity regions, interpreted as due to asthenospheric upwelling, are recovered above or across the fast structures, as at the southeastern end of the Apennines where a possible complete slab breako is suggested.
    Description: Published
    Description: 4387-4390
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: P-wave tomography ; lithosphere ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: We use continuous GPS observations to investigate the rate of strain accumulation in the area affected by the 1976 Friuli earthquakes. Comparison between the motion predicted by the rigid-rotation of Adria and the shortening observed across the study area suggests that the 2.0 ± 0.2 mm/yr motion of Adria is entirely absorbed in the southern Alps through thrusting and crustal thickening with very little or no motion transferred to the north.We use elastic dislocation modelling to investigate the rate of interseismic loading and the geometry of the shear zone at depth. The best-fit solution indicates that a northward-dipping creeping dislocation, whose edge is located within a 50 km wide area beneath the southern Alps, accomodates 2.1 ± 0.5 mm/yr of the Adria motion. Limited resolution on locking depth (acceptable values between 0 and 25 km) and trade-off between dip and slip do not allow a precise reconstruction of the dislocation geometry. The range of acceptable model parameters is consistent with a 20 -dipping dislocation, locked above 10 km depth and slipping at 2.4 mm/yr, whose geometry is suggested by seismological informations.
    Description: Published
    Description: reserved
    Keywords: crustal deformation ; 1976 Friuli earthquakes ; Alps ; interseismic ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 357323 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-05-27
    Description: We determine geodetic strain in peninsular Italy by the GPS reoccupation of the first order triangulation network of Italy installed from 1860. The uncertainties in the original measurements (about 3 ppm), and the time span between the two observations, imply that tectonic signals larger than about 0.03 ppm/yr are resolvable. Along the Apenninic belt, where the largest earthquakes are concentrated, the geodetic deformation has a clear and consistent strain pattern between adjacent regions, well above the uncertainties, and shows a pervasive NE-SW extension. Along the Tyrrhenian and Adriatic coasts the geodetic signal is not homogeneous and is comparable with the uncertainty in the original measurements. Seismic deformation, calculated over the same time interval, agrees well with estimated extensional direction, but the magnitudes of geodetic and seismic strain differ suggesting that, in part of the Apennines, significant strain accumulation over the past 130 years may not have been released in earthquakes.
    Description: Published
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Description: reserved
    Keywords: Italy ; Tectonic Strain ; crustal deformation ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 173511 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: Ground deformations measured on Mount Etna from late 1995 to mid-1998 using GPS observations are analyzed. Four GPS surveys were carried out during the considered period. In 1995 the GPS network consisted of 18 stations on the volcanic edifice and 6 stations around it. During the 1996 survey, 22 new monuments were added along a N-S profile crossing the summit craters area. This profile was surveyed by a semikinematic method, allowing greater spatial detail to be achieved on the uppermost part of the volcano. The comparisons between the GPS surveys are reported here in terms of horizontal and vertical displacements for each station and also in terms of areal dilatation and strain distribution. This last parameter continues its ascending trend, at a rate of ~5 μstrain yr−1, already shown in the previous period, after the end of the 1991–1993 flank eruption. Inversion of the ground deformation patterns permits investigation of the evolution of both the position and dynamics of magma reservoirs beneath the volcano, consistently associated with a general eastward sliding of its eastern sector. This study allows us to define the nonuniqueness of ground deformation sources through the investigated period, suggesting that the plumbing system of the volcano is made up of a complex system of single intrusions occurring at different times.
    Description: Published
    Description: 1-15
    Description: partially_open
    Keywords: Mount Etna ; ground deformation ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 803688 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Wiley
    In:  Chichester, 2nd ed., xvii + 517 pp., Wiley, vol. 5, no. 22, pp. 662-664, (ISBN 0-470-87000-1 (HB), ISBN 0-470-87001-X (PB))
    Publication Date: 2005
    Keywords: GIS ; Textbook of informatics ; Textbook of geography ; geography ; management ; policy
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    AGU
    In:  Washington, D.C., 280 pages, AGU, vol. 81A and 81B, no. 22, pp. 65-70, (ISBN 0-87590-422-X)
    Publication Date: 2005
    Keywords: Seismology ; Seismic arrays ; Data analysis / ~ processing ; Ray seismics ; Synthetic seismograms ; Modelling ; Wave propagation ; Waves ; Earth model, also for more shallow analyses ! ; Physical properties of rocks ; Broad-band
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Wiley
    In:  Hoboken, NJ, 633 pp., Wiley, vol. 16B, no. 2, pp. 125-169, (ISBN 0-471-26610-8)
    Publication Date: 2003
    Keywords: Textbook of mathematics ; Data analysis / ~ processing ; Modelling ; software ; manual ; computer ; algebra ; symbolic ; mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Wiley
    In:  New York - 2nd ed., 372 pp., Wiley, vol. 1, pp. 225, (ISBN 0-471-32192-3)
    Publication Date: 1999
    Keywords: Textbook of geography ; Textbook of informatics ; GIS
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Wiley
    In:  Chichester, 292 pp., Wiley, vol. 45, pp. ii + 37 pp. + 35 figs. + 4 tabs., (ISBN 0-471-95596-5)
    Publication Date: 1998
    Keywords: Textbook of informatics ; FTN90 ; Gegenueberstellung ; der ; beiden ; Programmiersprachen ; PIK ; Potsdam
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    AGU
    In:  Washington D. C., AGU, vol. 8, no. XVI:, pp. 1-14, (ISBN: 0-387-30752-4)
    Publication Date: 1989
    Keywords: Data analysis / ~ processing ; Statistical investigations
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Wiley
    In:  New York, Wiley, vol. 2, no. XVI:, pp. 1-14, (ISBN 0-08-043751-6)
    Publication Date: 1986
    Keywords: Data analysis / ~ processing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Wiley
    In:  Chichester, Wiley, vol. 231, no. 3, pp. 2-203, (ISBN 0-470-02298-1)
    Publication Date: 1982
    Keywords: Data analysis / ~ processing ; Correlation ; Seismic stratigraphy ; Seismics (controlled source seismology)
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Wiley
    In:  New York, 2nd Edition, 709 pp., Wiley, vol. 75, no. 2, pp. 2-203, (ISBN: 3-7643-7143-9)
    Publication Date: 1981
    Keywords: Correlation ; Data analysis / ~ processing ; fit ; Textbook of mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...