ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Chemical Engineering
  • Electronic structure and strongly correlated systems
  • Saccharomyces cerevisiae
  • Springer  (2)
  • 1980-1984  (2)
  • Physics  (2)
Collection
  • Articles  (2)
Keywords
Years
Year
  • 1
    ISSN: 1573-6881
    Keywords: H+-ATPase complex ; assembly defect ; Saccharomyces cerevisiae ; mitochondrial biogenesis ; membrane association
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract We have investigated the extent to which the assembly of the cytoplasmically synthesized subunits of the H+-ATPase can proceed in a mtDNA-less (rho°) strain of yeast, which is not capable of mitochondrial protein synthesis. Three of the membrane sector proteins of the yeast H+-ATPase are synthesized in the mitochondria, and it is important to determine whether the presence of these subunits is essential for the assembly of the imported subunits to the inner mitochondrial membrane. A monoclonal antibody against the cytoplasmically synthesized β-subunit of the H+-ATPase was used to immunoprecipitate the assembled subunits of the enzyme complex. Our results indicate that the imported subunits of the H+-ATPase can be assembled in this mutant, into a defective complex which could be shown to be associated with the mitochondrial membrane by the analysis of the Arrhenius kinetics of the mutant mitochondrial ATPase activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6881
    Keywords: Respiratory chain ; ATP synthesis ; mitochondria ; ubiquinone ; Saccharomyces cerevisiae ; cytochrome oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Mitochondria, isolated from the ubiquinone-deficient nuclear mutant ofSaccharomyces cerevisiae E3-24, are practically unable to oxidize exogenous substrates. Respiratory activity, coupled to ATP synthesis, can, however, be reconstituted by the simple addition of ethanolic solutions of ubiquinones. A minimal length of the isoprenoid side chain (≥3) was required for the restoration. Saturation of the reconstitution required a large amount of exogeneous ubiquinone, in excess over the normal content present in the mitochondria of the wild type strain. A similar pattern of reconstituted activities could be also obtained using sonicated inverted particles. Mitochondria and sonicated particles are also able to carry out a dye-mediated electron flow coupled to ATP synthesis in the absence of added ubiquinone, using ascorbate or succinate as electron donor. This demonstrates that the energy conserving mechanism at the third coupling site of the respiratory chain is fully independent of the presence of the large mobile pool of ubiquinone in the membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...