ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (762)
  • Space Transportation and Safety  (762)
  • 2000-2004  (762)
  • 1940-1944
  • 1925-1929
  • 1
    Publication Date: 2018-06-11
    Description: A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
    Keywords: Space Transportation and Safety
    Type: Astrobiology; Volume 4; No. 3; 377-390
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: Through an intensive collection and assimilation effort of Solid Rocket Motor (SRM) related data and resources, the author offers a resolution to the uncertainties surrounding SRM particulate generation, sufficiently so to enable a first-order incorporation of SRMs as a source term in space debris environment definition. The following five key conclusions are derived: 1) the emission of particles in the size regime of greatest concern from an orbital debris hazard perspective (D 〉 100 micron), and in significant quantities, occurs only during the Tail-off phase of SRM burn activity, 2) the velocity of these emissions is correspondingly small - between 0 and 100 m/s, 3) the total Tail-off emitted mass is between approximately 0.04 and 0.65% of the initial propellant mass, 4) the majority of Tail-off emissions occur during the 30 second period that begins as the chamber pressure declines below approximately 34.5 kPa (5 psia) and 5) the size distribution for the emitted particles ranges from 100 micron 〈D〈 5cm.
    Keywords: Space Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-05
    Description: The NASA Engineering and Safety Center (NESC), set up in the wake of the Columbia accident to backstop engineers in the space shuttle program, is reviewing hundreds of recurring anomalies that the program had determined don't affect flight safety to see if in fact they might. The NESC is expanding its support to other programs across the agency, as well. The effort, which will later extend to the International Space Station (ISS), is a principal part of the attempt to overcome the normalization of deviance--a situation in which organizations proceeded as if nothing was wrong in the face of evidence that something was wrong--cited by sociologist Diane Vaughn as contributing to both space shuttle disasters.
    Keywords: Space Transportation and Safety
    Type: Aviation Week and Space Technology (ISSN 0005-2175); Volume 161; No. 5; 53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: To ensure space flight safety, it is necessary to monitor myriad sensor readings on the ground and in flight. Since a space shuttle has many sensors, monitoring data and drawing conclusions from information contained within the data in real time is challenging. The nature of the information can be critical to the success of the mission and safety of the crew and therefore, must be processed with minimal data-processing time. Data analysis algorithms could be used to synthesize sensor readings and compare data associated with normal operation with the data obtained that contain fault patterns to draw conclusions. Detecting abnormal operation during early stages in the transition from safe to unsafe operation requires a large amount of historical data that can be categorized into different classes (non-risk, risk). Even though the 40 years of shuttle flight program has accumulated volumes of historical data, these data don t comprehensively represent all possible fault patterns since fault patterns are usually unknown before the fault occurs. This paper presents a method that uses a similarity measure between fuzzy clusters to detect possible faults in real time. A clustering technique based on a fuzzy equivalence relation is used to characterize temporal data. Data collected during an initial time period are separated into clusters. These clusters are characterized by their centroids. Clusters formed during subsequent time periods are either merged with an existing cluster or added to the cluster list. The resulting list of cluster centroids, called a cluster group, characterizes the behavior of a particular set of temporal data. The degree to which new clusters formed in a subsequent time period are similar to the cluster group is characterized by a similarity measure, q. This method is applied to downlink data from Columbia flights. The results show that this technique can detect an unexpected fault that has not been present in the training data set.
    Keywords: Space Transportation and Safety
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: The objective of this project is the testing and evaluation of the effectiveness of a variety of fire suppressants and fire-response techniques that will be used in the next generation of spacecraft (Crew Exploration Vehicle, CEV) and planetary habitats. From the many lessons learned in the last 40 years of space travel, there is common agreement in the spacecraft fire safety community that a new fire suppression system will be needed for the various types of fire threats anticipated in new space vehicles and habitats. To date, there is no single fire extinguishing system that can address all possible fire situations in a spacecraft in an effective, reliable, clean, and safe way. The testing conducted under this investigation will not only validate the various numerical models that are currently being developed, but it will provide new design standards on fire suppression that can then be applied to the next generation of spacecraft extinguishment systems. The test program will provide validation of scaling methods by conducting small, medium, and large scale fires. A variety of suppression methods will be tested, such as water mist, carbon dioxide, and nitrogen with single and multiple injection points and direct or distributed agent deployment. These injection methods cover the current ISS fire suppression method of a portable hand-held fire extinguisher spraying through a port in a rack and also next generation spacecraft units that may have a multi-point suppression delivery system built into the design. Consideration will be given to the need of a crew to clean-up the agent and recharge the extinguishers in flight in a long-duration mission. The fire suppression methods mentioned above will be used to extinguish several fire scenarios that have been identified as the most relevant to spaceflight, such as overheated wires, cable bundles, and circuit boards, as well as burning cloth and paper. Further testing will be conducted in which obstructions and ventilation will be added to represent actual spacecraft conditions (e.g., a series of cards in a card rack).
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 1-11; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: A viewgraph presentation on Flammability and Extinction (FLEX) testing is shown.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 311-331; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 913-916; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Viewgraphs on the prevention, suppression, and detection of fires aboard a spacecraft is presented. The topics include: 1) Fire Prevention, Detection, and Suppression Sub-Element Products; 2) FPDS Organizing Questions; 3) FPDS Organizing Questions; 4) Signatures, Sensors, and Simulations; 5) Quantification of Fire and Pre-Fire Signatures; 6) Smoke; 7) DAFT Hardware; 8) Additional Benefits of DAFT; 9) Development and Characterization of Sensors 10) Simulation of the Transport of Smoke and Fire Precursors; and 11) FPDS Organizing Questions.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 863-877; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: A team consisting of of the Microgravity Flight Project Scientists for solid flammability experiments has been reviewing and prioritizing a set of organizing questions for fire prevention (material flammability).In particular the team has been charged with determining:What experiments must be conducted to best answer these questions, and can some of the quest ions be answered using existing/planned hardware or experimental concepts?Is the NASA STD 6001, Test 1 configuration conservative or non-conservative in assessing material flammability in reduced gravity?NASA ST D 6001, Test 1 is an upward flammability test, considered the most stringent test in normal gravity. A material that passes this test would most likely not burn in a quiescent microgravity environment.A forced ignition and spread test is described.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 612-636; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: The U.S. modules of the International Space Station use gaseous CO2 as the fire extinguishing agent. This was selected as a result of extensive experience with CO2 as a fire suppressant in terrestrial applications, trade studies on various suppressants, and experiments. The selection of fire suppressants and suppression strategies for NASA s Lunar and Martian exploration missions will be based on the same studies and normal-gravity data unless reduced gravity fire suppression data is obtained. In this study, the suppressant agent concentrations required to extinguish a flame in low velocity convective flows within the 20-sec of low gravity on the KC-135 aircraft were investigated. Suppressant gas mixtures of CO2, N2, and He with the balance being oxygen/nitrogen mixtures with either 21% or 25% O2 were used to suppress flames on a 19-mm diameter PMMA cylinder in reduced gravity. For each of the suppressant mixtures, limiting concentrations were established that would extinguish the flame at any velocity. Similarly, concentrations were established that would not extinguish the flame. The limiting concentrations were generally consistent with previous studies but did suggest that geometry had an effect on the limiting conditions. Between the extinction and non-extinction limits, the suppression characteristics depended on the extinguishing agent, flow velocity, and O2 concentration. The limiting velocity data from the CO2, He, and N2 suppressants were well correlated using an effective mixture enthalpy per mole of O2, indicating that all act via O2 displacement and cooling mechanisms. In reduced gravity, the agent concentration required to suppress the flames increased as the velocity increased, up to approximately 10 cm/s (the maximum velocity evaluated in this experiment). The effective enthalpy required to extinguish flames at velocities of 10 cm/s is approximately the same as the concentrations in normal gravity. A computational study is underway to further evaluate these findings.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 355-363; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: Flight hardware configuration flammability assessment will: a) evaluate the overall hardware configuration; b) evaluate the way in which the hardware will be used; c) identify the major materials to be assessed; d) determine fire propagation paths; and e) evaluate ability of containers to contain fire.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 139-145; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This report is concerned with the following topics regarding fire suppression:What is the relative effectiveness of candidate suppressants to extinguish a representative fire in reduced gravity, including high-O2 mole fraction, low -pressure environments? What are the relative advantages and disadvantages of physically acting and chemically-acting agents in spacecraft fire suppression? What are the O2 mole fraction and absolute pressure below which a fire cannot exist? What effect does gas-phase radiation play in the overall fire and post-fire environments? Are the candidate suppressants effective to extinguish fires on practical solid fuels? What is required to suppress non-flaming fires (smoldering and deep seated fires) in reduced gravity? How can idealized space experiment results be applied to a practical fire scenario? What is the optimal agent deployment strategy for space fire suppression?
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 848-862; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-05
    Description: The Propulsion Integrated Vehicle Health Management (IVHM) Technology Experiment (PITEX) is a continuing NASA effort being conducted cooperatively by the NASA Glenn Research Center, the NASA Ames Research Center, and the NASA Kennedy Space Center. It was a key element of a Space Launch Initiative risk-reduction task performed by the Northrop Grumman Corporation in El Segundo, California. PITEX's main objectives are the continued maturation of diagnostic technologies that are relevant to second generation reusable launch vehicle (RLV) subsystems and the assessment of the real-time performance of the PITEX diagnostic solution. The PITEX effort has considerable legacy in the NASA IVHM Technology Experiment for X-vehicles (NITEX) that was selected to fly on the X-34 subscale RLV that was being developed by Orbital Sciences Corporation. NITEX, funded through the Future-X Program Office, was to advance the technology-readiness level of selected IVHM technologies within a flight environment and to begin the transition of these technologies from experimental status into RLV baseline designs. The experiment was to perform realtime fault detection and isolation and suggest potential recovery actions for the X-34 main propulsion system (MPS) during all mission phases by using a combination of system-level analysis and detailed diagnostic algorithms.
    Keywords: Space Transportation and Safety
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: As with any task that NASA takes on, safety is of utmost importaqce. There are pages of safety codes and procedures that must be followed before any idea can be brought to life. Unfortunately, the International Space Station s (ISS) safety regulations and procedures are based on lg standards rather than on Og. To aide in making this space age home away from home a less hazardous environment, I worked on several projects revolving around the dangers of flammable items in microgravity. The first task I was assigned was to track flames. This involves turning eight millimeter video recordings, of tests run in the five second drop tower, into avi format on the computer. The footage is then compressed and altered so that the flame can be seen more clearly. Using another program called Spotlight, line profiles were used to collect data describing the luminescence of the flame at different points. These raw data are saved as text files and run trough a macro so that a Matlab program can analyze it. By fitting the data to a curve and determining the areas of brightest luminescence, the behavior of the flame can be recorded numerically. After entering the data into a database, researchers can come back later and easily get information on flames resulting from different gas and liquid mixtures in microgravity. I also worked on phase two of the FATE project, which deals with safety aboard the ISS. This phase involves igniting projected droplets and determining how they react with secondary materials. Such simulations represent, on a small scale, the spread of onboard fires due to the effervescence of burning primary materials. I set up existing hardware to operate these experiments and ran tests with it, photographing the results. I also made CAD drawings of the apparatus and the area available on the (SF)2 rig for it to fit into. The experiment will later be performed on the KC-135, and the results gathered will be used to reanalyze current safety standards for the ISS, including the distance of required separation for flammable materials. Additional information is included in the original extended abstract.
    Keywords: Space Transportation and Safety
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-18
    Description: The effects of radiation heat transfer in microgravity compared to convection heat transfer in earth gravity for opposed-flow (downward) over thermally-thick fuel using low density foam fuel were investigated. Microgravity experiments on flame spread over thermally-thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large flame spread rate compared to dense fuels such as PMMA. And thereby valid microgravity results were obtained even in 2.2 second drop-tower experiments not to mention for the longer duration tests in Zero Gravity Facility. Contrast to the conventional understanding, it was found that steady flame spread can occur over thick fuels in quiescent microgravity environments, especially when radiatively-active diluent gases such as CO2 were employed. This is proposed to result from radiative heat transfer from the flame to the fuel surface, which could lead to steady spread even when the amount of the heat transfer via conduction from the flame to the fuel bed is negligible. Radiative effects are more significant at microgravity conditions because the flame is thicker and thus the volume of radiating combustion products is larger as well. These results suggested that helium may be a better inert or extinguishment agent on both a mass and a mole bases at microgravity even though CO2 is much better on a mole bases at earth gravity, and these are relevant to studies of fire safety in manned spacecraft, particularly the International Space Station that uses CO2 fire extinguishers. CO2 may not be as effective as an extinguishing agent at g as it is at earth gravity in some conditions because of the differences in spread mechanisms between the two cases. In particular, the difference between conduction-dominated heat transport to the fuel bed at earth gravity and radiation-dominated heat transport at g indicates that radiatively-inert diluent such as helium could be preferable in g applications. Helium may be a superior fire suppression agent at g on several bases. First, helium is more effective than CO2 on a mole basis (thus pressure times storage volume basis) at g, meaning that the size and weight of storage bottles would be smaller for the same fire-fighting capability. Second; helium is much more effective on a mass basis (by about 11 times) at g. Third; helium has no physiological activity, unlike CO2 that affects human respiration. Fourth, as compared to N2 or CO2, is not very soluble in water and thus has fewer tendencies to cause bloodstream bubble formation following rapid spacecraft cabin depressurization.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference; 159; NASA/TM-2004-213114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: The recent Leonid meteor storms have propelled meteor shower forecasting from an idea into the realm of practical application, invoked several times per year by numerous spacecraft. This paper will describe shower activity predictions, which give zenith hourly rate (ZHR) as a function of time, and how these are translated into spacecraft risks. Common spacecraft meteor shower mitigation strategies will also be discussed, and the important issue as to when to implement such operations considered. It should be noted that, while the recent meteor storms did not result in the loss of a vehicle, there were a few spacecraft anomalies attributed to Leonid strikes, and the nature of these will be commented upon. Finally, we assess the current state of the art in shower forecasting, and take a look "down the road" at some possible outbursts in the near future.
    Keywords: Space Transportation and Safety
    Type: Meteoroids 2004; Aug 16, 2004 - Aug 20, 2004; London, Ontario; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.
    Keywords: Space Transportation and Safety
    Type: AIAA Conference; Jul 12, 2004; Fort Lauderdale, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.
    Keywords: Space Transportation and Safety
    Type: KSC-2004--004 , IEEE International Conference on Fuzzy Systems; Jul 25, 2004 - Jul 29, 2004; Budapest; Hungary
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: As recent history has tragically demonstrated, a successful space mission is not complete until the crew has safely returned to earth and has been successfully recovered. It is noted that a safe return to earth does not guarantee a successful recovery. The focus of this presentation will be a discussion of the ground operation assets involved in a successful recovery. The author's experience in land and water-based recovery of crewed vehicles and flight hardware at Kennedy Space Center (KSC), Edwards Air Force Base, international landing sites, and the Atlantic Ocean provides for some unique insight into this topic. He has participated in many aspects of Space Shuttle landing and recovery operations including activation of Transatlantic Abort Landing (TAL) sites and Emergency Landing Sites (ELS) as an Operations Test Director, execution of post landing convoy operations as an Orbiter Move Director, Operations Test Director, and Landing and Recovery Director, and recovery of solid rocket boosters, frustum and their parachutes 140 miles offshore in a wide range of sea states as a Retrieval Diver/Engineer. The recovery operations for the Mercury, Gemini, and Apollo were similar from a landing and recovery perspective in th t they all were capsules with limited "flying" capability and had a planned End of Mission (EOM) in an ocean with a descent slowed by parachutes. The general process was to deploy swim teams via helicopters to prepare the capsule for recovery and assist with crew extraction when required. The capsule was then hoisted onto the deck of a naval vessel. This approach required the extensive use and deployment of military assets to support the primary landing zone as well as alternate and contingency locations. The Russian Soyuz capsule also has limited "flying" capability; however, the planned EOM is terrestrial. In addition to use of parachutes to slow the reentry descent, soft-landing rockets on the bottom of the vehicle are employed to cushion the landing. The recovery forces are deployed via helicopters and the capsule is transported by a specialized all-terrain vehicle. The Space Shuttle Orbiter landing and recovery process is considerably different. The added lift capability and maneuverability allow the Orbiter to land at an exact location/runway for a nominal EOM. This allows for a timely response of recovery/contingency rescue forces, centralized staging of personnel and equipment, and assured access by ground vehicles. The well defined landing zone also provides for far more options when selecting landing sites for EOM and emergency returns and the relatively large cross-range capability increases the number of landing opportunities at the preferred sites.
    Keywords: Space Transportation and Safety
    Type: KSC-2004-035 , AIAA SPACE 2004 Conference and Exposition; Sep 28, 2004 - Sep 30, 2004; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Transportation and Safety
    Type: KSC-2004-135 , ELV Payload Safety Conference; Nov 16, 2004 - Nov 18, 2004; Santa Barbara, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: After the loss of Columbia in 2003, the Columbia Accident Investigation Board and NASA KSC directed personnel at the Launch Equipment Test Facility (LETF) to design and build high fidelity mock-ups of Columbia's left wing leading edges. These leading edge segments, constructed of reinforced carbon-carbon, were a major point of inquiry by the investigation team. The LETF engineers developed a concept of building a clear Lexan panel with an aluminum support structure ten percent larger than the original panel. The leading edge debris are attached to the Lexan panels and both the front and back side of each panel are visible for inspection. The entire assembly can be rotated, to provide visual access to the entire panel. Six carts were fabricated to support the thirteen panels. These carts could be set up in order, next to each other, to provide the desired inspection access. The carts and attached debris are currently located in the Vehicle Assembly Building at KSC.
    Keywords: Space Transportation and Safety
    Type: KSC-2004-063 , 41st Space Congress; Apr 27, 2004 - Apr 30, 2004; Cape Canaveral, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Transportation and Safety
    Type: KSC-2004-135 , ELV Payload Safety Conference; Nov 16, 2004 - Nov 18, 2004; Santa Barbara, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: Materials analyses of key forensic evidence helped unlock the mystery of the loss of space shuttle Columbia that disintegrated February 1, 2003 while returning from a 16-day research mission. Following an intensive four-month recovery effort by federal, state, and local emergency management and law officials, Columbia debris was collected, catalogued, and reassembled at the Kennedy Space Center. Engineers and scientists from the Materials and Processes (M&P) team formed by NASA supported Columbia reconstruction efforts, provided factual data through analysis, and conducted experiments to validate the root cause of the accident. Fracture surfaces and thermal effects of selected airframe debris were assessed, and process flows for both nondestructive and destructive sampling and evaluation of debris were developed. The team also assessed left hand (LH) airframe components that were believed to be associated with a structural breach of Columbia. Analytical data collected by the M&P team showed that a significant thermal event occurred at the left wing leading edge in the proximity of LH reinforced carbon carbon (RCC) panels 8 and 9. The analysis also showed exposure to temperatures in excess of 1,649 C, which would severely degrade the support structure, tiles, and RCC panel materials. The integrated failure analysis of wing leading edge debris and deposits strongly supported the hypothesis that a breach occurred at LH RCC panel 8.
    Keywords: Space Transportation and Safety
    Type: KSC-2004-019 , 133rd Annual Meeting and Exhibition of the Minerals, Metals and Materials Society (TMS); Mar 14, 2004 - Mar 18, 2004; Charlotte, NV; United States|Journal of Materials
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Transportation and Safety
    Type: KSC-2004-087 , NASA Simulation Activites Supporting the Columbia Accident Investigation and Space Shuttle Return to Flight; Jun 28, 2004; Kennedy Space Center, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: The Applied Meteorology Unit (AMU) provides technology development, evaluation and transition services to improve operational weather support to the Space Shuttle and the National Space Program. It is established under a Memorandum of Understanding among NASA, the Air Force and the National .Weather Service (NWS). The AMU is funded and managed by NASA and operated by ENSCO, Inc. through a competitively awarded NASA contract. The primary customers are the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS), FL; the Spaceflight Meteorology Group (SMG) at Johnson Space Center (JSC) in Houston, TX; and the NWS office in Melbourne, FL (NWS MLB). This paper will briefly review the AMU's history and describe the three processes through which its work is assigned. Since its inception in 1991 the AMU has completed 72 projects, all of which are listed at the end of this paper. At least one project that highlights each of the three tasking processes will be briefly reviewed. Some of the projects that have been especially beneficial to the space program will also be discussed in more detail, as will projects that developed significant new techniques or science in applied meteorology.
    Keywords: Space Transportation and Safety
    Type: KSC-2004-100 , 11th Conference on Aviation, Range, and Aerospace Meteorology; Oct 04, 2004 - Oct 08, 2004; Hyannis, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: Clouds are highly effective in obscuring optical images of the Space Shuttle taken during its ascent by ground-based and airborne tracking cameras. Because the imagery is used for quick-look and post-flight engineering analysis, the Columbia Accident Investigation Board (CAIB) recommended the return-to-flight effort include an upgrade of the imaging system to enable it to obtain at least three useful views of the Shuttle from lift-off to at least solid rocket booster (SRB) separation (NASA 2003). The lifetimes of individual cloud elements capable of obscuring optical views of the Shuttle are typically 20 minutes or less. Therefore, accurately observing and forecasting cloud obscuration over an extended network of cameras poses an unprecedented challenge for the current state of observational and modeling techniques. In addition, even the best numerical simulations based on real observations will never reach "truth." In order to quantify the risk that clouds would obscure optical imagery of the Shuttle, a 3D model to calculate probabilistic risk was developed. The model was used to estimate the ability of a network of optical imaging cameras to obtain at least N simultaneous views of the Shuttle from lift-off to SRB separation in the presence of an idealized, randomized cloud field.
    Keywords: Space Transportation and Safety
    Type: KSC-2004-109 , American Meteorological Society 11th Conference on Aviation, Range, and Aerospace Meteorology; Oct 04, 2004 - Oct 08, 2004; Hyannis, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Transportation and Safety
    Type: KSC-2004-111 , National Nanotechnology InitiativeGrand-Challenge Workshop; Aug 24, 2004 - Aug 26, 2004; Palo Alto, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-12
    Description: A report describes proposed systems to be installed in spacecraft to detect punctures by impinging meteoroids or debris. Relative to other systems that have been used for this purpose, the proposed systems would be simpler and more adaptable, and would demand less of astronauts attention and of spacecraft power and computing resources. The proposed systems would include a thin, hollow, hermetically sealed panel containing an inert fluid at a pressure above the spacecraft cabin pressure. A transducer would monitor the pressure in the panel. It is assumed that an impinging object that punctures the cabin at the location of the panel would also puncture the panel. Because the volume of the panel would be much smaller than that of the cabin, the panel would lose its elevated pressure much faster than the cabin would lose its lower pressure. The transducer would convert the rapid pressure drop to an electrical signal that could trigger an alarm. Hence, the system would provide an immediate indication of the approximate location of a small impact leak, possibly in time to take corrective action before a large loss of cabin pressure could occur.
    Keywords: Space Transportation and Safety
    Type: MFS-31636 , NASA Tech Briefs, October 2004; 33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-18
    Description: The United States does not have an Automated Rendezvous and Capture/Docking (AR and C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. This reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Soviets have the capability to autonomously dock in space, but their system produces a hard docking with excessive force and contact velocity. Automated Rendezvous and Capture/Docking has been identified as a key enabling technology for the Space Launch Initiative (SLI) Program, DARPA Orbital Express and other DOD Programs. The development and implementation of an AR&C capability can significantly enhance system flexibility, improve safety, and lower the cost of maintaining, supplying, and operating the International Space Station. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR and C) system for U.S. space vehicles. This AR&C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004.
    Keywords: Space Transportation and Safety
    Type: SPIE Defense and Security Symposium; Apr 12, 2004 - Apr 16, 2004; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-18
    Description: In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.
    Keywords: Space Transportation and Safety
    Type: 26th Conference on Hurricane and Tropical Meteorology; May 03, 2004 - May 07, 2004; Miami. FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-18
    Description: Three-dimensional Direct Simulation Monte Carlo simulations of Columbia Shuttle Orbiter flight STS-107 are presented. The aim of this work is to determine the aerodynamic and heating behavior of the Orbiter during aerobraking maneuvers and to provide piecewise integration of key scenario events to assess the plausibility of the candidate failure scenarios. The flight of the Orbiter is examined at two altitudes: 350-kft and 300-kft. The flowfield around the Orbiter and the heat transfer to it are calculated for the undamaged configuration. The flow inside the wing for an assumed damage to the leading edge in the form of a 10- inch hole is studied.
    Keywords: Space Transportation and Safety
    Type: 37th AIAA Thermophysics Conference; 28 Jun. 1 Jul. 2004; Portland, OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-18
    Description: The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.
    Keywords: Space Transportation and Safety
    Type: HFES 2004 Conference; Apr 23, 2004; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: The-Genesis mission to collect solar-wind samples and return them to Earth for detailed analysis proceeded successfully for 3.5 years. During reentry on September 8, 2004, a failure in the entry, descent and landing sequence resulted in a crash landing of the Genesis sample return capsule. This document describes the findings of the avionics sub-team that supported the accident investigation of the JPL Failure Review Board.
    Keywords: Space Transportation and Safety
    Type: JPL-Publ-2005-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-17
    Description: Reports are presented from volume 2 of the conference titled Strategic Research to Enable NASA's Exploration Missions, poster session. Topics included spacecraft fire suppression and fire extinguishing agents,materials flammability, various topics on the effects of microgravity including crystal growth, fluid mechanics, electric particulate suspension, melting and solidification, bubble formation, the sloshing of liquid fuels, biological studies, separation of carbon dioxide and carbon monoxide for Mars ISRU.
    Keywords: Space Transportation and Safety
    Type: NASA/CP-2004-213205/VOL2 , E-14713-2/VOL2 , Strategic Research to Enable NASA''s Exploration Missions Conference and Workshop: Poster Session; Jun 22, 2004 - Jun 23, 2004; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-16
    Description: Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion-suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches.The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference; 165; NASA/TM-2004-213114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-10
    Description: The effects of radiation heat transfer in microgravity compared to convection heat transfer in earth gravity for opposed-flow (downward) over thermally-thick fuel using low density foam fuel were investigated. Microgravity experiments on flame spread over thermally-thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large flame spread rate compared to dense fuels such as PMMA. And thereby valid microgravity results were obtained even in 2.2 second drop-tower experiments not to mention for the longer duration tests in Zero Gravity Facility. Contrast to the conventional understanding, it was found that steady flame spread can occur over thick fuels in quiescent microgravity environments, especially when radiatively-active diluent gases such as CO2 were employed. This is proposed to result from radiative heat transfer from the flame to the fuel surface, which could lead to steady spread even when the amount of the heat transfer via conduction from the flame to the fuel bed is negligible. Radiative effects are more significant at microgravity conditions because the flame is thicker and thus the volume of radiating combustion products is larger as well. These results suggested that helium may be a better inert or extinguishment agent on both a mass and a mole bases at microgravity even though CO2 is much better on a mole bases at earth gravity, and these are relevant to studies of fire safety in manned spacecraft, particularly the International Space Station that uses CO2 fire extinguishers. CO2 may not be as effective as an extinguishing agent at microgravity as it is at earth gravity in some conditions because of the differences in spread mechanisms between the two cases. In particular, the difference between conduction-dominated heat transport to the fuel bed at earth gravity and radiation-dominated heat transport at microgravity indicates that radiatively-inert diluent such as helium could be preferable in microgravity applications. Helium may be a superior fire suppression agent at microgravity on several bases. First, helium is more effective than CO2 on a mole basis (thus pressure times storage volume basis) at microgravity, meaning that the size and weight of storage bottles would be smaller for the same fire-fighting capability. Second; helium is much more effective on a mass basis (by about 11 times) at microgravity. Third; helium has no physiological activity, unlike CO2 that affects human respiration. Fourth, as compared to N2 or CO2, is not very soluble in water and thus has fewer tendencies to cause bloodstream bubble formation following rapid spacecraft cabin depressurization.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 409-418; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-10
    Description: A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-98. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-98 and the resulting effect on the Space Shuttle Program.
    Keywords: Space Transportation and Safety
    Type: NASA/TM-2004-211524
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-13
    Description: With permanent human presence onboard the International Space Station (ISS), a crew will be living and working in microgravity, interfacing with their physical environment. Without optimum restraints and mobility aids (R&MA' s), the crewmembers may be handicapped for perfonning some of the on-orbit tasks. In addition to weightlessness, the confined nature of a spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity area and may cause prolonged periods of unnatural postures. Thus, determining the right set of human factors requirements and providing an ergonomically designed environment are crucial to astronauts' well-being and productivity. The purpose of this project is to develop requirements and guidelines, and conceptual designs, for an ergonomically designed multi-purpose crew restraint. In order to achieve this goal, the project would involve development of functional and human factors requirements, design concept prototype development, analytical and computer modeling evaluations of concepts, two sets of micro gravity evaluations and preparation of an implementation plan. It is anticipated that developing functional and design requirements for a multi-purpose restraint would facilitate development of ergonomically designed restraints to accommodate the off-nominal but repetitive tasks, and minimize the performance degradation due to lack of optimum setup for onboard task performance. In addition, development of an ergonomically designed restraint concept prototype would allow verification and validation of the requirements defined. To date, we have identified "unique" tasks and areas of need, determine characteristics of "ideal" restraints, and solicit ideas for restraint and mobility aid concepts. Focus group meetings with representatives from training, safety, crew, human factors, engineering, payload developers, and analog environment representatives were key to assist in the development of a restraint concept based on previous flight experiences, the needs of future tasks, and crewmembers' preferences. Also, a catalog with existing IVA/EVA restraint and mobility aids has been developed. Other efforts included the ISS crew debrief data on restraints, compilation of data from MIR, Skylab and ISS on restraints, and investigating possibility of an in-flight evaluation of current restraint systems. Preliminary restraint concepts were developed and presented to long duration crewmembers and focus groups for feedback. Currently, a selection criterion is being refined for prioritizing the candidate concepts. Next steps include analytical and computer modeling evaluations of the selected candidate concepts, prototype development, and microgravity evaluations.
    Keywords: Space Transportation and Safety
    Type: JSC-CN-8180 , Habitatation 2004: Conference on Space Habitation Research and Technology; Jan 04, 2004 - Jan 07, 2004; Orlando, Fl; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: In the 1960s, NASA's Manned Space Center (now known as Johnson Space Center) and the Garrett Corporation, Air Research Division, conducted a research program to develop a small, lightweight water purifier for the Apollo spacecraft that would require minimal power and would not need to be monitored around-the-clock by astronauts in orbit. The 9-ounce purifier, slightly larger than a cigarette pack and completely chlorine-free, dispensed silver ions into the spacecraft s water supply to successfully kill off bacteria. A NASA Technical Brief released around the time of the research reported that the silver ions did not impart an unpleasant taste to the water. NASA s ingenuity to control microbial contamination in space caught on quickly, opening the doors for safer methods of controlling water pollutants on Earth.
    Keywords: Space Transportation and Safety
    Type: Spinoff; 59-60; NASA/NP-2004-10-374-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: Beginning with the Apollo Program in the early 1960s, the NASA White Sands Test Facility (WSTF) has supported every U.S. human exploration space flight program to date. Located in Las Cruces, New Mexico, WSTF is part of Johnson Space Center. The facility's primary mission is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components, and rocket propulsion systems to enable the safe human exploration and utilization of space. WSTF stores, tests, and disposes of Space Shuttle and International Space Station propellants. Since aerospace fluids can have harmful reactions with the construction materials of the systems containing them, a major component of WSTF's work is the study of propellants and hazardous materials. WSTF has a wide variety of resources to draw upon in assessing the fire, explosion, compatibility, and safety hazards of these fluids, which include hydrogen, oxygen, hydrazine fuels, and nitrogen tetroxide. In addition to developing new test methods, WSTF has created technical manuals and training courses for the safe use of aerospace fluids.
    Keywords: Space Transportation and Safety
    Type: Spinoff; 32; NASA/NP-2004-10-374-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-13
    Description: Computations were performed for damaged configurations of the Shuttle Orbiter in support of the STS-107 Columbia accident investigation. Two configurations with missing wing leading-edge reinforced carbon-carbon (RCC) panels were evaluated at conditions just prior to the peak heating trajectory point. The initial configuration modeled the Orbiter with an approximate missing RCC panel 6 to determine whether this damage could result in anomalous temperatures measured during the STS-107 reentry. This missing RCC panel 6 computation was found to produce heating augmentation factors of 5 times the nominal heating rates on the side fuselage with lesser heat increases on the front of the OMS pod. This is consistent with the thermocouple and resistance temperature detector sensors from the STS-107 re-entry which observed off nominal high early in the re-entry trajectory. A second damaged configuration modeled the Orbiter with missing RCC panel 9 and included ingestion of the flow into the outboard RCC channel. This computation lowered the level (only 2 times nominal) and moved the location of the heating augmentation on the leeside fuselage relative to the missing RCC panel 6 configuration. The lesser heating augmentation for missing RCC panel 9 was confined near the wing fuselage juncture. Near nominal heating was predicted on the remainder of the side fuselage with some lower than nominal heating on the front surface of the OMS pod. These results for missing RCC panel 9 are consistent with data from the STS-107 re-entry where the heating augmentation was observed to move off the side fuselage and OMS pod sensors at later times in the trajectory. As this solution requires supersonic mass ingestion into the RCC channel, it is probably not an appropriate model prior to penetration of the flow through the spar into the wing structure. It may, however, be representative of the conditions at later times and could account for the movement of the heating signature on the side fuselage.
    Keywords: Space Transportation and Safety
    Type: JANNAF 27th Airbreathing Propulsion Subcommittee; Dec 01, 2003 - Dec 05, 2003; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: The Space Shuttle Challenger and Columbia accidents resulted in tragic loss of life and national assets, and investigations into both accidents produced important lessons to prevent future accidents
    Keywords: Space Transportation and Safety
    Type: JSC-CN-21431 , TCC/ACIT Environmental Health, Safety (EHS) Seminar; Jun 07, 2004 - Jun 10, 2004; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: On February 1, 2003, the Space Shuttle Columbia broke apart during reentry resulting in loss of 7 crewmembers and craft. For the next several months an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA concluded in August, 2003 that the cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into the missions launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of left wing which ultimately led to the breakup of the orbiter. In order to gain a better understanding the foam impact on the orbiters RCC wing leading edge, a multi-center team of NASA and Boeing impact experts was formed to characterize the foam and RCC materials for impact analysis using LS Dyna. Dyna predictions were validated with sub-component and full scale tests. LS Dyna proved to be a valuable asset in supporting both the Columbia Accident Investigation and NASA s return to flight efforts. This paper summarizes Columbia Accident and the nearly seven month long investigation that followed. The use of LS-DYNA in this effort is highlighted. Contributions to the investigation and return to flight efforts of the multicenter team consisting of members from NASA Glenn, NASA Langley, and Boeing Philadelphia are introduced and covered in detail in papers to follow in these proceedings.
    Keywords: Space Transportation and Safety
    Type: 8th International LS-DYNA Users Conference; May 02, 2004 - May 04, 2004; Dearborn, MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.
    Keywords: Space Transportation and Safety
    Type: AIAA Paper 2004-2279 , 37th AIAA Thermophysics Conference; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: A flexible framework constructing block structured volume grids for hypersonic Navier-Strokes flow simulations was developed for the analysis of the Shuttle Orbiter Columbia. The development of the framework, which was partially basedon the requirements of the primary flow solvers used resulted in an ability to directly correlate solutions contributed by participating groups on a common surface mesh. A foundation was built through the assessment of differences between differnt solvers, which provided confidence for independent assessment of other damage scenarios by team members. The framework draws on the experience of NASA Langley and NASA Ames Research Centers in structured grid generation, and consists of a grid generation, and consist of a grid generation process implemented through a division of responsibilities. The nominal division of labor consisted of NASA Johnson Space Center coordinating the damage scenarios to be analyzed by the Aerothermodynamics Columbia Accident Investigation (ACAI) team, Ames developing the surface grids that described the computational volume about the Orbiter, and Langley improving grid quality of Ames generated data and constructing the final computational volume grids. Distributing the work among the participant in th ACAI team resulted in significantl less time required to construct complete meshes than possible by any individual participant. The approach demonstrated that the One-NASA grid generation team could sustain the demand of for five new meshes to explore new damage scenarios within an aggressive time-line.
    Keywords: Space Transportation and Safety
    Type: AIAA Paper 2004-2635 , 34th AIAA Fluid Dynamics Conference and Exhibit; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: In order to meet the space transportation needs for a new century, America's National Aeronautics and Space Administration (NASA) has implemented an Integrated Space Transportation Plan to produce safe, economical, and reliable access to space. One near term objective of this initiative is the design and development of a next-generation vehicle and launch system that will transport crew and cargo to and from the International Space Station (ISS), the Orbital Space Plane (OSP). The OSP system is composed of a manned launch vehicle by an existing Evolved Expendable Launch Vehicle (EELV). The OSP will provide emergency crew rescue from the ISS by 2008, and provide crew and limited cargo transfer to and from the ISS by 2012. A key requirement is for the OSP to be safer and more reliable than the Soyuz and Space Shuttle, which currently provide these capabilities.
    Keywords: Space Transportation and Safety
    Type: International Conference on Probabilistic Safety Assessment and Management (PSAM7); Jun 14, 2004 - Jun 18, 2004; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: This paper describes a study that was conducted to determine the quality of thermodynamic and wind data measured by the Space Shuttle Transatlantic Abort Landing (TAL) Atmospheric Sounding System (TASS). The system has Global Positioning System (GPS) tracking capability and provides profiles of atmospheric parameters such as temperature, relative humidity, and wind in support of potential emergency Space Shuttle landings at TAL sites. Ten comparison flights between the Low-Resolution Flight Element (LRFE) of the Automated Meteorological Profiling System (AMPS) and TASS were conducted at the Eastern Test Range (ETR) in early 2002. Initial results indicated that wind, temperature, and relative humidity compared well. However, incorrect GPS settings in the TASS software were resulting in altitude differences of about 60 to 70 m (approximately 200 to 230 ft) and air pressure differences of approximately 4 hectoPascals (hPa). TASS software updates to correct altitude data were completed in early 2003. Subsequent testing showed that altitude and air pressure differences were generally less than 5 m and 1 hPa, respectively.
    Keywords: Space Transportation and Safety
    Type: 42nd AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2004 - Jan 08, 2004; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-11
    Description: A health monitoring system based on analytical redundancy is developed for satellites on elliptical orbits. First, the dynamics of the satellite including orbital mechanics and attitude dynamics is modelled as a periodic system. Then, periodic fault detection filters are designed to detect and identify the satellite's actuator and sensor faults. In addition, parity equations are constructed using the algebraic redundant relationship among the actuators and sensors. Furthermore, a residual processor is designed to generate the probability of each of the actuator and sensor faults by using a sequential probability test. Finally, the health monitoring system, consisting of periodic fault detection lters, parity equations and residual processor, is evaluated in the simulation in the presence of disturbances and uncertainty.
    Keywords: Space Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-10
    Description: A hazard assessment was conducted on the GRC managed payloads in support of a NASA Headquarters Code Q request to examine STS-107 payloads and determine if they were credible contributors to the Columbia accident. This assessment utilized each payload's Final Flight Safety Data Package for hazard identification. An applicability assessment was performed and most of the hazards were eliminated because they dealt with payload operations or crew interactions. A Fault Tree was developed for all the hazards deemed applicable and the safety verification documentation was reviewed for these applicable hazards. At the completion of this hazard assessment, it was concluded that none of the GRC managed payloads were credible contributors to the Columbia accident.
    Keywords: Space Transportation and Safety
    Type: NASA/TM-2004-213050 , E-14486
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: I. Design: a) S/C designed to be largely single fault tolerant; b) Operate in flight demonstrated envelope, with margin; and c) Strict compliance with requirements & flight rules. II. Test: a) Baseline, fault & stress testing using flight system testbeds (H/W & S/W); b) In-flight checkout & demos to remove first time events. III. Failure Analysis: a) Critical event driven fault tree analysis; b) Risk mitigation & development of contingencies. IV) Residual Risks: a) Accepted pre-launch waivers to Single Point Failures; b) Unavoidable risks (e.g. natural disaster). V) Mission Assurance: a) Strict process for characterization of variances (ISAs, PFRs & Waivers; b) Full time Mission Assurance Manager reports to Program Manager: 1) Independent assessment of compliance with institutional standards; 2) Oversight & risk assessment of ISAs, PFRs & Waivers etc.; and 3) Risk Management Process facilitator.
    Keywords: Space Transportation and Safety
    Type: SpaceOps Conference; May 17, 2004 - May 21, 2004; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: The Columbia Accident Investigation Board (CAIB) determined that organizational and management issues were significant contributors to the loss of Space Shuttle Columbia. In addition, the CAIB observed similarities between the organizational and management climate that preceded the Challenger accident and the climate that preceded the Columbia accident. To prevent recurrence of adverse organizational and management climates, effective implementation of the system safety function is suggested. Attributes of an effective system safety program are presented. The Marshall Space Flight Center (MSFC) system safety program is analyzed using the attributes. Conclusions and recommendations for improving the MSFC system safety program are offered in this case study.
    Keywords: Space Transportation and Safety
    Type: American Society for Engineering Management 25th National Conference; Oct 20, 2004 - Oct 23, 2004; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-14
    Description: Continued constrained budgets and growing national and international interests in the commercialization and development of space requires NASA to be constantly vigilant, to be creative, and to seize every opportunity for assuring the maximum return on space infrastructure investments. Accordingly, efforts are underway to forge new and innovative approaches to transform our space systems in the future to ultimately achieve two or three or five times as much with the same resources. This bold undertaking can be achieved only through extensive cooperative efforts throughout the aerospace community and truly effective planning to pursue advanced space system design concepts and high-risk/high-leverage research and technology. Definitive implementation strategies and roadmaps containing new methodologies and revolutionary approaches must be developed to economically accommodate the continued exploration and development of space. Transformation can be realized through modular design and stepping stone development. This approach involves sustainable budget levels and multi-purpose systems development of supporting capabilities that lead to a diverse amy of sustainable future space activities. Transformational design and development requires revolutionary advances by using modular designs and a planned, stepping stone development process. A modular approach to space systems potentially offers many improvements over traditional one-of-a-kind space systems comprised of different subsystem element with little standardization in interfaces or functionality. Modular systems must be more flexible, scaleable, reconfigurable, and evolvable. Costs can be reduced through learning curve effects and economies of scale, and by enabling servicing and repair that would not otherwise be feasible. This paper briefly discusses achieving a promising approach to transforming space systems planning and evolution into a meaningful stepping stone design, development, and implementation process. The success of this well planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.
    Keywords: Space Transportation and Safety
    Type: 55th International Astronautical Congress; Oct 04, 2004 - Oct 08, 2004; Vancouver; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-15
    Description: STS-107 was a 16-day, dedicated research mission that included over 80 experiments, spanning many disciplines including biology, physics, chemistry, and earth sciences, including many student experiments. The mission was considered a resounding success until February 1, 2003, when tragedy struck the Columbia and her crew as she re-entered the atmosphere over Texas. During the mission, approximately one third of the overall data was obtained but much more was stored in the flight hardware systems. This paper documents a new set of STS-107 experiment objectives, a "mission after the mission," in which several experiment teams attempted, and, in many cases succeeded, to recover data from their flight hardware, now debris. A description of the data recovery efforts is included for these five experiment facilities: Combustion Module-2, Critical Viscosity of Xenon-2, Commercial Instrumentation Technology Associates Biomedical Experiments-2, Biological Research in Canisters-14, and Commercial Protein Crystal Growth.
    Keywords: Space Transportation and Safety
    Type: AIAA Paper 2004-285 , GRC-E-DAA-TN59755 , AIAA Aerospace Sciences Meeting; Jan 05, 2004 - Jan 08, 2004; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-17
    Description: Topic presentations are included on the following: biosensors to monitor the health of astronauts, microgravity effects on flammability, fire prevention and suppression, life support topics, waste management topics, heat transfer; gas flow and liquids flow, and combustion studies.
    Keywords: Space Transportation and Safety
    Type: NASA/CP-2004-213205/VOL1 , E-14713-1/VOL1 , Strategic Research to Enable NASA''s Exploration Missions Conference and Workshop; Jun 22, 2004 - Jun 23, 2004; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: This is the First Quarterly Report for the newly reconstituted Aerospace Safety Advisory Panel (ASAP). The NASA Administrator rechartered the Panel on November 18,2003, to provide an independent, vigilant, and long-term oversight of NASA's safety policies and programs well beyond Return to Flight of the Space Shuttle. The charter was revised to be consistent with the original intent of Congress in enacting the statute establishing ASAP in 1967 to focus on NASA's safety and quality systems, including industrial and systems safety, risk-management and trend analysis, and the management of these activities.The charter also was revised to provide more timely feedback to NASA by requiring quarterly rather than annual reports, and by requiring ASAP to perform special assessments with immediate feedback to NASA. ASAP was positioned to help institutionalize the safety culture of NASA in the post- Stafford-Covey Return to Flight environment.
    Keywords: Space Transportation and Safety
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-15
    Description: Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches. The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 448-450; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-18
    Description: NASA issued a Request For Information (RFI) to identify technologies that might be available to monitor a list of air pollutants in the ISS atmosphere. After NASA received responses to the RFI, an expert panel was assembled to hear presentations from 9 technology proponents. The goal of the panel was to identify technologies that might be suitable for replacement of the current Volatile Organics Analyzer (VOA) within several years. The panelists consisted of 8 experts in analytical chemistry without any links to NASA and 7 people with specific expertise because of their roles in NASA programs. Each technology was scored using a tool that enabled rating of many specific aspects of the technology on a 4-point system. The maturity of the technologies ranged from well-tested instrument packages that had been designed for space applications and were nearly ready for flight to technologies that were untested and speculative in nature. All but one technology involved the use of gas chromatography for separation, and there were various detectors proposed including several mass spectrometers and ion mobility spectrometers. In general there was a tradeoff between large systems with considerable capability to address the target list and smaller systems that had much more limited capability.
    Keywords: Space Transportation and Safety
    Type: SAE-2004-01-2339 , 34th International Conference on Environmental Systems; Jul 18, 2004 - Jul 23, 2004; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-18
    Description: The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.
    Keywords: Space Transportation and Safety
    Type: International Meeting on Closed Habitation Experiments and Material Circulation Technology; Sep 29, 2004; Aomori; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-18
    Description: This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.
    Keywords: Space Transportation and Safety
    Type: 34rd International Conference on Environmental Systems; Jul 19, 2004 - Jul 22, 2004; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-18
    Description: During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth's gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth's gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA's KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns. In November of 2003, this new apparatus was used on the KC-135 aircraft to test cotton and cotton/polyester blend fabric specimens in microgravity. These materials were also been tested using the same apparatus in 1-g, and using a standard vertical flammability test that utilizes a flame. In this presentation, the design of the test apparatus will be briefly described. Examples of results from the KC-135 tests will be provided, including heat fluxes and skin burn predictions. These results will be compared with results from 1-g tests using the same apparatus and a standard fabric flammability test apparatus. Recommendations for future microgravity fabric flammability tests will also be discussed.
    Keywords: Space Transportation and Safety
    Type: Strategic Research to Enable NASA's Exploration Missions Conference; 63; NASA/TM-2004-213114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: This slide presentation, in Spanish, is an overview of NASA's Space Shuttle operations and preparations for serving the International Space Station. There is information and or views of the shuttle's design, the propulsion system, the external tanks, the foam insulation, the reusable solid rocket motors, the vehicle assembly building (VAB), the mobile launcher platform being moved from the VAB to the launch pad. There is a presentation of some of the current issues with the space shuttle: cracks in the LH2 flow lines, corrosion and pitting, the thermal protection system, and inspection of the thermal protection system while in orbit. The shuttle system has served for more than 20 years, it is still a challenge to re-certify the vehicles for flight. Materials and material science remain as chief concerns for the shuttle,
    Keywords: Space Transportation and Safety
    Type: JSC-CN-8530 , An Engineering Look at Space Shuttle and ISS Operations; May 20, 2004 - May 23, 2004; Pachuca, Hidalgo; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: A graphic presentation of the aerothermodynamics analysis conducted in support of the STS-107 accident investigation. Investigation efforts were conducted as part of an integrated AATS team (Aero, Aerothermal, Thermal, Stress) directed by OVEWG. Graphics presented are: STS-107 Entry trajectory and timeline (1st off-nominal event to Post-LOS); Indications from OI telemetry data; Aero/aerothermo/thermal analysis process; Selected STS-107 side fuselage/OMS pod off-nominal temperatures; Leading edge structural subsystem; Relevant forensics evidence; External aerothermal environments; STS-107 Pre-entry EOM3 heating profile; Surface heating and temperatures; Orbiter wing leading edge damage survey; Internal aerothermal environments; Orbiter wing CAD model; Aerodynamic flight reconstruction; Chronology of aerodynamic/aerothermoydynamic contributions; Acreage TPS tile damage; Larger OML perturbations; Missing RCC panel(s); Localized damage to RCC panel/missing T-seal; RCC breach with flow ingestion; and Aero-aerothermal closure. NAIT served as the interface between the CAIB and NASA investigation teams; and CAIB requests for study were addressed.
    Keywords: Space Transportation and Safety
    Type: Purdue University School of Aeronautics and Astronautics Department Seminar; Apr 22, 2004; West Lafayette, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: The Service Module (SM) is an element of the Russian Segment of the International Space Station (ISS). One of the functions of the SM is to provide attitude control for the ISS using thrusters when the U.S. Control Moment Gyros (CMG's) must be desaturated. Prior to an Extravehicular Activity (EVA) on the Russian Segment, the Docking Compartment (DC1) is depressurized, as it is used as an airlock. When the DC1 is depressurized, the CMG's margin of momentum is insufficient and the SM attitude control thrusters need to fire to desaturate the CMG's. SM roll thruster firings induce contamination onto adjacent surfaces with Fuel Oxidizer Reaction Products (FORP). FORP is composed of both volatile and non-volatile components. One of the components of FORP is the potent carcinogen N-nitrosdimethylamine (NDMA). Since the EVA crewmembers often enter the area surrounding the thrusters for tasks on the aft end of the SM and when translating to other areas of the Russian Segment, the presence of FORP is a concern. This paper will discuss FORP contamination of the SM surfaces, the release of NDMA in a humid environment from crew EVA suits, if they happen to be contaminated with FORP, and the toxicological risk associated with the NDMA release.
    Keywords: Space Transportation and Safety
    Type: 7th International Space Conference on Protection of Materials and Structures from Space Enviroment; May 10, 2004 - May 13, 2004; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Structural Health Management (SHM) will be of critical importance to provide the safety, reliability and affordability necessary for the future long duration space missions described in America's Vision for Space Exploration. Long duration missions to the Moon, Mars and beyond cannot be accomplished with the current paradigm of periodic, ground based structural integrity inspections. As evidenced by the Columbia tragedy, this approach is also inadequate for the current Shuttle fleet, thus leading to its initial implementation of on-board SHM sensing for impact detection as part of the return to flight effort. However, future space systems, to include both vehicles as well as structures such as habitation modules, will require an integrated array of onboard in-situ sensing systems. In addition, advanced data systems architectures will be necessary to communicate, store and process massive amounts of SHM data from large numbers of diverse sensors. Further, improved structural analysis and design algorithms will be necessary to incorporate SHM sensing into the design and construction of aerospace structures, as well as to fully utilize these sensing systems to provide both diagnosis and prognosis of structural integrity. Ultimately, structural integrity information will feed into an Integrated Vehicle Health Management (IVHM) system that will provide real-time knowledge of structural, propulsion, thermal protection and other critical systems for optimal vehicle management and mission control. This paper will provide an overview of NASA research and development in the area of SHM as well as to highlight areas of technology improvement necessary to meet these future mission requirements.
    Keywords: Space Transportation and Safety
    Type: 2nd Australasian Workshop on Structural Health Monitoring; Dec 16, 2004 - Dec 17, 2004; Melbourne; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) played a significant role in supporting the safe arrival of the European Space Agency (ESA) Mars Express (MEX) orbiter to Mars on 25 December 2003. MEX mission is an international collaboration between member nations of the ESA and NASA, where NASA is supporting partner. JPL's involvement included providing commanding and tracking service with JPL's Deep Space Network (DSN), in addition to navigation assurance. The collaborative navigation effort between European Space Operations Centre (ESOC) and JPL is the first since ESA's last deep space mission, Giotto, and began many years before the MEX launch. This paper discusses the navigational experience during the cruise and final approach phase of the mission from JPL's perspective. Topics include technical challenges such as orbit determination using non-DSN tracking data and media calibrations, and modeling of spacecraft physical properties for accurate representation of non-gravitational dynamics. Also mentioned in this paper is preparation and usage of DSN Delta Differential Oneway Range ((Delta)DOR) measurements, a key element to the accuracy of the orbit determination.
    Keywords: Space Transportation and Safety
    Type: 18th International Symposium on Space Flight Dynamics; Oct 11, 2004 - Oct 15, 2004; Munich; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-100. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-100 and the resulting effect of the Space Shuttle Program.
    Keywords: Space Transportation and Safety
    Type: NASA/TM-2004-211525
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-12
    Description: Develop an understanding of the safety issues relating to space use and qualification of new Li-Ion technology for manned applications. Enable use of new technology batteries into GFE equipment - laptop computers, camcorders. Establish a data base for an optimized set of cells (and batteries) exhibiting acceptable performance and abuse characteristics for utilization as building blocks for numerous applications.
    Keywords: Space Transportation and Safety
    Type: The 2002 NASA Aerospace Battery Workshop; NASA/CP-2003-212344
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-06
    Description: Space-based systems are developing into critical infrastructure to support the quality of life on Earth. Mission requirements along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. This chapter describes approaches to accommodate space climate and space weather impacts on systems and notes areas where gaps in model development limit our ability to prevent spacecraft anomalies.
    Keywords: Space Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-06
    Description: The overall objective of this project is to measure the fire signatures of typical spacecraft materials in 1-g and determine how these signatures may be altered in a microgravity environment. During this project, we will also develop a test technique to obtain representative low-gravity signatures. The specific tasks that will be accomplished to achieve these objectives are to: (1) measure the time history of various fire signatures of typical spacecraft materials in 1-g at varying heating rates, temperatures, convective velocities, and oxygen concentrations, (2) conduct tests in the Zero-Gravity Facility at NASA John H. Glenn Research Center to investigate the manner that a microgravity environment alters the fire signature,(3) compare 0-g and 1-g time histories and determine if 0-g data exhibits the same dependence on the test parameters as experienced in 1-g (4) develop a 1-g test technique by which 0-g fire signatures can be measured. The proposed study seeks to investigate the differences in the identities and relative concentrations of the volatiles produced by pyrolyzing and/or smoldering materials between normal gravity and microgravity environments. Test materials will be representative of typical spacecraft materials and, where possible, will be tested in appropriate geometries. Wire insulation materials of Teflon, polyimide, silicone, and PVC will be evaluated using either cylindrical samples or actual wire insulation. Other materials such as polyurethane, polyimide, melamine, and silicone-based foams will be tested using cylindrical samples, in addition to fabric materials, such as Nomex. Electrical components, such as resistors, capacitors, circuit board will also be tested.
    Keywords: Space Transportation and Safety
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 389-392; NASA/CP-2003-212376/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-05
    Description: In early 2001, three of the space shuttle orbiters were found to have a sodium carbonate contaminant on the wing leading edge and nose cap. These parts are made of a reinforced carbon/carbon material protected by silicon carbide (SiC) and a glass coating. The glass coating is known as Type A and is primarily sodium silicate with particles of SiC. NASA Glenn Research Center's Environmental Durability Branch was asked to determine the chemistry of this deposit formation and assess any possible detrimental effects. At low temperatures, the reverse reaction is favorable. Previous studies of the corrosion of glass show that carbon dioxide in the presence of water does form sodium carbonate on sodium silicate glass (ref. 1). It is quite likely that a similar scenario exists for the orbiter wing leading edge. All three orbiters that formed sodium carbonate were exposed to rain. This formation of sodium carbonate was duplicated in the laboratory. The Type A glass, which coats the wing leading edge and nose cap, was made in a freestanding form and exposed to water in two separate experiments. In one set of experiments, the coating was placed in a petri dish filled with water. As the water evaporated, sodium carbonate formed. In another case, water was slowly dripped on the coating and sodium carbonate formed. The sodium carbonate was detected by chemical analysis and, in some cases, xray diffraction showed a hydrated sodium carbonate. The next step was to examine possible detrimental effects of this sodium carbonate. There are three likely scenarios for the sodium carbonate deposit: (1) it may be removed with a simple rinse, (2) it may remain and flow back into the Type A glass after heating during reentry, or (3) it may remain and flow onto unprotected SiC and/or other parts after heating during reentry. The effect of case 1 is to remove the Na2O constituent from the Type A glass, thus decreasing its effectiveness as a sealant. Even so, overall, it is probably the best approach and was used by the NASA Kennedy Space Center when the deposits were first observed. The effect of case 2 is minimal and would actually restore the the Type A glass to its composition before carbonate formation. However, the problem with allowing the carbonate to remain leads to the third scenario, the deposit flowing onto other parts. A series of tests were conducted on unprotected SiC, and minimal effects were found in the short-term, but other ceramic and metal parts could be damaged by the molten sodium carbonate and would require close monitoring.
    Keywords: Space Transportation and Safety
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-06
    Description: In essence, to survival a spacecraft breakup an animal must not experience a lethal event. Much as with surviving aircraft breakup, dissipation of lethal forces via breakup of the craft around the organism is likely to greatly increase the odds of survival. As spacecraft can travel higher and faster than aircraft, it is often assumed that spacecraft breakup is not a survivable event. Similarly, the belief that aircraft breakup or crashes are not survivable events is still prevalent in the general population. As those of us involved in search and rescue know, it is possible to survive both aircraft breakup and crashes. Here we make the first report of an animal, C. elegans, surviving atmospheric breakup of the spacecraft supporting it and discuss both the lethal events these animals had to escape and the implications implied for search and rescue following spacecraft breakup.
    Keywords: Space Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This viewgraph presentation provides information on selecting, using, and configuring spacecraft materials in such a way as to minimize the ability of fire to spread onboard a spacecraft. The presentation gives an overview of the flammability requirements of NASA-STD-6001, listing specific tests and evaluation criteria it requires. The presentation then gives flammability reduction methods for specific spacecraft items and materials.
    Keywords: Space Transportation and Safety
    Type: Research Needs in Fire Safety for the Human Exploration and Utilization of Space: Proceedings and Research Plan; 35-47; NASA/CP-2003-212103
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-06
    Description: This viewgraph presentation provides information on developments in spacecraft fire safety research. The presentation includes an overview of the previous Spacecraft Fire Safety Workshop, from 1986, and the influences since then of bioastronautics on combustion science and fire safety. The presentation then gives of overview of the current conference, stating goals and giving a schedule.
    Keywords: Space Transportation and Safety
    Type: Research Needs in Fire Safety for the Human Exploration and Utilization of Space Proceedings and Research Plan; 19-25; NASA/CP-2003-212103
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-05
    Description: The Characterization of Smoke Particulate for Spacecraft Fire Detection, or Smoke, microgravity experiment is planned to be performed in the Microgravity Science Glovebox Facility on the International Space Station (ISS). This investigation, which is being developed by the NASA Glenn Research Center, ZIN Technologies, and the National Institute of Standards and Technologies (NIST), is based on the results and experience gained from the successful Comparative Soot Diagnostics experiment, which was flown as part of the USMP-3 (United States Microgravity Payload 3) mission on space shuttle flight STS-75. The Smoke experiment is designed to determine the particle size distributions of the smokes generated from a variety of overheated spacecraft materials and from microgravity fires. The objective is to provide the data that spacecraft designers need to properly design and implement fire detection in spacecraft. This investigation will also evaluate the performance of the smoke detectors currently in use aboard the space shuttle and ISS for the test materials in a microgravity environment.
    Keywords: Space Transportation and Safety
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-05
    Description: Fires onboard manned spacecraft and launch vehicles are a particularly feared hazard because one cannot jump ship while in orbit 240 nmi above the Earth at 17 000 mph! Understanding the physical properties of fires in free fall and on orbit is, therefore, a very important endeavor for NASA s Human Exploration and Development of Space (HEDS) enterprise. However, detailed information concerning the structure of microgravity fires remained elusive until recently since robustness, limited power, limited volume, and limited mass place severe constraints on diagnostic equipment for use in space and in NASA Glenn Research Center s reduced-gravity facilities. Under NASA Research Associate funding since 2001, En'Urga, Inc. (Dr. Sivathanu, principal investigator, and Dr. Lim, co-investigator) in collaboration with Glenn (Dr. Feikema, coinvestigator) have successfully demonstrated a new technology for use in microgravity combustion. A midinfrared scanning spectrometer has been developed by En'Urga and tested at Glenn to measure 30 spectra per second at different spatial locations in a flame from 1.8 to 4.8 microns.
    Keywords: Space Transportation and Safety
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-05
    Description: A range of microfabricated chemical sensors are being developed to meet the needs of fire detection and emission monitoring in aerospace applications. These sensors have the advantages over traditional technology of minimal size, weight, and power consumption as well as the ability to be placed closer to where the measurements need to be made. Sensor arrays are being developed to address detection needs in environments where multiple species need to be measured. For example, the monitoring of chemical species such as carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons, and other species is important in the detection of fires on airplanes and spacecraft. In contrast, different sensors are necessary for characterizing some aircraft engine designs where the monitoring of nitrogen oxides (NO(x)) and CO is of high interest. Demonstration of both fire and emission microsensor technology was achieved this year in a collaborative effort undertaken by the NASA Glenn Research Center, Case Western Reserve University, and Makel Engineering, Inc.
    Keywords: Space Transportation and Safety
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: STS-114 Discovery crew is shown in various training exercises at Johnson Space Center. The crew consists of Eileen Collins, Commander; James Kelley, Pilot; Charles Camarda, Mission Specialist; Wendy Lawrence, Mission Specialist; Soichi Noguchi, Mission Specialist; Steve Robinson, Mission Specialist; and Andy Thomas, Mission Specialist. The exercises include: 1) EVA training in the VR lab; 2) Neutral Buoyancy Laboratory (NBL) EVA Training; 3) Walk to Motion Base Simulator; 4) EVA Preparations in ISS Airlock; and 7) Emergency Egress from Crew Compartment Trainer (CCT). A crew photo session is also presented. Footage of The Space Shuttle Atlantis inside the Kennedy Space Center Vehicle Assembly Building (VAB) after its demating from the Solid Rocket Booster and External Tank is shown. The video ends with techniques for inspecting and repairing Thermal Protection System tiles, a video of external tank production at the Michoud Assembly Facility (MAF) and redesign of the foam from the bipod ramp at Michoud Assembly Facility (MAF).
    Keywords: Space Transportation and Safety
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: The Columbia Accident Investigation Board has identified about a dozen shuttle program safety concerns it will address in its final report, in addition to foam shedding from the Lockheed Martin external tank-believed by many board members to be the direct cause for the loss of Columbia and her crew. As new evidence narrows the location of Columbia's left-wing breach to a lower corner of reinforced carbon-carbon (RCC) Panel 8 and its adjoining T-seal, the board is broadening its penetration of other shuttle safety issues. As the board works in Houston, United Space Alliance technicians here at Kennedy last week sent the first six of 22 RCC panels from the orbiter Atlantis left wing to Vought Aircraft Industries Inc. in Dallas for extensive testing to assess their integrity. The move is a key step toward both returning the shuttle to flight with Atlantis and obtaining more data on RCC panels subjected to fewer flights, and less exposure to the weather, than the older panels used on Columbia.
    Keywords: Space Transportation and Safety
    Type: Aviation Week and Space Technology; 42-43
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-12
    Description: This paper presents viewgraphs on the development of a non-ablative thermal management coating used as the thermal protection system material for space shuttle rocket boosters and other launch vehicles. The topics include: 1) Coating Study; 2) Aerothermal Testing; 3) Preconditioning Environments; 4) Test Observations; 5) Lightning Strike Test Panel; 6) Test Panel After Impact Testing; 7) Thermal Testing; and 8) Mechanical Testing.
    Keywords: Space Transportation and Safety
    Type: 5th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2003-212931
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.
    Keywords: Space Transportation and Safety
    Type: Paper 031CES-330 , 33rd International Conference on Environmental Systems; Jul 07, 2003 - Jul 10, 2003; Vancouver, British Columbia; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: Two Disk-Gap-Band model parachute designs were tested in the NASA Langley Transonic Dynamics Tunnel. The purposes of these tests were to determine the drag and static stability coefficients of these two model parachutes at various subsonic Mach numbers in support of the Mars Exploration Rover mission. The two model parachute designs were designated 1.6 Viking and MPF. These model parachute designs were chosen to investigate the tradeoff between drag and static stability. Each of the parachute designs was tested with models fabricated from MIL-C-7020 Type III or F-111 fabric. The reason for testing model parachutes fabricated with different fabrics was to evaluate the effect of fabric permeability on the drag and static stability coefficients. Several improvements over the Viking-era wind tunnel tests were implemented in the testing procedures and data analyses. Among these improvements were corrections for test fixture drag interference and blockage effects, and use of an improved test fixture for measuring static stability coefficients. The 1.6 Viking model parachutes had drag coefficients from 0.440 to 0.539, while the MPF model parachutes had drag coefficients from 0.363 to 0.428. The 1.6 Viking model parachutes had drag coefficients 18 to 22 percent higher than the MPF model parachute for equivalent fabric materials and test conditions. Model parachutes of the same design tested at the same conditions had drag coefficients approximately 11 to 15 percent higher when manufactured from F-111 fabric as compared to those fabricated from MIL-C-7020 Type III fabric. The lower fabric permeability of the F-111 fabric was the source of this difference. The MPF model parachutes had smaller absolute statically stable trim angles of attack as compared to the 1.6 Viking model parachutes for equivalent fabric materials and test conditions. This was attributed to the MPF model parachutes larger band height to nominal diameter ratio. For both designs, model parachutes fabricated from F-111 fabric had significantly greater statically stable absolute trim angles of attack at equivalent test conditions as compared to those fabricated from MILC-7020 Type III fabric. This reduction in static stability exhibited by model parachutes fabricated from F-111 fabric was attributed to the lower permeability of the F-111 fabric. The drag and static stability coefficient results were interpolated to obtain their values at Mars flight conditions using total porosity as the interpolating parameter.
    Keywords: Space Transportation and Safety
    Type: AIAA Paper 2003-2129 , 17th AIAA Aerodynamics Decelerator Systems Technology Conference; May 19, 2003 - May 22, 2003; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: As the International Space Station (ISS) grows, so do the supplies and equipment needed to support its daily operations. Each day many items must be unstowed and moved to various worksites so that they are readily available to the crew. Due to the lack of gravity, these items ,may become loose and float away if not restrained. The Payload Equipment Restraint System (PERS) was developed to meet the new and unique challenge of restraining loose equipment aboard the ISS.
    Keywords: Space Transportation and Safety
    Type: SAE-03ICES-312 , 2003 International Conference on Environmental Systems; Jul 07, 2003 - Jul 10, 2003; Vancouver, British Columbia; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: A method has been developed to reduce numerical stiffness and computer CPU requirements of high fidelity multibody flight simulations involving parachutes for planetary entry trajectories. Typical parachute entry configurations consist of entry bodies suspended from a parachute, connected by flexible lines. To accurately calculate line forces and moments, the simulations need to keep track of the point where the flexible lines meet (confluence point). In previous multibody parachute flight simulations, the confluence point has been modeled as a point mass. Using a point mass for the confluence point tends to make the simulation numerically stiff, because its mass is typically much less that than the main rigid body masses. One solution for stiff differential equations is to use a very small integration time step. However, this results in large computer CPU requirements. In the method described in the paper, the need for using a mass as the confluence point has been eliminated. Instead, the confluence point is modeled using an "equilibrium point". This point is calculated at every integration step as the point at which sum of all line forces is zero (static equilibrium). The use of this "equilibrium point" has the advantage of both reducing the numerical stiffness of the simulations, and eliminating the dynamical equations associated with vibration of a lumped mass on a high-tension string.
    Keywords: Space Transportation and Safety
    Type: AAS-03-163 , 13th AAS/AIAA Space Flight Mechanics Meeting; Feb 09, 2003 - Feb 13, 2003; Ponce; Puerto Rico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-19
    Description: To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the capability to automatically execute the plans and monitor the system performance. In the event of system dispersions or failures the AMM can modify plans or abort to assure overall system safety. This paper describes the design and functionality of Draper's AMM framework, presents concept of operations associated with the use of the AMM, and outlines the relevant features of the flight demonstrations.
    Keywords: Space Transportation and Safety
    Type: JSC-CN-7626 , 26th annual AAS Guidance and Control Conference; Feb 05, 2003 - Feb 09, 2003; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-10
    Description: This video, Part 4 of 4, shows the activities of the STS-107 crew during flight days 13 through 15 of the Columbia orbiter's final flight. The crew consists of Commander Rick Husband, Pilot William McCool, Payload Commander Michael Anderson, Mission Specialists David Brown, Kalpana Chawla, and Laurel Clark, and Payload Specialist Ilan Ramon. The highlight of flight day 13 is Kalpana Chawla conversing with Mission Control Center in Houston during troubleshooting of the Combustion Module in a recovery procedure to get the MIST fire suppression experiment back online. Chawla is shown replacing an atomizer head. At Mission Control Center a vase of flowers commemorating the astronauts who died on board Space Shuttle Challenger's final flight is shown and explained. The footage of flight day 14 consists of a tour of Columbia's flight deck, middeck, and Spacehab research module. Rick Husband narrates the tour, which features Kalpana Chawla, Laurel Clark, and himself. The astronauts demonstrate hygene, a dining tray, the orbiter's toilet, and a space iron, which is a rack for strapping down shirts. The Earth limb is shown with the Spacehab module in the foreground. Clark exercises on a bicycle for a respiration experiment, and demonstrates how a compact disk player gyrates in microgravity. On flight day 15, the combustion module is running again, and footage is shown of the Water Mist Fire-Suppression Experiment (Mist) in operation. Laurel Clark narrates a segment of the video in which Ilan Ramon exercises on a bicycle, Rick Husband, Kalpana Chawla, and Ramon demonstrate spinning and push-ups in the Spacehab module, and Clark demonstrates eating from a couple of food packets. The video ends with a shot of the Earth limb reflected on the radiator on the inside of Columbia's open payload bay door with the Earth in the background.
    Keywords: Space Transportation and Safety
    Type: JSC-1952
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-10
    Description: Russian cosmonaut Alexander Y. Kaleri, Flight Engineer on Expedition 8 to the International Space Station (ISS), answers interview questions on this video, either himself or with the help of an interpreter. The questions cover: 1) The goal of the expedition; 2) The place in history of Mir; 3) The reaction to the loss of Columbia in Houston; 4) Why the rewards of spaceflight are worth the risks; 5) Why he decided to become a cosmonaut; 6) His memory of Yuri Gagarin's first flight; 7) What happens on a Soyuz capsule during launch and flight; 8) Are Soyuz maneuvers automatic or manual; 8) How the ISS science mission will be advanced during his stay; 9) The responsibilities of a Flight Engineer onboard the ISS; 10) Extravehicular activity (EVA) plans at that time; 11) The Shuttle Return to Flight and his preference for a Shuttle or Soyuz landing; 12) Why the last Soyuz landing was too rough; 13) The most valueable contribution of the ISS program.
    Keywords: Space Transportation and Safety
    Type: JSC-1949B
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-10
    Description: This video, Part 1 of 3, shows the activities of the STS-112 crew on flight days 1 - 3. The crew included Commander Jeff Ashby, Pilot Pam Melroy, and Mission Specialists Sandy Magnus, David Wolf, Piers Sellers, and Fyodor Yurchikhin. Flight day 1 begins with an introduction of the astronauts, seen during their pre-flight banquet, and suit-up. The ingress of some of the crew into the Space Shuttle Atlantis is shown. The launch footage includes the view from a camera mounted on the shuttle's external fuel tank, as well as replays. The separation of the shuttle's booster rockets is also shown. On flight day 2 a view of the payload bay and orbiter docking mechanism on Atlantis is shown from a camera on the shuttle's robotic arm. The footage of flight day 3 includes the docking of Atlantis and the International Space Station (ISS), and the exchange of greetings between the two spacecrews. Views of Earth include a pass over the western United States on flight day 2, and a night view of China on flight day 3.
    Keywords: Space Transportation and Safety
    Type: JSC-1942 , NONP-NASA-VT-2003009344
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-10
    Description: Commander Eileen Collins of the STS-114 space mission is seen during a pre-launch interview. She answers questions about the primary goals of the mission which are to exchange the expedition six and expedition seven crews. Also, she says that a large amount of logistics will be taken up to the International Space Station. The primary payload on this mission include: 1) The Utilization and Logistics Flight-1 (ULF-1); 2) Raffaello Multi-Purpose Logistics Module (MPLM); and 3) External Stowage Platform (ESP-2) which are all explained in detail by the Commander. The Window Observational Research Facility (WORF) rack, Human Research Facility (HRF) rack, Minus Eighty Degree Laboratory Freezer (MELF) and EXPRESS rack are the Space Station equipment to be installed on the International Space Station (I.S.S.). Collins is the Intravehicular Activity (IVA) specialist for this mission who oversees the three Extravehicular Activity (EVA)'s performed by Mission Specialists Soichi Noguchi and Stephen Robinson. The three EVA's include an external camera installation, positioning devices for an ammonia system and the installation of Floating Potential Measuring Unit (FPMU). Commander Collins expresses that she wants to have a successful mission, and also wants to see the Earth from space.
    Keywords: Space Transportation and Safety
    Type: NONP-NASA-VT-2003013985 , JSC-1936A
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-10
    Description: Pilot James M. Kelly, Lieutenant Colonel USAF, is shown during a prelaunch interview. He expresses the major goals of the mission which are to replace the Expedition Six crew of the International Space Station (ISS), install the Raffello Multi-Purpose Logistics Module, deliver the External Stowage Platform to the ISS, and replace the Control Moment Gyroscope (CMG). The major task that he has is to be the backup pilot for Commander Eileen Collins. He talks about the three new research racks brought up to the International Space Station inside the U.S. Destiny Laboratory along with the Window Observational Research Facility (WORF), Human Research Facility 2 (HRF-2), and a Minus Eighty Degree Laboratory Freezer (MELF-1). Kelly also explains how he uses the ISS' Robotic arm to lift the MPLM out of Atlantis' payload bay and attach it to the Unity node to unload hardware, supplies and maintenance items. This will be his second trip to the International Space Station.
    Keywords: Space Transportation and Safety
    Type: JSC-1936B , NONP-NASA-VT-2003013989
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-10
    Description: Soichi Noguchi, Mission Specialist 1 (MS1) representing Japan's National Space Development Agency (NASDA) is seen during a prelaunch interview. He discusses the main goals of this flight which are to take expedition 7 to the International Space Station and bring back expedition 6 to the Earth. He is also responsible for all Extravehicular (EVA) work on this mission. Expedition seven includes: Mission Specialist and Commander Yuri Malenchenko; NASA ISS Science Officer Edward Lu; and Flight Engineer Alexander Kaleri. Expedition Six includes: Commander Kenneth Bowersox; NASA ISS Science Officer Donald Petit; and Flight Engineer Nikolai Budarin. Noguchi explains the Utilization and Logistics Flight 1 (ULF1) Mission which entails the exchange of crewmembers, various supplies and experiments and the replacement of a control component on the International Space Station. This is also will be Soichi Noguchi's first spacewalk.
    Keywords: Space Transportation and Safety
    Type: JSC-1936C , NONP-NASA-VT-2003013988
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-10
    Description: This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists; Ilan Ramon, Payload Specialist) during flight day 11 of the Columbia orbiter's final mission. In the video, crew members from the Blue Team (McCool, Brown, Anderson) and the Red Team (Husband, Chawla, Clark, Ramon) are shown at work on experiments in the SpaceHab RDM (Research Double Module), and performing other tasks. Much of the video is shot and narrated by Commander Husband. Mission Specialist Brown is shown operating the MEIDEX (Mediterranean Israeli Dust Experiment). Crew activities shown include making breakfast, entering sleep stations, and programming shuttle maneuvers necessary for the spaceborne experiments onboard. Earth views shown in the video include one of Egypt, Israel and Jerusalem.
    Keywords: Space Transportation and Safety
    Type: BRF-1437K , NONP-NASA-VT-2003010430
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-10
    Description: The fifth day of the STS-107 space mission begins with a presentation of The Six Space Technology and Research Students (STARS) program experiments aboard the Space Shuttle Columbia. Students from Australia, China, Israel, Japan, Lichtenstein and The United States send scientific experiments into space. The video includes the progress of experiments with various insects including silkworms, carpenter bees, ants, fish, and spiders.
    Keywords: Space Transportation and Safety
    Type: BRF-1437E , NONP-NASA-VT-2003007324
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-10
    Description: This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists, Ilan Ramon, Payload Specialist) during flight day 8 of the Columbia orbiter's final flight. The primary activities of flight day 8 are spaceborne experiments. Some background information is given on the SOFBALL (Structure of Flame Balls at Low Lewis-Number) microgravity experiment as footage of the flame balls is shown. The video also shows the MEIDEX (Mediterranean Israeli Dust Experiment) calibrating on the Moon. The six STARS (Space Technology and Research Students) international student experiments are profiled, including experiments on carpenter bees (Liechtenstein), spiders (Australia), silkworms (China), ants (United States), crystal growth (Israel), and fish embryos (Japan). A commercial experiment on roses is also profiled. Astronaut Clark gives a tour of the SpaceHab RDM (Research Double Module), in the space shuttle's payload bay. Astronauts McCool and Ramon take turns on an exercise machine. The video includes a partly cloudy view of the Pacific Ocean.
    Keywords: Space Transportation and Safety
    Type: BRF-1437H , NONP-NASA-VT-2003009293
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-10
    Description: The extravehicular activity (EVA) required to assemble the International Space Station (ISS) will take approximately 1500 hours with 400 hours of EVA per year in operations and maintenance. With the Space Station at an inclination of 51.6 deg the radiation environment is highly variable with solar activity being of great concern. Thus, it is important to study the dose gradients about the body during an EVA to help determine the cancer risk associated with the different environments the ISS will encounter. In this paper we are concerned only with the trapped radiation (electrons and protons). Two different scenarios are looked at: the first is the quiet geomagnetic periods in low Earth orbit (LEO) and the second is during a large solar particle event in the deep space environment. This study includes a description of how the space suit's computer aided design (CAD) model was developed along with a description of the human model. Also included is a brief description of the transport codes used to determine the total integrated dose at several locations within the body. Finally, the results of the transport codes when applied to the space suit and human model and a brief description of the results are presented.
    Keywords: Space Transportation and Safety
    Type: NASA/TP-2003-212158 , NAS 1.60:212158 , L-18235
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-17
    Description: Owing to the absence of past work involving flames similar to the Mir fire namely oxygen-enhanced, inverse gas-jet diffusion flames in microgravity the objectives of this work are as follows: 1. Observe the effects of enhanced oxygen conditions on laminar jet diffusion flames with ethane fuel. 2. Consider both earth gravity and microgravity. 3. Examine both normal and inverse flames. 4. Compare the measured flame lengths and widths with calibrated predictions of several flame shape models. This study expands on the work of Hwang and Gore which emphasized radiative emissions from oxygen-enhanced inverse flames in earth gravity, and Sunderland et al. which emphasized the shapes of normal and inverse oxygen-enhanced gas-jet diffusion flames in microgravity.
    Keywords: Space Transportation and Safety
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 377-380; NASA/CP-2003-212376/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: This is a map of the debris scattering from the Columbia accident over parts of Texas and Louisiana. It depicts the location of recovered debris, and identifies regional facilities important to the recovery effort.
    Keywords: Space Transportation and Safety
    Type: HQ-E-DAA-TN59374
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-15
    Description: The CAIB requested these data be included in this Appendix. This Appendix is a summary of present and past efforts that were initiated to characterize the moisture absorption capability of sprayed-on-foam-insulation (SOFI) and specifically, BX-250.
    Keywords: Space Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-10
    Description: During FY-2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. The study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. The Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.
    Keywords: Space Transportation and Safety
    Type: NASA/TP-2003-212691 , M-1087
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-10
    Description: This video, Part 3 of 4, shows the activities of the STS-107 crew during flight days 9 through 12 of the Columbia orbiter's final flight. The crew consists of Commander Rick Husband, Pilot William McCool, Payload Commander Michael Anderson, Mission Specialists David Brown, Kalpana Chawla, and Laurel Clark, and Payload Specialist Ilan Ramon. On flight day 9 David Brown and other crew members are at work on experiments in the Spacehab research module, and imagery is shown from the Mediterranean Israeli Dust Experiment (MEIDEX) on a pass over North Africa and the Horn of Africa. Ilan Ramon narrates part of the footage from flight day 10, and intravehicular activities of the astronauts onboard Columbia are shown, as well as views of the Gulf of Aden, and Lake Chad, which is seen with the back of the orbiter in the foreground. Rick Husband narrates the footage from day 11, which includes cleaning duties and maintenance, as well as an excellent view of the Sinai Peninsula, Israel, and Jordan, as well as the Mediterranean Sea, Red Sea, and Gulf of Aqaba. The highlight of flight day 12 is a conversation between Columbia's crew and the crew of the International Space Station (ISS). A special section of Earth views at the end of the video shows: 1) Atlantic Ocean, Strait of Gibraltar, Mediterranean Sea, Iberian Peninsula, Morocco, and Algeria; 2) Baja Peninsula; 3) Cyprus and Mediterranean Sea; 4) Florida; 5) Earth limb and Pacific Ocean; 6) North Carolina Outer Banks, Cape Hatteras, and Atlantic Ocean; 7) Houston with zoom out to Texas and Louisiana; 8) Mt. Vesuvius (Italy); 9) Earth limb and Atlantic Ocean; 10) Earth limb and terminator, and Pacific Ocean; 11) Saudia Arabia, Yemen, Oman, and Arabian Sea.
    Keywords: Space Transportation and Safety
    Type: JSC-1952
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-10
    Description: During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.
    Keywords: Space Transportation and Safety
    Type: NASA/TM-2003-212926 , M-1091
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...