ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,574)
  • Spacecraft Design, Testing and Performance  (864)
  • Fluid Mechanics and Thermodynamics  (710)
  • Cell & Developmental Biology
  • 2005-2009  (1,574)
  • 1930-1934
Collection
Source
Years
Year
  • 1
    Publication Date: 2018-06-06
    Description: The Laser Interferometer Space Antenna (LISA) mission. a space based gravitational wave detector. uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that the three spacecraft and their associated operations form one distributed science instrument. unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LISA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a "sciencecraft." Here we describe some of the unique features of the LISA spacecraft design that help create the quiet environment necessary for gravitational wave observations.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: Completed thermal-mechanical and mechanical load testing: a) 6 re-entry heating tests (3 with loading to 50% DLL), 3 hypersonic cruise tests with loading to 50% DLL and 4 high-temperature modal survey tests. b) 9 tests to 100% DLL. High-temperature modal survey results were inconclusive due to exceeding capability of some accelerometers. Overall good correlation between analysis and measured results for windward and leeward surface temperatures. Generally poor correlation between analysis and measured results for spindle area temperatures. Excellent test-to-test repeatability in strain and deflection data for 100% DLL testing. In-situ thermography images taken before and after thermal testing showed only minor changes in initial defects. Final detailed thermography tests scheduled for completion in Oct 09. In process of completing test documentation and test data analysis. Final reports complete by Dec 09. All analysis, test data, test plans, reports, photos, etc. will be made available to the technical community via the CMC Wiki.
    Keywords: Spacecraft Design, Testing and Performance
    Type: DFRC-1069 , 2009 Fundamental Aeronautics Program Annual Meeting; 29 Sep. 1 Oct. 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-27
    Description: Aircraft induced contrails have been found to have a net warming influence on the climate system, with strong regional dependence. Persistent linear contrails are detectable in 1 Km thermal imagery and, using an automated Contrail Detection Algorithm (CDA), can be identified on the basis of their different properties at the 11 and 12 m w av.el enTgthshe algorithm s ability to distinguish contrails from other linear features depends on the sensitivity of its tuning parameters. In order to keep the number of false identifications low, the algorithm imposes strict limits on contrail size, linearity and intensity. This paper investigates whether including additional information (i.e. meteorological data) within the CDA may allow for these criteria to be less rigorous, thus increasing the contrail-detection rate, without increasing the false alarm rate.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-8777 , RSPSoc Annual Conference; 8-11 Sept. 2009; Leicester; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: DFRC-934 , International Forum on Aeroelasticity and Structural Dynamics (IFASD) 2009; Jun 21, 2009 - Jun 25, 2009; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Minimizing mass and volume is critically important for space hardware. Microchannel technology can be used to decrease both of these parameters for heat exchangers. Working in concert with NASA, Pacific Northwest National Laboratories (PNNL) has developed a microchannel liquid/liquid heat exchanger that has resulted in significant mass and volume savings. The microchannel heat exchanger delivers these improvements without sacrificing thermal and pressure drop performance. A conventional heat exchanger has been tested and the performance of it recorded to compare it to the microchannel heat exchanger that PNNL has fabricated. The microchannel heat exchanger was designed to meet all of the requirements of the baseline heat exchanger, while reducing the heat exchanger mass and volume. The baseline heat exchanger was designed to have an transfer approximately 3.1 kW for a specific set of inlet conditions. The baseline heat exchanger mass was 2.7 kg while the microchannel mass was only 2.0 kg. More impressive, however, was the volumetric savings associated with the microchannel heat exchanger. The microchannel heat exchanger was an order of magnitude smaller than the baseline heat exchanger (2180cm3 vs. 311 cm3). This paper will describe the test apparatus designed to complete performance tests for both heat exchangers. Also described in this paper will be the performance specifications for the microchannel heat exchanger and how they compare to the baseline heat exchanger.
    Keywords: Spacecraft Design, Testing and Performance
    Type: International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Two fluid life tests have been conducted to evaluate propylene glycol-based fluids for use in Constellation habitats and vehicles. The first test was conducted from November 2008 to January 2009 to help determine the compatibility of the propylene glycol-based fluid selected for Orion at the time. When the first test uncovered problems with the fluid selection, an investigation and selection of a new fluid were conducted. A second test was started in March 2010 to evaluate the new selection. For the first test, the fluid was subjected to a thermal fluid loop that had flight-like properties, as compared to Orion. The fluid loop had similar wetted materials, temperatures, flow rates, and aluminum wetted surface area to fluid volume ratio. The test was designed to last for 10 years, the life expectancy of the lunar habitat. However, the test lasted less than two months. System filters became clogged with precipitate, rendering the fluid system inoperable. Upon examination of the precipitate, it was determined that the precipitate composition contained aluminum, which could have only come from materials in the test stand, as aluminum is not part of the original fluid composition. Also, the fluid pH was determined to have increased from 10.1, at the first test sample, to 12.2, at the completion of the test. This high of a pH is corrosive to aluminum and was certainly a contributing factor to the development of precipitate. Due to the problems encountered during this test, the fluid was rejected as a coolant candidate for Orion. A new propylene glycol-based fluid was selected by the Orion project for use in the Orion vehicle. The Orion project has conducted a series of screening tests to help verify that there will be no problems with the new fluid selection. To compliment testing performed by the Orion project team, a new life test was developed to test the new fluid. The new test bed was similar to the original test bed, but with some improvements based on experience gained from the earlier test bed. The surface area of both aluminum and nickel in the test bed were designed to be similar to that of the Orion fluid loop, since the Orion fluid loop was expected to have high concentrations of both metals in the system. Also, additional sample materials were added to the test bed to match recent updates to materials selections for Orion. At the time of this paper publication, approximately five months of testing will have been completed. This paper gives a status of the testing completed to date.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19237 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system.. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat being rejected by a radiator. Coupon level tests were performed to test the feasibility of the technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios during a mission profile for Altair Lunar Lander. This paper summarizes results from coupon level tests as well as thermal math models developed to investigate how electrochromics can be used to provide the largest turn down ratio for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19174 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: NASA s Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles thermal control system. NASA s Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids. The current paper will provide an update to a similar overview paper published at last year s International Conference on Environmental Systems (ICES).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19168 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: NASA's Constellation Program has been developed to successfully return humans to the Lunar surface prior to 2020. The Constellation Program includes several different project offices including Altair, which is the next generation Lunar Lander. The planned Altair missions are very different than the Lunar missions accomplished during the Apollo era. These differences have resulted in a significantly different thermal control system architecture. The Altair project has employed a rather unique development approach as compared with previous manned spacecraft programs. Altair started the design process by developing a single-string (no fault tolerance), minimum functionality design. This first design and analysis cycle resulted in the baseline design for the entire process. From this point of departure, Altair continued the development process by adding vehicle functionality for the purposes of minimizing the risk of Loss Of Crew (LOC) and Loss Of Mission (LOM). Through the subsequent design and analysis cycles, the project office compared the added mass associated with the reduction of LOC/LOM and selected the most mass efficient design solutions. The current paper will summarize the Altair mission profile, the operational phases, and the LOC/LOM decisions that were made during the various design cycles. The evolution of the thermal control system design through Lunar Design and Analysis Cycle 3 (LDAC-3) will also be described in this paper.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-19167 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially increasing reliability and reducing complexity while saving both mass and power. Furthermore, the Integrated Sublimator Driven Coldplate (ISDC) concept couples a coolant loop with the previously described SDC hardware. This combination allows the SDC to be used as a traditional coldplate during long mission phases. The previously developed SDC technology cannot be used for long mission phases due to the fact that it requires a consumable feedwater for heat rejection. Adding a coolant loop also provides for dissimilar redundancy on the Altair Lander ascent module thermal control system, which is the target application for this technology. Tests were performed on an Engineering Development Unit at NASA s Johnson Space Center to quantify and assess the performance of the SDC. Correlated thermal math models were developed to help explain the test data. The paper also outlines the preliminary results of an ISDC concept being developed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19171 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The LISA Technology Package (LTP) is the payload of the European Space Agency's LISA Pathfinder mission. LISA Pathfinder was instigated to test, in a flight environment, the critical technologies required by LISA; namely, the inertial sensing subsystem and associated control laws and micro-Newton thrusters required to place a macroscopic test mass in pure free-fall. The UP is in the late stages of development -- all subsystems are currently either in the final stages of manufacture or in test. Available flight units are being integrated into the real-time testbeds for system verification tests. This poster will describe the UP and its subsystems, give the current status of the hardware and test campaign, and outline the future milestones leading to the UP delivery.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: An assessment of APNASA was conducted at NASA Glenn Research Center under the Fundamental Aeronautics Program to determine their predictive capabilities. The geometry selected for this study was Stage 35 which is a single stage transonic compressor. A speedline at 100% speed was generated and compared to experimental data at 100% speed for two turbulence models. Performance of the stage at 100% speed and profiles of several key aerodynamic parameters are compared to the survey data downstream of the stator in this report. In addition, hub leakage was modeled and compared to solutions without leakage and the available experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-18238 , AIAA 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-18249 , 47th AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: An ideal pulse tube cryocooler using an ideal gas can operate at any temperature. This is not true for real gases. The enthalpy flow resulting from the real gas effects of 3He, 4He, and their mixtures in ideal pulse tube cryocoolers puts limits on the operating temperature of pulse tube cryocoolers. The discussion of these effects follows a previous description of the real gas effects in ideal pulse tube cryocoolers and makes use of models of the thermophysical properties of 3He and 4He. Published data is used to extend the analysis to mixtures of 3He and 4He. The analysis was done for pressures below 2 MPa and temperatures below 2.5 K. Both gases and their mixtures show low temperature limits for pulse tube cryocoolers. These limits are in the 0.5-2.2 K range and depend on pressure and mixture. In some circumstances, even lower temperatures may be possible. Pulse tube cryocoolers using the ha-fluid properties of dilute 3He in superfluid 4He appear to have no limit.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN505 , Cryogenic Engineering Conference; Jun 28, 2009 - Jul 02, 2009; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: Resonant effects and energy dissipation due to sloshing fuel inside propellant tanks are problems that arise in the initial design of any spacecraft or launch vehicle. A faster and more reliable method for calculating these effects during the design stages is needed. Using Computational Fluid Dynamics (CFD) techniques, a model of these fuel tanks can be created and used to predict important parameters such as resonant slosh frequency and damping rate. This initial study addresses the case of free surface slosh. Future studies will focus on creating models for tanks fitted with propellant management devices (PMD) such as diaphragms and baffles.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-2009-029 , 50th AIAA/ASME/ASC/AHS/ASC Structures, Structural Dynamics and Materials Conference; May 04, 2009 - May 07, 2009; Palm Springs, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Integrated testing (such as Multi-Element Integrated Test (MEIT)) is critical to reducing risks and minimizing problems encountered during assembly, activation, and on-orbit operation of large, complex manned spacecraft. Provides the best implementation of "Test Like You Fly:. Planning for integrated testing needs to begin at the earliest stages of Program definition. Program leadership needs to fully understand and buy in to what integrated testing is and why it needs to be performed. As Program evolves and design and schedules mature, continually look for suitable opportunities to perform testing where enough components are together in one place at one time. The benefits to be gained are well worth the costs.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2009-196R , Aerospace Testing Seminar; Oct 13, 2009 - Oct 15, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-2009-128 , Cryogenic Engineering Conference; Jun 28, 2009 - Jul 02, 2009; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: A computational fluid dynamics (CFD) method is adapted, validated and applied to spinning gear systems with emphasis on predicting windage losses. Several spur gears and a disc are studied. The CFD simulations return good agreement with measured windage power loss. Turbulence modeling choices, the relative importance of viscous and pressure torques with gear speed and the physics of the complex 3-D unsteady flow field in the vicinity of the gear teeth are studied.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: American Helicopter Society 64th Anllual Forum; Apr 29, 2008 - May 01, 2008; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Description: CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL), the National Aeronautics and Space Administration (NASA), AGI, Orbital Sciences Corporation, Praxis Incorporated, and SolidWorks. Specifically, the 2009 Virginia Tech CanSat Team is funded by BAE Systems, Incorporated of Manassas, Virginia. The objective of the 2009 CanSat competition is to complete remote sensing missions by designing a small autonomous sounding rocket payload. The payload designed will follow and perform to a specific set of mission requirements for the 2009 competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, reviews, and launch.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2009-092
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-12
    Description: Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC.JA.4770.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: One unique project that the Prototype lab worked on was PORT I (Post-landing Orion Recovery Test). PORT is designed to test and develop the system and components needed to recover the Orion capsule once it splashes down in the ocean. PORT II is designated as a follow up to PORT I that will utilize a mock up pressure vessel that is spatially compar able to the final Orion capsule.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2009-159
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-19
    Description: Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional ~30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-18012 , Shock Compression of Condensed Matter; Jun 28, 2009 - Jul 03, 2009; Tennessee; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-19
    Description: Fragment shape is an important factor for conducting reliable orbital debris damage assessments for critical space assets, such as the International Space Station. To date, seven microsatellite impact tests have been completed as part of an ongoing collaboration between Kyushu University and the NASA Orbital Debris Program Office. The target satellites ranged in size from 15 cm 15 cm 15 cm to 20 cm 20 cm 20 cm. Each target satellite was equipped with fully functional electronics, including circuits, battery, and transmitter. Solar panels and multi-layer insulation (MLI) were added to the target satellites of the last two tests. The impact tests were carried out with projectiles of different sizes and impact speeds. All fragments down to about 2 mm in size were collected and analyzed based on their three orthogonal dimensions, x, y, and z, where x is the longest dimension, y is the longest dimension in the plane perpendicular to x, and z is the longest dimension perpendicular to both x and y. Each fragment was also photographed and classified by shape and material composition. This data set serves as the basis of our effort to develop a fragment shape distribution. Two distinct groups can be observed in the x/y versus y/z distribution of the fragments. Objects in the first group typically have large x/y values. Many of them are needle-like objects originating from the fragmentation of carbon fiber reinforced plastic materials used to construct the satellites. Objects in the second group tend to have small x/y values, and many of them are box-like or plate-like objects, depending on their y/z values. Each group forms the corresponding peak in the x/y distribution. However, only one peak can be observed in the y/z distribution. These distributions and how they vary with size, material type, and impact parameters will be described in detail within the paper.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17570 , 5th European Conference on Space Debris; Mar 30, 2009 - Apr 02, 2009; Darmstadt; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-19
    Description: An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated and real human metabolic loads in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-18994 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-19
    Description: Every spacecraft atmosphere contains trace contaminants resulting from offgassing by cabin materials and human passengers. An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). Part of the risk mitigation effort for this new technology is the study of how atmospheric trace contaminants will affect and be affected by the technology. One particular area of concern is ammonia, which, in addition to the normal spacecraft sources, can also be off-gassed by the amine-based sorbent. In the first half of 2009, tests were performed with typical cabin atmosphere levels of five of the most common trace gases, most of which had not yet been tested with this technology. A subscale sample of the sorbent was exposed to each of the chemicals mixed into a stream of moist, CO2-laden air, and the CO2 adsorption capacity of the sorbent was compared before and after the exposure. After these typical-concentration chemicals were proven to have negligible effect on the subscale sample, tests proceeded on a full-scale test article in a sealed chamber with a suite of eleven contaminants. To isolate the effects of various test rig components, several extended-duration tests were run: without injection or scrubbing, with injection and without scrubbing, with injection and scrubbing by both the test article and dedicated trace contaminant filters, and with injection and scrubbing by only the test article. The high-level results of both the subscale and full-scale tests are examined in this paper.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-18995 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: LISA Pathfinder (formerly known as SMART-2) is a European Space Agency (ESA) mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for spaceborne gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. LISA Pathfinder is currently in the integration and test phase of the development, and is due to be launched on a dedicated launch vehicle in late 2011, with first results on the performance of the system being available approx 6 months later. This poster will describe the mission in detail, give the current status of the spacecraft development, and highlight the future milestones in the integration and test campaign.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Computations are performed to investigate the effect of rocket control motors on flush air-data sensor systems. Such sensors are critical for the control of space vehicles during launch and re-entry, but are prone to interference from rocket motors, hypersonic-flow effects, etc. Computational analyses provide a means for studying these interference effects and exploring opportunities for mitigating them, either through design techniques or through appropriate processing of the sensor outputs. In the present work, the influence of rocket control motors on the nosecone flush air-data sensors of a launch-abort vehicle is studied. Particular attention is paid to the differential effect of various control-jet combinations on surface pressures. The relative effectiveness of inviscid, viscous, turbulent and two-phase-flow approximations in addressing this problem is also investigated.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: DFRC-929 , 39th AIAA Fluid Dynamics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, Tx; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-19
    Description: A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M09-0241 , Satellite Thermal Control Workshop; Mar 10, 2009 - Mar 12, 2009; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-19
    Description: The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no observed drogue chute failures, Jeffreys Prior was used to calculate a reliability of R =.998. Based on these results, it is concluded that the LMP and drogue parachutes on the Shuttle SRB are suited to their mission and changes made over their life have improved the reliability of the parachute.
    Keywords: Spacecraft Design, Testing and Performance
    Type: MSFC-2223 , AIAA Aerodynamic Decelerator Systems Technology Conference; May 04, 2009 - May 07, 2009; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-19
    Description: Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (~5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19034 , 40th International Conference on Environmental Systems; Jul 11, 2009 - Jul 15, 2009; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19217 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the ISS configurations spanning ISS Stage 12A. The objective of this analysis is to validate and correlate analytical models used to verify the ISS critical interface dynamic loads and improve its fatigue life prediction. On-Orbit dynamic responses were measured during the ISS configurations throughout ISS Stage 12A by the two main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS) and the Structural Dynamic Measurement System (SDMS). These nominal on-orbit events include Russian vehicle docking and undockings. Also, the ISS photogrammetric system recorded the movements of the 2A and 4A solar arrays during a modified ISS maneuver. Modal analyses were performed on the measured data to extract modal parameters including frequency, damping and mode shapes. Correlation and comparisons between the test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the ISS configurations under consideration.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Aging Aircraft Conference; May 04, 2009 - May 07, 2009; Missouri; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: In a vehicle constrained by mass and power, it is necessary to ensure that during the process of reducing hardware mass and power that the health and well being of the crew is not compromised in the design process. To that end, it is necessary to ensure that in the final phase of flight - recovery, that the crew core body temperature remains below the crew cognitive deficit set by the Constellation program. This paper will describe the models used to calculate the thermal environment of the spacecraft after splashdown as well as the human thermal model used to calculate core body temperature. Then the results of these models will be examined to understand the key drivers for core body temperature. Finally, the analysis results will be used to show that additional cooling capability must be added to the vehicle to ensure crew member health post landing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-24
    Description: A prototype system for monitoring spacecraft operations and control, including an alert system, is highlighted.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-17963 , CCSDS Spring 2009 Technical Meeting; Apr 20, 2009 - Apr 25, 2009; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215821 , E-17083
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-216270 , M-1272
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-17181-p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-12
    Description: The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215948 , LF99-9595 , L-19789
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-12
    Description: A document describes the design of a lightweight (between 100 to 200 kg), light-tight shroud of about 3.9 meters in diameter that could be stowed into a very small volume, and be deployed to 12 meters. The shroud will consist of two concentric multi-layer blankets (MLIs) that are constructed in an accordion shape.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSC-15779-1 , NASA Tech Briefs, November 2009; 37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Center (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215804 , E-17067
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-12
    Description: It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-19063
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: This paper considers the streamline-upwind Petrov/Galerkin (SUPG) method applied to the compressible Euler and Navier-Stokes equations in conservation-variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, is briefly reviewed. Of particular interest is the behavior of the shock capturing operator, which is required to regularize the scheme in the presence of strong, shock-induced gradients. A standard shock capturing operator which has been widely used in previous studies by several authors is presented and discussed. Specific modifications are then made to this standard operator which are designed to produce a more physically consistent discretization in the presence of strong shock waves. The actual implementation of the term in a finite dimensional approximation is also discussed. The behavior of the standard and modified scheme is then compared for several supersonic/hypersonic flows. The modified shock capturing operator is found to preserve enthalpy in the inviscid portion of the flowfield substantially better than the standard operator.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-18751
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-12
    Description: A study of hybrid material couples using the Spiral Orbit Tribometer (SOT) was initiated to investigate both lubricated (Pennzane X2000 and Brayco 815Z) and unlubricated Si3N4, 440C SS, Rex 20, Cronidur X30 and X40 plates with Cerbec SN-101-C (Si3N4) and 440C balls. The hybrid wheel/bearing assembly will be used on the Linear Optical Delay Line (LODL) stage as an element of the NASA Space Interferometry Mission (SIM). SIM is an orbiting interferometer linking a pair of telescopes within the spacecraft and, by using an interferometry technique and several precision optical stages, is able to measure the motions of known stars much better than current ground or space based systems. This measurement will provide the data to "infer" the existence of any plants, undetectable by other methods, orbiting these known stars.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/CR-2009-215682 , E-17053
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-12
    Description: The Dawn Ion Propulsion System is the ninth project in NASA s Discovery Program. The Dawn spacecraft is being developed to enable the scientific investigation of the two heaviest main-belt asteroids, Vesta and Ceres. Dawn is the first mission to orbit two extraterrestrial bodies, and the first to orbit a main-belt asteroid. The mission is enabled by the onboard Ion Propulsion System (IPS) to provide the post-launch delta-V. The three Ion Engines of the IPS are mounted on Thruster Gimbal Assembly (TGA), with only one engine operating at a time for this 10-year mission. The three TGAs weigh 14.6 kg.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/CR-2009-215681 , E-17052
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-12
    Description: This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215942 , LF99-8616 , L-19767
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-12
    Description: Capillary flow in containers or conduits with interior corners are common place in nature and industry. The majority of investigations addressing such flows solve the problem numerically in terms of a friction factor for flows along corners with contact angles below the Concus-Finn critical wetting condition for the particular conduit geometry of interest. This research effort provides missing numerical data for the flow resistance function F(sub i) for partially and nonwetting systems above the Concus-Finn condition. In such cases the fluid spontaneously de-wets the interior corner and often retracts into corner-bound drops. A banded numerical coefficient is desirable for further analysis and is achieved by careful selection of length scales x(sub s) and y(sub s) to nondimensionalize the problem. The optimal scaling is found to be identical to the wetting scaling, namely x(sub s) = H and y(sub s) = Htan (alpha), where H is the height from the corner to the free surface and a is the corner half-angle. Employing this scaling produces a relatively weakly varying flow resistance F(sub i) and for subsequent analyses is treated as a constant. Example solutions to steady and transient flow problems are provided that illustrate applications of this result.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2009-215672 , E-17016
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-12
    Description: Small spacecraft have been increasing in popularity because of their low cost, short turnaround and relative efficiency. In the past, small spacecraft have been primarily used for technology demonstrations, but advances in technology have made the miniaturization of space science possible [1,2]. PharmaSat is a low cost, small three cube size spacecraft, with a biological experiment on board, built at NASA (National Aeronautics and Space Administration) Ames Research Center. The thermal design of small spacecraft presents challenges as their smaller surface areas translate into power and thermal constraints. The spacecraft is thermally designed to run colder in the Low Earth Orbit space environment, and heated to reach the temperatures required by the science payload. The limited power supply obtained from the solar panels on small surfaces creates a constraint in the power used to heat the payload to required temperatures. The pressurized payload is isolated with low thermally conductance paths from the large ambient temperature changes. The thermal design consists of different optical properties of section surfaces, Multi Layer Insulation (MLI), low thermal conductance materials, flexible heaters and thermal spreaders. The payload temperature is controlled with temperature sensors and flexible heaters. Finite Element Analysis (FEA) and testing were used to aid the thermal design of the spacecraft. Various tests were conducted to verify the thermal design. An infrared imager was used on the electronic boards to find large heat sources and eliminate any possible temperature runaways. The spacecraft was tested in a thermal vacuum chamber to optimize the thermal and power analysis and qualify the thermal design of the spacecraft for the mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN-252 , PK003
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-12
    Description: Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Advances in Data-based Approaches for Hydrologic Modeling and Forecasting
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-12
    Description: An investigation of the aeroheating environment of the Project Orion Crew Exploration Vehicle was performed in the Arnold Engineering Development Center Hypervelocity Wind Tunnel No. 9 Mach 8 and Mach 10 nozzles and in the NASA Langley Research Center 20 - Inch Mach 6 Air Tunnel. Heating data were obtained using a thermocouple-instrumented approx.0.035-scale model (0.1778-m/7-inch diameter) of the flight vehicle. Runs were performed in the Tunnel 9 Mach 10 nozzle at free stream unit Reynolds numbers of 1x10(exp 6)/ft to 20x10(exp 6)/ft, in the Tunnel 9 Mach 8 nozzle at free stream unit Reynolds numbers of 8 x 10(exp 6)/ft to 48x10(exp 6)/ft, and in the 20-Inch Mach 6 Air Tunnel at free stream unit Reynolds numbers of 1x10(exp 6)/ft to 7x10(exp 6)/ft. In both facilities, enthalpy levels were low and the test gas (N2 in Tunnel 9 and air in the 20-Inch Mach 6) behaved as a perfect-gas. These test conditions produced laminar, transitional and turbulent data in the Tunnel 9 Mach 10 nozzle, transitional and turbulent data in the Tunnel 9 Mach 8 nozzle, and laminar and transitional data in the 20- Inch Mach 6 Air Tunnel. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the experimental data to help define the accuracy of computational method. In general, it was found that both laminar data and predictions, and turbulent data and predictions, agreed to within less than the estimated 12% experimental uncertainty estimate. Laminar heating distributions from all three data sets were shown to correlate well and demonstrated Reynolds numbers independence when expressed in terms of the Stanton number based on adiabatic wall-recovery enthalpy. Transition onset locations on the leeside centerline were determined from the data and correlated in terms of boundary-layer parameters. Finally turbulent heating augmentation ratios were determined for several body-point locations and correlated in terms of the boundary-layer momentum Reynolds number.
    Keywords: Spacecraft Design, Testing and Performance
    Type: LF99-6999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-12
    Description: Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215517 , E-16822
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Since 1996, NASA has been developing a docking system that will simplify operations and reduce risks associated with mating spacecraft. This effort has focused on developing and testing an original, reconfigurable, active, closed-loop, force-feedback controlled docking system using modern technologies. The primary objective of this effort has been to design a docking interface that is tunable to the unique performance requirements for all types of mating operations (i.e. docking and berthing, autonomous and piloted rendezvous, and in-space assembly of vehicles, modules and structures). The docking system must also support the transfer of crew, cargo, power, fluid, and data. As a result of the past 10 years of docking system advancement, the Low Impact Docking System or LIDS was developed. The current LIDS design incorporates the lessons learned and development experiences from both previous and existing docking systems. LIDS feasibility was established through multiple iterations of prototype hardware development and testing. Benefits of LIDS include safe, low impact mating operations, more effective and flexible mission implementation with an anytime/anywhere mating capability, system level redundancy, and a more affordable and sustainable mission architecture with reduced mission and life cycle costs. In 1996 the LIDS project, then known as the Advanced Docking Berthing System (ADBS) project, launched a four year developmental period. At the end of the four years, the team had built a prototype of the soft-capture hardware and verified the control system that will be used to control the soft-capture system. In 2001, the LIDS team was tasked to work with the X- 38 Crew Return Vehicle (CRV) project and build its first Engineering Development Unit (EDU).
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17710
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: LEGNEW-OLDGSFC-GSFC-LN-1021 , Military and Aerospace Programmable Logic Devices (MAPLD) for 2009 Meeting; Aug 31, 2009 - Sep 03, 2009; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-13
    Description: Most Low Earth Orbit (LEO) debris lies in a limited number of inclination "bands" associated with launch latitudes, or with specific useful orbit inclinations (such as polar orbits). Such narrow inclination bands generally have a uniform spread over all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. This complicates concept of rendezvous and capture for debris removal. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a base can serve as a single space-based launch facility (a "mother ship") that can tend and then send tiny individual catcher devices for each debris object, as the facility drifts into the same RAAN as the higher object. This presentation will highlight characteristic system requirements of such an architecture, including structural and navigation requirements, power, mass and dV budgets for both the mother ship and the mass-produced common catcher devices that would clean out selected inclination bands. The altitude and inclination regime over which a band is to be cleared, the size distribution of the debris, and the inclusion of additional mission priorities all affect the sizing of the system. It is demonstrated that major LEO hazardous debris reductions can be realized in each band with a single LEO launch of a single mother ship, with simple attached catchers of total mass less than typical commercial LEO launch capability.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-19195 , International Conference on Orbital Debris Removal; Dec 08, 2009 - Dec 10, 2009; Chantilly, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-13
    Description: A method and apparatus for analyzing steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics, external body forces such as gravity and centrifugal force and conjugate heat transfer. In some embodiments, a graphical user interface provides for the interactive development of a fluid network simulation having nodes and branches. In some embodiments, mass, energy, and specific conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. In some embodiments, contained herein are data objects for computing thermodynamic and thermophysical properties for fluids. In some embodiments, the systems of equations describing the fluid network are solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-13
    Description: A system and method are provided for determining the volume of a fluid in container. Sensors are positioned at distinct locations in a container of a fluid. Each sensor is sensitive to an interface defined by the top surface of the fluid. Interfaces associated with at least three of the sensors are determined and used to find the volume of the fluid in the container in a geometric process.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-13
    Description: Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215514 , E-16816 , Third Joint Army-Navy-NASA-Air Force (JANNAF) Spacecraft Propulsion Subcommittee (SPS) Meeting; Dec 08, 2008 - Dec 12, 2008; Orlando, Fl; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-24
    Description: A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point includes a sintered metal material. A method of dissipating heat using a sublimator includes a sublimation plate having a thermal element and a control point. The thermal element is disposed adjacent to a feed water channel and the control point is disposed between at least a portion of the thermal element and a large pore substrate. The method includes controlling a flow rate of feed water to the large pore substrate at the control point and supplying heated coolant to the thermal element. Sublimation occurs in the large pore substrate and the controlling of the flow rate of feed water is independent of time. A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point restricts a flow rate of feed water from the feed water channel to the large pore substrate independent of time.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-13
    Description: Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M09-0352 , M09-0400 , JANNAF Conference; 14-17 Apr.; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-27
    Description: An androgynous mating system for mating two exoatmospheric space modules comprising a first mating assembly capable of mating with a second mating assembly; a second mating assembly structurally identical to said first mating assembly, said first mating assembly comprising; a load ring; a plurality of load cell subassemblies; a plurality of actuators; a base ring; a tunnel; a closed loop control system; one or more electromagnets; and one or more striker plates, wherein said one or more electomagnets on said second mating assembly are capable of mating with said one or more striker plates on said first mating assembly, and wherein said one or more striker plates is comprised of a plate of predetermined shape and a 5-DOF mechanism capable of maintaining predetermined contact requirements during said mating of said one or more electromagnets and said one or more striker plates.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-28
    Description: A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-28
    Description: This Interim Standard establishes requirements for evaluation, testing, and selection of materials that are intended for use in space vehicles, associated Ground Support Equipment (GSE), and facilities used during assembly, test, and flight operations. Included are requirements, criteria, and test methods for evaluating the flammability, offgassing, and compatibility of materials.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA-STD-(I)-6001B , JSC-CN-23865
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: This slide presentation reviews the uses of wires in the Aerospace industry. The vision is to minimize cables and connectors and increase functionality across the aerospace industry by providing reliable lower cost modular and higher performance alternatives to wired data connectivity to benefit the entire vehicle and program
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-18195 , JANNAF Wireless Sensors Working Group Meeting; Apr 16, 2009 - Apr 17, 2009; Las Vegas. NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-18148 , Experiments in Fluids; 47; 5-Apr; 673-688|14th International Symposium on Applications of Laser Techniques to Fluid Mechanics; Jul 07, 2008 - Jul 10, 2008; Lisbon; Portugal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: On 31 July 2008 the National Aeronautics and Space Administration Crew Exploration Vehicle Parachute Assembly System team conducted the final planned cluster test of the first generation parachute recovery system design. The two primary test objectives were to demonstrate the operation of the complete parachute system deployed from a full scale capsule simulator and to demonstrate the test technique of separating the capsule simulator from the Low Velocity Air Drop pallet used to extract the test article from a United States Air Force C-17 aircraft. The capsule simulator was the Parachute Test Vehicle with an accurate heat shield outer mold line and forward bay compartment of the Crew Exploration Vehicle Command Module. The Parachute Test Vehicle separated cleanly from the pallet following extraction, but failed to reach test conditions resulting in the failure of the test and the loss of the test assets. No personnel were injured. This paper will discuss the design of the test and the findings of the team that investigated the test, including a discussion of what were determined to be the root causes of the failure.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17945 , 20th AIAA Aerodynamic Decelerator Systems; May 04, 2009 - May 07, 2009; Washington; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: Propellant-optimal trajectories, relative sensors and navigation, and docking/capture mechanisms are rendezvous disciplines that receive much attention in the technical literature. However, other areas must be considered. These include absolute navigation, maneuver targeting, attitude control, power generation, software development and verification, redundancy management, thermal control, avionics integration, robotics, communications, lighting, human factors, crew timeline, procedure development, orbital debris risk mitigation, structures, plume impingement, logistics, and in some cases extravehicular activity. While current and future spaceflight programs will introduce new technologies and operations concepts, the complexity of integrating multiple systems on multiple spacecraft will remain. The systems integration task may become more difficult as increasingly complex software is used to meet current and future automation, autonomy, and robotic operation requirements.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17709 , AAS 09-065 , 2009 AAS GN&C Conference; Jan 30, 2009 - Feb 04, 2009; Virginia; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: During the ascent flight phase of NASA s Constellation Program, the Ares launch vehicle propels the Orion crew vehicle to an agreed to insertion target. If a failure occurs at any point in time during ascent then a system must be in place to abort the mission and return the crew to a safe landing with a high probability of success. To achieve continuous abort coverage one of two sets of effectors is used. Either the Launch Abort System (LAS), consisting of the Attitude Control Motor (ACM) and the Abort Motor (AM), or the Service Module (SM), consisting of SM Orion Main Engine (OME), Auxiliary (Aux) Jets, and Reaction Control System (RCS) jets, is used. The LAS effectors are used for aborts from liftoff through the first 30 seconds of second stage flight. The SM effectors are used from that point through Main Engine Cutoff (MECO). There are two distinct sets of Guidance and Control (G&C) algorithms that are designed to maximize the performance of these abort effectors. This paper will outline the necessary inputs to the G&C subsystem, the preliminary design of the G&C algorithms, the ability of the algorithms to predict what abort modes are achievable, and the resulting success of the abort system. Abort success will be measured against the Preliminary Design Review (PDR) abort performance metrics and overall performance will be reported. Finally, potential improvements to the G&C design will be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17694 , AAS Guidance and Control Conference; Jan 31, 2009 - Feb 04, 2009; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: .We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-7147 , AIAA Paper 2009-1169 , 47th AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: An overview of significant Micrometeoroid and Orbital Debris (MMOD) impacts on the Payload Bay Door radiators, wing leading edge reinforced carbon-carbon panels and crew module windows will be presented, along with a discussion of the techniques NASA has implemented to reduce the risk from MMOD impacts. The concept of "Late Inspection" of the Nose Cap and Wing leading Edge (WLE) Reinforced Carbon Carbon (RCC) regions will be introduced. An alternative mated attitude with the International Space Station (ISS) on shuttle MMOD risk will also be presented. The significant threat mitigation effect of these two techniques will be demonstrated. The wing leading edge impact detection system, on-orbit repair techniques and disabled vehicle contingency plans will also be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: IAC-08-A6.3.1 , JSC-16821 , Fifth European Conference on Space Debris; Mar 30, 2009 - Apr 02, 2009; Darmstadt; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This slide presentation explores some of the issues that concern the engineers and planners of the Altair Lunar landing module. Particular attention is paid to the issues concerning Lunar dust, and attempts that will be made to test the Altair systems using Lunar dust simulants.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17985 , Lunar Regolith Simulant Workshop; Mar 17, 2009 - Mar 20, 2009; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: To effectively explore the lunar surface, astronauts will need a transportation vehicle which can traverse all types of terrain. Currently, the National Aeronautics and Space Administration s (NASA) is investigating two lunar rover configurations to meet such a requirement. Under the Lunar Electric Rover (LER) project, a comparison study between the unpressurized rover (UPR) and the small pressurized rover (SPR) was conducted at the Black Point Lava Flow in Arizona. The objective of the study was to obtain human-in-the-loop performance data on the vehicles with respect to human-machine interfaces, vehicle impacts on crew productivity, and scientific observations. Four male participants took part in four, one-day field tests using the exact same terrain and scientific sites for an accurate comparison between vehicle configurations. Subjective data was collected using several human factors performance measures. Results indicate either vehicle configuration was generally acceptable for a lunar mission; however, the SPR configuration was preferred over the UPR configuration primarily for the SPR s ability to cause less fatigue and enabling greater crew productivity.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17878 , Human Factors and Ergonomics Society Conference; Oct 19, 2009 - Oct 23, 2009; Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: The Magnetospheric MultiScale Mission is a four spacecraft formation flying mission designed to study the Earth s magnetosphere. The spacecraft fly in highly elliptical orbits, forming a tetrahedron at apogee. Each spacecraft spins at 3 RPM and is equipped with a star scanner, slit sun sensor, and accelerometer. The purpose of this work is to develop an Extended Kalman Filter to simultaneously estimate the attitude, angular velocity, angular acceleration, and center of mass of each spacecraft.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AAS 09-202 , AAS/AIAA Space Flight Mechanics Winter Meeting; Feb 08, 2009 - Feb 12, 2009; Georgia; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: A key objective of NASA s Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the 0.6 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectra is flat and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar panels with a strong band gap feature near 1 micron. The two spacecraft are spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but with fewer features of white paint - indicating that the surface paint on the SL-12 may be different than the IUS. This study shows that the surface materials of debris appear different spectrally than intact rocket bodies and spacecraft and therefore are not believed to be solar panel material or pristine white paint. Further investigation is necessary in order to eliminate materials as possible choices for the debris pieces.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-17479 , JSC-CN-17998 , 5th European Conference on Space Debris; Mar 30, 2009 - Apr 02, 2009; Darmstadt; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the ISS configurations spanning ISS Stage 12A. The objective of this analysis is to validate and correlate analytical models used to verify the ISS critical interface dynamic loads and improve its fatigue life prediction. On-Orbit dynamic responses were measured during the ISS configurations throughout ISS Stage 12A by the two main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS) and the Structural Dynamic Measurement System (SDMS). These nominal on-orbit events include Russian vehicle docking and undockings. Also, the ISS photogrammetric system recorded the movements of the 2A and 4A solar arrays during a modified ISS maneuver. Modal analyses were performed on the measured data to extract modal parameters including frequency, damping and mode shapes. Correlation and comparisons between the test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the ISS configurations under consideration.
    Keywords: Spacecraft Design, Testing and Performance
    Type: International Modal Analysis Conference; Feb 09, 2009 - Feb 12, 2009; Orlando, Fl; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel
    Keywords: Spacecraft Design, Testing and Performance
    Type: G04 12th International Symposium on Flammability and sensitivity of Materials in Oxygen-Enriched Atmospheres; Oct 07, 2009 - Oct 09, 2009; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-12
    Description: Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: MSC-24160-1/1-1/2-1/3-1 , NASA Tech Briefs, December 2009; 20-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-12
    Description: LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/CR-2009-215757 , LF99-8510
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-12
    Description: The objective of the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) was to allow a comprehensive validation of Computational Fluid Dynamics methods against the CAWAP flight database. A major part of this work involved the generation of high-quality computational grids. Prior to the grid generation an IGES file containing the air-tight geometry of the F-16XL aircraft was generated by a cooperation of the CAWAPI partners. Based on this geometry description both structured and unstructured grids have been generated. The baseline structured (multi-block) grid (and a family of derived grids) has been generated by the National Aerospace Laboratory NLR. Although the algorithms used by NLR had become available just before CAWAPI and thus only a limited experience with their application to such a complex configuration had been gained, a grid of good quality was generated well within four weeks. This time compared favourably with that required to produce the unstructured grids in CAWAPI. The baseline all-tetrahedral and hybrid unstructured grids has been generated at NASA Langley Research Center and the USAFA, respectively. To provide more geometrical resolution, trimmed unstructured grids have been generated at EADS-MAS, the UTSimCenter, Boeing Phantom Works and KTH/FOI. All grids generated within the framework of CAWAPI will be discussed in the article. Both results obtained on the structured grids and the unstructured grids showed a significant improvement in agreement with flight test data in comparison with those obtained on the structured multi-block grid used during CAWAP.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-5900 , LF99-6826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-12
    Description: The presence of honeycomb cells in a dual-wall structure is advantageous for mechanical performance and low weight in spacecraft primary structures but detrimental for shielding against impact of micrometeoroid and orbital debris particles (MMOD). The presence of honeycomb cell walls acts to restrict the expansion of projectile and bumper fragments, resulting in the impact of a more concentrated (and thus lethal) fragment cloud upon the shield rear wall. The Multipurpose Laboratory Module (MLM) is a Russian research module scheduled for launch and ISS assembly in 2011 (currently under review). Baseline shielding of the MLM is expected to be predominantly similar to that of the existing Functional Energy Block (FGB), utilizing a baseline triple wall configuration with honeycomb sandwich panels for the dual bumpers and a thick monolithic aluminum pressure wall. The MLM module is to be docked to the nadir port of the Zvezda service module and, as such, is subject to higher debris flux than the FGB module (which is aligned along the ISS flight vector). Without upgrades to inherited shielding, the MLM penetration risk is expected to be significantly higher than that of the FGB module. Open-cell foam represents a promising alternative to honeycomb as a sandwich panel core material in spacecraft primary structures as it provides comparable mechanical performance with a minimal increase in weight while avoiding structural features (i.e. channeling cells) detrimental to MMOD shielding performance. In this study, the effect of replacing honeycomb sandwich panel structures with metallic open-cell foam structures on MMOD shielding performance is assessed for an MLM-representative configuration. A number of hypervelocity impact tests have been performed on both the baseline honeycomb configuration and upgraded foam configuration, and differences in target damage, failure limits, and derived ballistic limit equations are discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: IAC-09.A6.3.11 , JSC-CN-18011 , JSC-CN-18806 , 60th International Astronautical Congress; Daejeon; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-12
    Description: Objectives include: a) Define major Command and Service Module (CSM) design considerations; b) List Command Module (CM) RCS failures and lessons learned; and c) List Service Module (SM) RCS failures and lessons learned.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17237-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-12
    Description: Objectives include: a) Understand some of the design considerations that went into creating the Saturn V launch vehicle; b) Gain an appreciation for some of the manufacturing issues concerning the Saturn V; and c) Review three major problems that affected Saturn V launches.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17237-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: This slide presentation reviews the first part of the post-touchdown lunar surface and system checkout tasks. A stay/no stay decision for the lunar lander was made based on the questions: "Is the Lunar Module (LM) stable on the lunar surface?"; "Are there any time critical systems failures or trends indicating impending loss of capability to ascent and achieve a safe lunar orbit?"; and "Is there loss of capability in critical LM systems?" The sequence of these decisions is given as a time after touchdown on the surface of the moon. After the decision to stay is made the next task is to checkout status of the lunar module. While the status of the lunar module is checking out certain conditions, the Command Service Module was also engaged in certain checkout activities.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17237-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Objectives include: a) Become familiar with the Saturn V Stage I (S-IC) major structural components: Forward Skirt, Oxidizer Tank, Intertank, Fuel Tank, and Thrust Structure. b) Gain a general understanding of the Stage I subsystems: Fuel, Oxidizer, Instrumentation, Flight Control, Environmental Control, Electrical, Control Pressure, and Ordinance.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17237-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17237-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: Design considerations and failure modes for the Lunar Module (LM) Environmental Control System (ECS) are described. An overview of the the oxygen supply and cabin pressurization, atmosphere revitalization, water management and heat transport systems are provided. Design considerations including reliability, flight instrumentation, modularization and the change to the use of batteries instead of fuel cells are discussed. A summary is provided for the LM ECS general testing regime.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17237-12 , Apollo 13 Blu Ray DVD and BD Live Server comment, January 2009
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: The Crew Exploration Vehicle (CEV) is an element of the Constellation Program that includes launch vehicles, spacecraft, and ground systems needed to embark on a robust space exploration program. As an anchoring capability of the Constellation Program, the CEV shall be human-rated and will carry human crews and cargo from Earth into space and back again. Coupled with transfer stages, landing vehicles, and surface exploration systems, the CEV will serve as an essential component of the architecture that supports human voyages to the Moon and beyond. In addition, the CEV will be modified, as required, to support International Space Station (ISS) mission requirements for crewed and pressurized cargo configurations. Headed by Johnson Space Center (JSC), NASA selected Jacobs Engineering as the support contractor to manage the overall CEV Parachute Assembly System (CPAS) program development. Airborne Systems was chosen to develop the parachute system components. General Dynamics Ordnance and Tactical Systems (GD-OTS) was subcontracted to Airborne Systems to provide the mortar systems. Thus the CPAS development team of JSC, Jacobs, Airborne Systems and GD-OTS was formed. The CPAS team has completed the first phase, or Generation I, of the design, fabrication, and test plan. This paper presents an overview of the CPAS program including system requirements and the development of the second phase, known as the Engineering Development Unit (EDU) architecture. We also present top level results of the tests completed to date. A significant number of ground and flight tests have been completed since the last CPAS presentation at the 2007 AIAA ADS Conference.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-18137
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: This viewgraph presentation seeks to describe the Lunar Module Environmental Control System (ECS) subsystem testing and redesign and seeks to summarize the in-flight failures of the Lunar Module (LM) Environmental Control System (ECS).
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17237-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: NASA's development of new concepts for the Crew Exploration Vehicle Orion presents many similar challenges to those worked in the sixties during the Apollo program. However, with improved modeling capabilities, new challenges arise. For example, the use of the commercial code LS-DYNA, although widely used and accepted in the technical community, often involves high-dimensional, time consuming, and computationally intensive simulations. The challenge is to capture what is learned from a limited number of LS-DYNA simulations to develop models that allow users to conduct interpolation of solutions at a fraction of the computational time. This paper presents a description of the LS-DYNA model, a brief summary of the response surface techniques, the analysis of variance approach used in the sensitivity studies, equations used to estimate impact parameters, results showing conditions that might cause injuries, and concluding remarks.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215704 , L-19585 , LF99-8427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized spherical satellites. They will be used inside the space station to test a set of well-defined instructions for spacecraft performing autonomous rendezvous and docking maneuvers. Three free-flying spheres will fly within the cabin of the station, performing flight formations. Each satellite is self-contained with power, propulsion, computers and navigation equipment. The results are important for satellite servicing, vehicle assembly and formation flying spacecraft configurations. SPHERES is a testbed for formation flying by satellites, the theories and calculations that coordinate the motion of multiple bodies maneuvering in microgravity. To achieve this inside the ISS cabin, bowling-ball-sized spheres perform various maneuvers (or protocols), with one to three spheres operating simultaneously . The Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) experiment will test relative attitude control and station-keeping between satellites, re-targeting and image plane filling maneuvers, collision avoidance and fuel balancing algorithms, and an array of geometry estimators used in various missions. SPHERES consists of three self-contained satellites, which are 18 sided polyhedrons that are 0.2 meter in diameter and weigh 3.5 kilograms. Each satellite contains an internal propulsion system, power, avionics, software, communications, and metrology subsystems. The propulsion system uses CO2, which is expelled through the thrusters. SPHERES satellites are powered by AA batteries. The metrology subsystem provides real-time position and attitude information. To simulate ground station-keeping, a laptop will be used to transmit navigational data and formation flying algorithms. Once these data are uploaded, the satellites will perform autonomously and hold the formation until a new command is given.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17962-40
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17962-33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-17962-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: In the early morning of January 15, 2006, the Stardust Sample Return Capsule (SRC) successfully delivered its precious cargo of cometary particles to the awaiting recovery team at the Utah Test and Training Range (UTTR). As the SRC entered at 12.8 km/s, the fastest manmade object to traverse the atmosphere, a team of researchers imaged the event aboard the NASA DC-8 airborne observatory. At SRC entry, the airplane was at an altitude of 11.9 km positioned within 6.4 km of the prescribed, preferred target view location. The incoming SRC was first acquired approximately 18 seconds (s) after atmospheric interface and tracked for approximately 60 s, an observation period that is roughly centered in time around predicted peak heating.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215572 , NESC-RP-06-49/06-001-E , L-19606 , LF99-8399
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: In the early morning of January 15, 2006, the Stardust Sample Return Capsule (SRC) successfully delivered its precious cargo of cometary particles to the awaiting recovery team at the Utah Test and Training Range (UTTR). As the SRC entered at 12.8 km/s, the fastest manmade object to traverse the atmosphere, a team of researchers imaged the event aboard the NASA DC-8 airborne observatory. At SRC entry, the airplane was at an altitude of 11.9 km positioned within 6.4 km of the prescribed, preferred target view location. The incoming SRC was first acquired approximately 18 seconds (s) after atmospheric interface and tracked for approximately 60 s, an observation period that is roughly centered in time around predicted peak heating.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215354 , NESC-RP-06-80/05-042-I , L-19596 , LF99-8394
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: The NESC eras requested by the NASA Jet Propulsion Laboratory (JPL) to conduct an independent review of the Mars Reconnaissance Orbiter (MRO) Thermal/Vacuum (T/V) Anomaly Assessment. Because the anomaly resulted in the surface contamination of the MRO, selected members of the Materials Super Problem Resolution Team (SPRT) and the NASA technical community having technical expertise relative to contamination issues were chosen for the independent review. The consultation consisted of a review of the MRO Project's reported response to the assessment findings, a detailed review of JPL technical assessment final report, and detailed discussions with the JPL assessment team relative to their findings.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215573 , NESC-RP-05-122/05-038-E , L-19609 , LF99-8400
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215766 , L-19662 , LF99-8753
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: The Deep Impact spacecraft was launched on a Boeing Delta II rocket from Cape Canaveral Air Force Station (CCAFS) on January 12, 2005. Prior to the launch, the Director of the Office of Safety and Mission Assurance (OS&MA) requested the NASA Engineering and Safety Center (NESC) lead a team to render an independent opinion on the rationale for flight and the risk code assignments for the hazard of cracked Thick Film Assemblies (TFAs) in the E-packages of the Delta II launch vehicle for the Deep Impact Mission. The results of the evaluation are contained in this report.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215747 , NESC-RP-05-126/04-093-E , L-19682 , LF99-8840
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: A method has been developed for improving heat flux performance relat ive to flat surfaces in spray-cooling systems. This study investigat es the effect of foam on spraycooling heat flux.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSC-15553-1 , NASA Tech Briefs, August 2009; 21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215464 , TFAWS08-1013 , E-16610
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: Computations are performed to examine the effects of both an isolated and spanwise periodic array of trip elements on a high-speed laminar boundary layer, so as to identify the potential physical mechanisms underlying an earlier transition to turbulence as a result of the trip(s). In the context of a 0.333 scale model of the Hyper-X forebody configuration, the time accurate solution for an array of ramp shaped trips asymptotes to a stationary field at large times, indicating the likely absence of a strong absolute instability in the mildly separated flow due to the trips. A prominent feature of the wake flow behind the trip array corresponds to streamwise streaks that are further amplified in passing through the compression corner. Stability analysis of the streaks using a spatial, 2D eigenvalue approach reveals the potential for a strong convective instability that might explain the earlier onset of turbulence within the array wake. The dominant modes of streak instability are primarily sustained by the spanwise gradients associated with the streaks and lead to integrated logarithmic amplification factors (N factors) approaching 7 over the first ramp of the scaled Hyper-X forebody, and substantially higher over the second ramp. Additional computations are presented to shed further light on the effects of both trip geometry and the presence of a compression corner on the evolution of the streaks.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA-Paper-2009-0170 , LF99-7075
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...