ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • General Chemistry  (1,562)
  • Astrophysics  (791)
  • Fluid Mechanics and Thermodynamics  (734)
  • Cell & Developmental Biology
  • Earth Resources and Remote Sensing
  • 2005-2009  (2,231)
  • 1940-1944  (2,195)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2022-05-26
    Description: Reexploring convection and its various transitions to chaotic behavior were the central themes of GFD 1981. Our principal lecturer, Dr. Edward A. Spiegel, provided both a rich historical picture and stimulating hours at the current frontiers of this topic. Before the summer was out his research lecture on "A Tale of Two Methods" elegantly merged Pierre Coullet's canonical formalism for studying dynamical systems in a central manifold and the more traditional two-timing amplitude expansions near critical points. Other lecture sequences on convection and its relation to simpler dynamical systems ranged from the fine presentations of John Guckenheimer on bifurcation theory to Fritz Busse's survey of his immense contributions to our understanding of nonlinear convection. The list of other lectures found on the following pages attests to our summer-long exposure to convection in the ocean, the atmosphere, the earth's core and mantle, and in the sun. August brought lectures on new observations of convection in the laboratories of physicists. Albert Libchaber's precise experiments on the many routes convection can take to turbulence, with parallel laboratory and numerical experiments described by J. Gollub and E. Siggia, added much to our language of inquiry.
    Description: Office of Naval Research under Contract N00014-81-G-0089.
    Keywords: Convection ; Astrophysics
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary Eta Carinae seen during the past three orbital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like powerlaw distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the Galactic Black Hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with Rossi X-ray Timing Explorer (RXTE), coordinated with Ryle Radio Telescope (RT) observations. We show that broad-band energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two Bulk Motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma(sub 1) = 1.7 -- 3.0) with turnover at high energies and soft thermal component (BMC2, Gamma(sub 2) = 2.7 -- 4.2) with characteristic color temperature 〈 or = 1 keV, and the red-skewed iron line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of 〈 or approximately equal 4.2 and 3 respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to 1311 and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. Furthermore we demonstrate a strong correlation between equivalent width of the iron line and radio flux in GRS 1915+105. In addition to our spectral model components we also find a strong feature of "blackbody-like" bump which color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "blackbody-like" emission.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: We report the detection of a 115 day periodicity in SWIFT/XRT monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our o ngoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of ti 485 days. Periodogram ana lysis reveals a significant periodicity with a period of 115.5 +/- 4 days. The modulation is detected with a significance of 3.2 x 10(exp -4) . The fractional modulation amplitude decreases with increasing e nergy, ranging from 0.13 +/- 0.02 above 1 keV to 0.24 +/- 0.02 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent wi th a periodic process, however, continued monitoring is required to c onfirm the coherent nature of the modulation. Spectral analysis indic ates that NGC 5408 X-1 can reach 0.3 - 10 keV luminosities of approxi mately 2 x 10 40 ergs/s . We suggest that, like the 62 day period of the ULX in M82 (X41.4-1-60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or super giant star.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.
    Keywords: Earth Resources and Remote Sensing
    Type: To be published in Journal of Geophysical Research/American Geophysical Union
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840+/-60 km/s and are resolved by Chandra with a velocity width of sigma = 340+/-70 km/s. The outflow appears to originate from a single zone of gas of column density N(sub H) = 1.3 x 10(exp 21)/sq cm and ionization parameter log(E/erg/cm/s) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region. Finally we also discuss the possibility of a much faster (0.1c) outflow component, based on a blue-shifted iron K(alpha) emission line in the Suzaku observation of 3C 382, which could have an origin in an accretion disk wind.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the continent in Africa. Agriculturally destructive droughts and floods are monitored from space using satellite remote sensing by organizations seeking to provide quantitative and predictive information about food security crises. Better knowledge on the relation between climate indices and food production may increase the use of these indices in famine early warning systems and climate outlook forums on the continent. Here we explore the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), the Multivariate ENSO Index (MEI) and the Southern Oscillation Index (SOI). We explore spatial relationships between growing conditions as measured by the NDVI and the five climate indices in Eastern, Western and Southern Africa to determine the regions and periods when they have a significant impact. The focus is to provide a clear indication as to which climate index has the most impact on the three regions during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by variations in the climate indices. The particular climate index and the timing showing highest correlation depended heavily on the region examined. The research shows that climate indices can contribute to understanding growing season variability in Eastern, Western and Southern Africa.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: El Nino/Southern Oscillation (ENSO) related anomalies were analyzed using a combination of satellite measurements of elevated sea surface temperatures, and subsequent elevated rainfall and satellite derived normalized difference vegetation index data. A Rift Valley fever risk mapping model using these climate data predicted areas where outbreaks of Rift Valley fever in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. This is the first prospective prediction of a Rift Valley fever outbreak.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: A novel method is introduced for integrating satellite derived irrigation data and high-resolution crop type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better representation of agricultural land use. Ultimately, this scheme could enable numerical weather prediction (NWP) models to capture land-atmosphere feedbacks in managed lands more accurately and thus improve forecast skill. Here we show that application of the new irrigation scheme over the continental US significantly influences the surface water and energy balances by modulating the partitioning of water between the surface and the atmosphere. In our experiment, irrigation caused a 12% increase in evapotranspiration (QLE) and an equivalent reduction in the sensible heat flux (QH) averaged over all irrigated areas in the continental US during the 2003 growing season. Local effects were more extreme: irrigation shifted more than 100 W/m from QH to QLE in many locations in California, eastern Idaho, southern Washington, and southern Colorado during peak crop growth. In these cases, the changes in ground heat flux (QG), net radiation (RNET), evapotranspiration (ET), runoff (R), and soil moisture (SM) were more than 3 W/m(sup 2), 20 W/m(sup 2), 5 mm/day, 0.3 mm/day, and 100 mm, respectively. These results are highly relevant to continental- to global-scale water and energy cycle studies that, to date, have struggled to quantify the effects of agricultural management practices such as irrigation. Based on the results presented here, we expect that better representation of managed lands will lead to improved weather and climate forecasting skill when the new irrigation scheme is incorporated into NWP models such as NOAA's Global Forecast System (GFS).
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: Ultrahigh energy cosmic rays that produce giant extensive showers of charged particles and photons when they interact in the Earth's atmosphere provide a unique tool to search for new physics. Of particular interest is the possibility of detecting a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10 (exp -35) m. We discuss here the possible signature of Lorentz invariance violation on the spectrum of ultrahigh energy cosmic rays as compared with present observations of giant air showers. We also discuss the possibilities of using more sensitive detection techniques to improve searches for Lorentz invariance violation in the future. Using the latest data from the Pierre Auger Observatory, we derive a best fit to the LIV parameter of 3 .0 + 1.5 - 3:0 x 10 (exp -23) ,corresponding to an upper limit of 4.5 x 10-23 at a proton Lorentz factor of approximately 2 x 10(exp 11) . This result has fundamental implications for quantum gravity models.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: An earlier issue presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA s Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit.
    Keywords: Earth Resources and Remote Sensing
    Type: The Earth Observer; Volume 21; Iss. 3; 4-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-05
    Description: Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the average LWP difference and the estimated bias in MODIS cloud optical thickness attributable to the impact of overlaying biomass burning aerosol exceed the instantaneous uncertainty in the retrievals.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-02
    Description: The amount of solar radiation reflected back to space or reaching the Earth's surface is primarily governed by the amount of cloud cover and, to a much lesser extent, by Rayleigh scatteri ng, aerosols, and various absorbing gases (e.g., O3, NO2, H2O). A useful measure of the effect of cloud plus aerosol cover is given by the amount that the 331 run Lambert Equivalent Reflectivity (LER) ofa scene exceeds the surfuce reflectivity for snow/ice-free scenes after Rayleigh scattering has been removed. Twenty-eight years of reflectivity data are available by overlapping data from several satellites: N7 (Nimbus 7, TOMS; 331 nm) from 1979 to 1992, SBUV-2 series (Solar Backscatter Ultraviolet, NOAA; 331 nm) 1985 to 2007, EP (Earth-Probe, TOMS; 331 nm) 1997 to 2006, SW (SeaWiFS; 412 nm) 1998 to 2006, and OMI (Ozone Measuring Instrument; 331 nm) 2004-2007. Only N7 and SW have a sufficiently long data record, Sun-synchronous orbits, and are adequately calibrated for long-term reflectivity trend estimation. Reflectivity data derived from these instruments and the SBUV-2 series are compared during the overlapping years. Key issues in determining long-term reflecti vity changes that have occurred during the N7 and SW operating periods are discussed. The largest reflectivity changes in the 412 nm SW LER and 331 nm EP LER are found to occur near the equator and are associated with a large EI Nino-Southern Oscillation event. Most other changes that have occurred are regional, such as the apparent cloud decrease over northern Europe since 1998. The fractional occurrence (fraction of days) of high reflectivity values over Hudson Bay, Canada (snow/ice and clouds) appears to have decreased when comparing reflectivity data from 1980 to 1992 to 1997-2006, suggesting shorter duration of ice in Hudson Bay since 1980.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-09-11
    Description: A technique involving Fe-55 X-rays provides a straightforward method to measure the response of a detector. The detector's response can lead directly to a calculation of the conversion gain (e(-) ADU(-1) ), as well as aid detector design and performance studies. We calibrate the Fe-15 X-ray energy response and pair production energy of HgCdTe using 8 HST WFC3 1.7 micron flight grade detectors. The results show that each Ka X-ray generates 2273 +/- 137 electrons, which corresponds to a pair-production energy of 2.61 +/- 0.16 eV. The uncertainties are dominated by our knowledge of the conversion gain. In future studies, we plan to eliminate this uncertainty by directly measuring conversion gain at very low light levels.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This article presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA's Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit. The second half of the story is presented in another issue of this journal
    Keywords: Earth Resources and Remote Sensing
    Type: The Earth Observer; Volume 21; Issue 2; 13-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-06
    Description: A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel-level tree cover in the taiga-tundra transition zone.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; Volume 113; Issue 10; 2130-2141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra MODIS and the mirror side differences are much smaller. Overall, Aqua MODIS RSB on-orbit performance is better than Terra MODIS.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: The recent Fermi detection of the globular cluster (GC) 47 Tucanae highlighted the importance of modeling collective gamma-ray emission of millisecond pulsars (MSPs) in GCs. Steady flux from such populations is also expected in the very high energy (VHE) domain covered by ground-based Cherenkov telescopes. We present pulsed curvature radiation (CR) as well as unpulsed inverse Compton (IC) calculations for an ensemble of MSPs in the GCs 47 Tucanae and Terzan 5. We demonstrate that the CR from these GCs should be easily detectable for Fermi, while constraints on the total number of MSps and the nebular B-field may be derived using the IC flux components.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: A joint U.S. Air Force/NASA blended, global snow product that utilizes Earth Observation System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and QuikSCAT (Quick Scatterometer) (QSCAT) data has been developed. Existing snow products derived from these sensors have been blended into a single, global, daily, user-friendly product by employing a newly-developed Air Force Weather Agency (AFWA)/National Aeronautics and Space Administration (NASA) Snow Algorithm (ANSA). This initial blended-snow product uses minimal modeling to expeditiously yield improved snow products, which include snow cover extent, fractional snow cover, snow water equivalent (SWE), onset of snowmelt, and identification of actively melting snow cover. The blended snow products are currently 25-km resolution. These products are validated with data from the lower Great Lakes region of the U.S., from Colorado during the Cold Lands Processes Experiment (CLPX), and from Finland. The AMSR-E product is especially useful in detecting snow through clouds; however, passive microwave data miss snow in those regions where the snow cover is thin, along the margins of the continental snowline, and on the lee side of the Rocky Mountains, for instance. In these regions, the MODIS product can map shallow snow cover under cloud-free conditions. The confidence for mapping snow cover extent is greater with the MODIS product than with the microwave product when cloud-free MODIS observations are available. Therefore, the MODIS product is used as the default for detecting snow cover. The passive microwave product is used as the default only in those areas where MODIS data are not applicable due to the presence of clouds and darkness. The AMSR-E snow product is used in association with the difference between ascending and descending satellite passes or Diurnal Amplitude Variations (DAV) to detect the onset of melt, and a QSCAT product will be used to map areas of snow that are actively melting.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: We present an analysis of the visible through near infrared spectrum of Eta Car and its ejecta obtained during the "Eta Car Campaign with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)". This is a part of the larger effort to present a complete Eta Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 Angstrom) to 10,430 Angstrom. The spectrum in the mid and near UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 Angstroms, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P-Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground based seeing and contributions of nebular scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments' apertures. This paper provides a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 Angstroms.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: The Arctic is home to many indigenous peoples, including those who depend on reindeer herding for their livelihood, in one of the harshest environments in the world. For the largely nomadic peoples, reindeer not only form a substantial part of the Arctic food base and economy, but they are also culturally important, shaping their way of life, mythologies, festivals and ceremonies. Reindeer pastoralism or husbandry has been practiced by numerous peoples all across Eurasia for thousands of years and involves moving herds of reindeer, which are very docile animals, from pasture to pasture depending on the season. Thus, herders must adapt on a daily basis to find optimal conditions for their herds according to the constantly changing conditions. Climate change and variability plus rapid development are increasingly creating major changes in the physical environment, ecology, and cultures of these indigenous reindeer herder communities in the North, and climate changes are occurring significantly faster in the Arctic than the rest of the globe, with correspondingly dramatic impacts (Oskal, 2008). In response to these changes, Eurasian reindeer herders have created the EALAT project, a comprehensive new initiative to study these impacts and to develop local adaptation strategies based upon their traditional knowledge of the land and its uses - in targeted partnership with the science and remote sensing community - involving extensive collaborations and coproduction of knowledge to minimize the impacts of the various changes. This chapter provides background on climate and development challenges to reindeer husbandry across the Arctic and an overview of the EALAT initiative, with an emphasis on indigenous knowledge, remote sensing, Geographic Information Systems (GIS), and other scientific data to 'co-produce' datasets for use by herders for improved decision-making and herd management. It also provides a description of the EALAT monitoring data integration and sharing system and portal being developed for reindeer pastoralism. In addition, the chapter provides some preliminary results from the EALAT Project, including some early remote sensing research results.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: The MAGIC collaboration has recently reported the detection of the strong gamma-ray blazar 3C279 during a 1-2 day flare. They have used their spectral observations to draw conclusions regarding upper limits on the opacity of the Universe to high energy gamma-rays and, by implication, upper limits on the extragalactic mid-infrared background radiation. In this paper we examine the effect of gamma-ray absorption by the extragalactic infrared radiation on intrinsic spectra for this blazar and compare our results with the observational data on 3C279. We find agreement with our previous results, contrary to the recent assertion of the MAGIC group that the Universe is more transparent to gamma-rays than our calculations indicate. Our analysis indicates that in the energy range between approx. 80 and approx. 500 GeV, 3C279 has a best-fit intrinsic spectrum with a spectral index approx. 1.78 using our fast evolution model and approx. 2.19 using our baseline model. However, we also find that spectral indices in the range of 1.0 to 3.0 are almost as equally acceptable as the best fit spectral indices. Assuming the same intrinsic spectral index for this flare as for the 1991 flare from 3C279 observed by EGRET, viz., 2.02, which lies between our best fit indeces, we estimate that the MAGIC flare was approx.3 times brighter than the EGRET flare observed 15 years earlier.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-06
    Description: We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; Volume 113; Supplement 1; S110-S122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-06
    Description: Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing Environment (ISSN 0034-4257); Volume 113; Issue 11; 2366-2379
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-06
    Description: This paper presents new observations of the active galactic nuclei M87 and Hydra A at 90 GHz made with the MUSTANG array on the Green Bank Telescope at 8"5 resolution. A spectral analysis is performed combining this new data and archival VLA 7 data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 701; no. 2; 1872-1879
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-05
    Description: Several recent studies have found that the brightness of clear sky systematically increases near clouds. Understanding this increase is important both for a correct interpretation of observations and for improving our knowledge of aerosol-cloud interactions. However, while the studies suggested several processes to explain the increase, the significance of each process is yet to be determined. This study examines one of the suggested processes three-dimensional (3-D) radiative interactions between clouds and their surroundings by analyzing a large dataset of MODIS (Moderate Resolution Imaging Spectroradiometer) observations over the Northeast Atlantic Ocean. The results indicate that 3-D effects are responsible for a large portion of the observed increase, which extends to about 15 km away from clouds and is stronger (i) at shorter wavelengths (ii) near optically thicker clouds and (iii) near illuminated cloud sides. This implies that it is important to account for 3-D radiative effects in the interpretation of solar reflectance measurements over clear regions in the vicinity of clouds.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters; Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons,
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: The Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory is an imaging spectrometer for wavelengths between 28 microns and 440 microns. Our design is a dual-band long-slit grating spectrometer, which provides broadband (approx. 4000 km/s) observations in two lines simultaneously over a field of view roughly 10" wide by 320" long. The low backgrounds in spectroscopy require very sensitive detectors with noise equivalent powers of order 10(exp -18) W/square root of Hz. We are developing a kilopixel, filled detector array for SAFIRE in a 32 x 40 format. The detector consists of a transition edge sensor (TES) bolometer array, a per-pixel broadband absorbing backshort array, and a NIST SQUID multiplexer readout array. This general type of array has been used successfully in the GISMO instrument, so we extrapolate to the sensitivity needed for airborne spectroscopy. Much of the cryogenic, electronics, and software infrastructure for SAFIRE have been developed. I provide here an overview of the progress on SAFIRE.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-05
    Description: The aerosol spectral absorption efficiency (alpha (sub a) in square meters per gram) is measured over an extended wavelength range (350 2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha (sub a) values (approximately 3 square meters per gram at 550 nm) for Sao Paulo samples are 10 times larger than alpha (sub a) values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters; Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-05
    Description: In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.
    Keywords: Earth Resources and Remote Sensing
    Type: Geoscience and Remote Sensing (ISSN 0196-2892); Volume 47; Issue 12; 4095-4114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-27
    Description: Aircraft induced contrails have been found to have a net warming influence on the climate system, with strong regional dependence. Persistent linear contrails are detectable in 1 Km thermal imagery and, using an automated Contrail Detection Algorithm (CDA), can be identified on the basis of their different properties at the 11 and 12 m w av.el enTgthshe algorithm s ability to distinguish contrails from other linear features depends on the sensitivity of its tuning parameters. In order to keep the number of false identifications low, the algorithm imposes strict limits on contrail size, linearity and intensity. This paper investigates whether including additional information (i.e. meteorological data) within the CDA may allow for these criteria to be less rigorous, thus increasing the contrail-detection rate, without increasing the false alarm rate.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-8777 , RSPSoc Annual Conference; 8-11 Sept. 2009; Leicester; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-27
    Description: Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.
    Keywords: Astrophysics
    Type: JSC-CN-18343 , 72nd Annual Meeting of the Meteoritical Society; 13-18 Jul. 20009; Nancy; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: GRACE is unique among remote sensing systems in its ability to "see" below the first few centimeters of the land surface, and it has provided the first global observations of total terrestrial water storage variations. Now that we have more than seven years of GRACE measurements, it is tempting to look for trends in the data. Auxiliary information is almost always required in order to arrive at the correct diagnosis of an apparent trend. Here we will present a map of GRACE derived terrestrial water storage tendencies since 2002 and attempt to explain which are likely to continue due to climatic or human pressures, and which are short-term expressions of natural interannual variability.
    Keywords: Earth Resources and Remote Sensing
    Type: 2009 American Geophysical Union Conference; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: Astronomers are beginning to know the easy part: How did the Big Bang make stars and galaxies and the chemical elements? How did solar systems form and evolve? How did the Earth and the Moon form, and how did water and carbon come to the Earth? Geologists are piecing together the history of the Earth, and biologists are coming to know the history and process of life from the earliest times. But is our planet the only life-supporting place in the universe, or are there many? Astronomers are working on that too. I will tell the story of the discovery of the Big Bang by Edwin Hubble, and how the primordial heat radiation tells the details of that universal explosion. I will tell how the James Webb Space Telescope will extend the discoveries of the Hubble Space Telescope to ever greater distances, will look inside dust clouds to see stars being born today, will measure planets around other stars, and examine the dwarf planets in the outer Solar System. I will show concepts for great new space telescopes to follow the JWST and how they could use future moon rockets to hunt for signs of life on planets around other stars.
    Keywords: Astrophysics
    Type: How Did the Universe Make People? A Brief History of the Universe from the Beginning to the End; Sep 27, 2009 - Oct 01, 2009; New Haven, CT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: DFRC-934 , International Forum on Aeroelasticity and Structural Dynamics (IFASD) 2009; Jun 21, 2009 - Jun 25, 2009; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: The space-based OWL mission is designed to perform high-statistics measurements of ultra-high-energy cosmic rays (UHECR) using the Earth's atmosphere as a vast particle calorimeter, furthering the field of charged-particle astronomy. OWL has been developed in formal NASA instrument and mission studies and is comprised of two large telescopes separated by approx.600 km in 1000 km, near-equatorial orbits to stereoscopically image the near-UV air fluorescence emitted by UHECR-induced particle cascades. The High Resolution Fly's Eye (HiRes) Collaboration, and subsequently the Pierre Auger Observatory, recently reported confirmation of the expected Greisen-Zatsepin-Kuzmin (GZK) suppression of the UHECR flux above a few times 10(exp 19) eV. This observation is consistent with the majority of UHECR originating in astrophysical objects and reduces the need to invoke exotic physical processes. Particles observed above the GZK threshold energy must have come from sources within about 100 Mpc from the Earth. The small particle deflection angles expected at UHECR energies, with standard assumptions of extragalactic magnetic fields, are on the order of 1 degree. Thus by observing particles above the GZK threshold with sufficient exposure, there is the potential of identifying and characterizing individual UHECR sources. Auger has reported significant anisotropy in the arrival directions of UHECR at energies above about 6 10(exp 19) eV observed in the South, and a correlation to AGN in the 12th VCV catalog, suggesting that the sources of UHECR are traced by the distribution of luminous matter in the Universe. However, with similar statistics and the same event selection criteria, HiRes observations in the North are consistent with isotropy. Extended observations by Auger-South, by Telescope Array in the North, and possibly by the proposed Auger-North, will further these investigations. However, much greater exposures will be required to fully identify individual sources and measure their cosmic ray spectra. A five-year OWL mission would deliver approximately 10(exp 6)sq km/sr/yr of exposure with full aperture reached at approx. 10(exp 19) eV. The baseline 3 m optical aperture OWL telescopes with 45 degree full field-of-view are easily accomodated on a single conventional launch vehicle. On orbit, the simultaneous viewing of the same volume of atmosphere allows for precise stereo event reconstruction, which is nearly independent of the inclination of the particle track and tolerant of atmospheric conditions. The availability of monocular operation provides increased reliability or can be employed to increase the instantaneous aperture. In stereo mode, OWL is also capable of fully reconstructing horizontal or upward-moving showers and so has unmatched sensitivity to neutrino-induced events. The details of the OWL mission will he presented and its science capabilities will be discussed.
    Keywords: Astrophysics
    Type: International Cosmic Ray Conference; Jul 07, 2009 - Jul 15, 2009; Lodz; Poland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The prime scientific objectives of the Gravity and Extreme Magnetism SMEX, GEMS, are to determine the effects of the spin of black holes, the configurations of the magnetic fields of magnetars, and the structure of the supernova shocks which accelerate cosmic rays. In the cases of both stellar black holes and supermassive black holes, sensitivity to 1% polarization is needed to make diagnostic measurements of the net polarizations predicted for probable disk and corona models. GEMS can reach this goal for several Seyferts and quasars and measure the polarizations of representatives of a variety of other classes of X-ray sources, such as rotation-powered and accretion-powered pulsars. GEMS uses foil mirrors to maximize the collecting area achievable within the SMEX constraints. The polarimeters at the mirror foci are Time Projection Chambers which use the photoelectic effect to measure the polarization of the incident photon. We have built laboratory models with good efficiency and modulation in the 2-10 keV range. An attached small student experiment would add 0.5 keV sensitivity for bright soft sources. The instrument has a point spread function which allows measurement of structures in the brighter nearby supernova remnants. GEMS' Orbital Sciences spacecraft will rotate at a rate of 0.1 revolutions per minute during observations, so that systematic errors due to the detector can be detected and corrected. A program of 35 sources can be observed in 9 months. GEMS is designed for a two year lifetime which will allow a General Observer program that would more than double the number of sources measured. For subsets of black holes, neutron stars and supernova remnants, GEMS will measure the polarization of several sources, solving important questions while establishing the sensitivity required for future missions.
    Keywords: Astrophysics
    Type: The Coming of Age of X-Ray Polarimetry (XRAYPOL); Apr 25, 2009 - May 01, 2009; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: This paper/poster presents a real-life example of the benefits of flying small satellites with other satellites, large or small, and vice versa. Typically, most small satellites fly payloads consisting of one or two instruments and fly in orbits that are independent from that of other satellites. The science data from these satellites are either used in isolation or correlated with instrument data from other satellites. Data correlation with other satellites is greatly improved when the measurements of the same point or air mass are taken at approximately the same time. Scientists worldwide are beginning to take advantage of the opportunities for improved data correlation, or coincidental science, offered by the international Earth Observing Constellation known as the A-Train (sometimes referred to as the Afternoon Constellation). Most of the A-Train satellites are small - the A-Train is anchored by two large NASA satellites (EOS-Aqua and EOS-Aura), but consists also of 5 small satellites (CloudSat, CALIPSO, PARASOL, OCO and Glory these last two will join in 2009). By flying in a constellation, each mission benefits from coincidental observations from instruments on the other satellites in the constellation. Essentially, from a data point of view, the A-Train can be envisioned as a single, virtual science platform with multiple instruments. Satellites in the A-Train fly at 705 km in sun-synchronous orbits. Their mean local times at the equator are within seconds to a few minutes of each other. This paper describes the challenges of operating an international constellation of independent satellites from the U.S. and Europe to maximize the coincidental science opportunities while at the same time minimizing the level of operational interactions required between team members. The A-Train mission teams have been able to demonstrate that flying as members of an international constellation does not take away the flexibility to accommodate new requirements. Specific examples will be cited, including CloudSat's relocation (to accommodate a new viewing angle for the CALIPSO satellite), Glory's replan to move closer to PARASOL, and OCO's long term plans to minimize on-orbit operations costs while maintaining safety. In all cases, safety is ensured, science returns are enhanced, and operational flexibility is retained to the maximum extent possible.
    Keywords: Earth Resources and Remote Sensing
    Type: IAA Symposium on Small Satellites for Earth Observation; May 04, 2009 - May 08, 2009; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ 〈 z 〈 $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.
    Keywords: Astrophysics
    Type: Giovanni Fazio Science Symposium; Apr 27, 2009 - Apr 28, 2009; Massachusetts; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.
    Keywords: Astrophysics
    Type: PAMELA Science Meeting and Physics Workshop; May 09, 2009 - May 12, 2009; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: A paradox of X-ray binaries is that their strong X-ray flux ionizes much nearby low density gas, making it difficult to observe. Polarization can reveal gas which is fully ionized and can provide new insight into X-ray binary environments. In this talk I will present models for the scattering and polarization in X-ray binaries, adopting gas parameters which are chosen according to current ideas about these systems. These include stellar winds from a massive companion, X-ray induced disk winds, and the photospheres of a disk or binary companion.
    Keywords: Astrophysics
    Type: The Coming of Age of X-ray Polarimetry; Apr 27, 2009 - Apr 30, 2009; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: Two fluid life tests have been conducted to evaluate propylene glycol-based fluids for use in Constellation habitats and vehicles. The first test was conducted from November 2008 to January 2009 to help determine the compatibility of the propylene glycol-based fluid selected for Orion at the time. When the first test uncovered problems with the fluid selection, an investigation and selection of a new fluid were conducted. A second test was started in March 2010 to evaluate the new selection. For the first test, the fluid was subjected to a thermal fluid loop that had flight-like properties, as compared to Orion. The fluid loop had similar wetted materials, temperatures, flow rates, and aluminum wetted surface area to fluid volume ratio. The test was designed to last for 10 years, the life expectancy of the lunar habitat. However, the test lasted less than two months. System filters became clogged with precipitate, rendering the fluid system inoperable. Upon examination of the precipitate, it was determined that the precipitate composition contained aluminum, which could have only come from materials in the test stand, as aluminum is not part of the original fluid composition. Also, the fluid pH was determined to have increased from 10.1, at the first test sample, to 12.2, at the completion of the test. This high of a pH is corrosive to aluminum and was certainly a contributing factor to the development of precipitate. Due to the problems encountered during this test, the fluid was rejected as a coolant candidate for Orion. A new propylene glycol-based fluid was selected by the Orion project for use in the Orion vehicle. The Orion project has conducted a series of screening tests to help verify that there will be no problems with the new fluid selection. To compliment testing performed by the Orion project team, a new life test was developed to test the new fluid. The new test bed was similar to the original test bed, but with some improvements based on experience gained from the earlier test bed. The surface area of both aluminum and nickel in the test bed were designed to be similar to that of the Orion fluid loop, since the Orion fluid loop was expected to have high concentrations of both metals in the system. Also, additional sample materials were added to the test bed to match recent updates to materials selections for Orion. At the time of this paper publication, approximately five months of testing will have been completed. This paper gives a status of the testing completed to date.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19237 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system.. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat being rejected by a radiator. Coupon level tests were performed to test the feasibility of the technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios during a mission profile for Altair Lunar Lander. This paper summarizes results from coupon level tests as well as thermal math models developed to investigate how electrochromics can be used to provide the largest turn down ratio for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19174 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: NASA s Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles thermal control system. NASA s Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids. The current paper will provide an update to a similar overview paper published at last year s International Conference on Environmental Systems (ICES).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19168 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-19
    Description: The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially increasing reliability and reducing complexity while saving both mass and power. Furthermore, the Integrated Sublimator Driven Coldplate (ISDC) concept couples a coolant loop with the previously described SDC hardware. This combination allows the SDC to be used as a traditional coldplate during long mission phases. The previously developed SDC technology cannot be used for long mission phases due to the fact that it requires a consumable feedwater for heat rejection. Adding a coolant loop also provides for dissimilar redundancy on the Altair Lander ascent module thermal control system, which is the target application for this technology. Tests were performed on an Engineering Development Unit at NASA s Johnson Space Center to quantify and assess the performance of the SDC. Correlated thermal math models were developed to help explain the test data. The paper also outlines the preliminary results of an ISDC concept being developed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19171 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Coalescing massive black hole binaries are formed when galaxies merge. The final stages of this coalescence produce strong gravitational wave signals that can be detected by the space-borne LISA. When the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.
    Keywords: Astrophysics
    Type: APR09-2009-000640 , Opening Ceremonies of the 2009 International Year of Astronomy; May 02, 2009 - May 05, 2009; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: An assessment of APNASA was conducted at NASA Glenn Research Center under the Fundamental Aeronautics Program to determine their predictive capabilities. The geometry selected for this study was Stage 35 which is a single stage transonic compressor. A speedline at 100% speed was generated and compared to experimental data at 100% speed for two turbulence models. Performance of the stage at 100% speed and profiles of several key aerodynamic parameters are compared to the survey data downstream of the stator in this report. In addition, hub leakage was modeled and compared to solutions without leakage and the available experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-18238 , AIAA 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: Characterizing soil moisture (theta) variability is important for inferring high-resolution information from coarse estimates provided by remote sensors. In this study, we analyze the spatial variability and scale invariance of high-resolution theta estimates collected in two contrasting semiarid areas, Arizona (AZ) and Sonora (SON), during the Soil Moisture Experiment - North American Monsoon in 2004 (SMEX04- NAME). Results reveal that as the mean theta condition (〈theta〉) becomes drier, the spatial standard deviation becomes smaller in both domains. The coefficient of variation of theta decreases with 〈theta〉 in SON, but does not display a clear tendency with 〈theta〉 in AZ. We also found the presence of scale invariance and multifractality in the range of support scales from 51.2 km to 0.8 km for all soil moisture fields in the two regions. The multifractal properties of theta are clearly linked to 〈theta〉 in SON, while the relation is affected by more dispersion in AZ. We argue this is due to differences in the dynamic (rainfall) and static (vegetation) controls on theta in the two domains.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Arid Environments; 74; 572-578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-18249 , 47th AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: Surface mining and reclamation is the dominant driver of land cover land use change (LCLUC) in the Central Appalachian Mountain region of the Eastern U.S. Accurate quantification of the extent of mining activities is important for assessing how this LCLUC affects ecosystem services such as aesthetics, biodiversity, and mitigation of flooding.We used Landsat imagery from 1976, 1987, 1999 and 2006 to map the extent of surface mines and mine reclamation for eight large watersheds in the Central Appalachian region of West Virginia, Maryland and Pennsylvania. We employed standard image processing techniques in conjunction with a temporal decision tree and GIS maps of mine permits and wetlands to map active and reclaimed mines and track changes through time. For the entire study area, active surface mine extent was highest in 1976, prior to implementation of the Surface Mine Control and Reclamation Act in 1977, with 1.76% of the study area in active mines, declining to 0.44% in 2006. The most extensively mined watershed, Georges Creek in Maryland, was 5.45% active mines in 1976, declining to 1.83% in 2006. For the entire study area, the area of reclaimed mines increased from 1.35% to 4.99% from 1976 to 2006, and from 4.71% to 15.42% in Georges Creek. Land cover conversion to mines and then reclaimed mines after 1976 was almost exclusively from forest. Accuracy levels for mined and reclaimed cover was above 85% for all time periods, and was generally above 80% for mapping active and reclaimed mines separately, especially for the later time periods in which good accuracy assessment data were available. Among other implications, the mapped patterns of LCLUC are likely to significantly affect watershed hydrology, as mined and reclaimed areas have lower infiltration capacity and thus more rapid runoff than unmined forest watersheds, leading to greater potential for extreme flooding during heavy rainfall events.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; 113; 1; 62-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.
    Keywords: Earth Resources and Remote Sensing
    Type: 2009 IEEE International Geoscience and Remote Sensing Symposium: Earth Observation - Origins to Applications; Jul 12, 2009 - Jul 17, 2009; Cape Town; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: An ideal pulse tube cryocooler using an ideal gas can operate at any temperature. This is not true for real gases. The enthalpy flow resulting from the real gas effects of 3He, 4He, and their mixtures in ideal pulse tube cryocoolers puts limits on the operating temperature of pulse tube cryocoolers. The discussion of these effects follows a previous description of the real gas effects in ideal pulse tube cryocoolers and makes use of models of the thermophysical properties of 3He and 4He. Published data is used to extend the analysis to mixtures of 3He and 4He. The analysis was done for pressures below 2 MPa and temperatures below 2.5 K. Both gases and their mixtures show low temperature limits for pulse tube cryocoolers. These limits are in the 0.5-2.2 K range and depend on pressure and mixture. In some circumstances, even lower temperatures may be possible. Pulse tube cryocoolers using the ha-fluid properties of dilute 3He in superfluid 4He appear to have no limit.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN505 , Cryogenic Engineering Conference; Jun 28, 2009 - Jul 02, 2009; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Resonant effects and energy dissipation due to sloshing fuel inside propellant tanks are problems that arise in the initial design of any spacecraft or launch vehicle. A faster and more reliable method for calculating these effects during the design stages is needed. Using Computational Fluid Dynamics (CFD) techniques, a model of these fuel tanks can be created and used to predict important parameters such as resonant slosh frequency and damping rate. This initial study addresses the case of free surface slosh. Future studies will focus on creating models for tanks fitted with propellant management devices (PMD) such as diaphragms and baffles.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-2009-029 , 50th AIAA/ASME/ASC/AHS/ASC Structures, Structural Dynamics and Materials Conference; May 04, 2009 - May 07, 2009; Palm Springs, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-2009-128 , Cryogenic Engineering Conference; Jun 28, 2009 - Jul 02, 2009; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: A computational fluid dynamics (CFD) method is adapted, validated and applied to spinning gear systems with emphasis on predicting windage losses. Several spur gears and a disc are studied. The CFD simulations return good agreement with measured windage power loss. Turbulence modeling choices, the relative importance of viscous and pressure torques with gear speed and the physics of the complex 3-D unsteady flow field in the vicinity of the gear teeth are studied.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: American Helicopter Society 64th Anllual Forum; Apr 29, 2008 - May 01, 2008; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000-2002. This is the first study to use MODIS data to model all carbon pools (wood, leaf, root) dynamically in simulations of Amazon forest deforestation from clearing and burning of all kinds.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN2267 , Biogeosciences; 6; 2369-2381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: We study radiation-induced amorphization of crystalline ice, ana lyzing the resu lts of three decades of experiments with a variety of projectiles, irradiation energy, and ice temperature, finding a similar trend of increasing resistance of amorphization with temperature and inconsistencies in results from different laboratories. We discuss the temperature dependence of amorphization in terms of the 'thermal spike' model. We then discuss the common use of the 1.65 micrometer infrared absorption band of water as a measure of degree of crystallinity, an increasingly common procedure to analyze remote sensing data of astronomical icy bodies. The discussion is based on new, high quality near-infrared refl ectance absorption spectra measured between 1.4 and 2.2 micrometers for amorphous and crystalline ices irradiated with 225 keV protons at 80 K. We found that, after irradiation with 10(exp 15) protons per square centimeter, crystalline ice films thinner than the ion range become fully amorphous, and that the infrared absorption spectra show no significant changes upon further irradiation. The complete amorphization suggests that crystalline ice observed in the outer Solar System, including trans-neptunian objects, may results from heat from internal sources or from the impact of icy meteorites or comets.
    Keywords: Astrophysics
    Type: GSFC.JA.4461.2011 , Icarus (ISSN 0019-1035); 207; 1; 314-319
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.
    Keywords: Astrophysics
    Type: GSFC.ABS.00249.2012 , Advancing Chemical Understanding through Astronomical Observations; May 26, 2009 - May 29, 2009; Greenbank, WV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Pulsed laser signals and a time gated receiver are used to isolate the laser echo signals from the surface, to reject laser photons scattered in the atmosphere, and measure the surface height and scattering profile in the path. We have recently completed a second design study for the space instrument. For the study, we selected a nominal sun-synchronous orbit with an altitude of 400 km and equator crossing time of 1:30 pm, and a receiver telescope with 1.5 m diameter.
    Keywords: Earth Resources and Remote Sensing
    Type: 3rd International Workshop on Active CO2 DIAL Remote Sensing; Oct 13, 2009 - Oct 15, 2009; Hampton, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.
    Keywords: Astrophysics
    Type: SLAC Summer Institute: Revolutions on the Horizon, A Decade of New Experiments; Aug 06, 2009 - Aug 08, 2009; Menlo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: A profiling airborne LiDAR is used to estimate the forest resources of Hedmark County, Norway, a 27390 square kilometer area in southeastern Norway on the Swedish border. One hundred five profiling flight lines totaling 9166 km were flown over the entire county; east-west. The lines, spaced 3 km apart north-south, duplicate the systematic pattern of the Norwegian Forest Inventory (NFI) ground plot arrangement, enabling the profiler to transit 1290 circular, 250 square meter fixed-area NFI ground plots while collecting the systematic LiDAR sample. Seven hundred sixty-three plots of the 1290 plots were overflown within 17.8 m of plot center. Laser measurements of canopy height and crown density are extracted along fixed-length, 17.8 m segments closest to the center of the ground plot and related to basal area, timber volume and above- and belowground dry biomass. Linear, nonstratified equations that estimate ground-measured total aboveground dry biomass report an R(sup 2) = 0.63, with an regression RMSE = 35.2 t/ha. Nonstratified model results for the other biomass components, volume, and basal area are similar, with R(sup 2) values for all models ranging from 0.58 (belowground biomass, RMSE = 8.6 t/ha) to 0.63. Consistently, the most useful single profiling LiDAR variable is quadratic mean canopy height, h (sup bar)(sub qa). Two-variable models typically include h (sup bar)(sub qa) or mean canopy height, h(sup bar)(sub a), with a canopy density or a canopy height standard deviation measure. Stratification by productivity class did not improve the nonstratified models, nor did stratification by pine/spruce/hardwood. County-wide profiling LiDAR estimates are reported, by land cover type, and compared to NFI estimates.
    Keywords: Earth Resources and Remote Sensing
    Type: IUFRO Division Extending Forest Inventory and Monitoring over Space and Time; May 19, 2009 - May 22, 2009; Quebec City; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: During the last few years, considerable effort has been directed towards very large-scale (〉 $5 billion) missions to detect and characterize Mars-radius to Earth-radius planets around nearby stars; such as the Terrestrial Planet Finder Interferometer and Darwin missions. However, technological issues such as formation flying and control of systematic noise sources will likely prevent these missions from entering Phase A until at least the end of the next decade. Presently more than 350 planets have been discovered by a variety of techniques, and little is known about the majority of them other than their approximate mass. However, a simplified nulling interferometer operating in the near- to mid-infrared (e.g. approx. 5-15 microns), like the enhanced version of the Fourier Kelvin Stellar Interferometer (FKSI), can characterize the atmospheres of a large sample of the known planets - including Earth twins. Many other scientific problems can be addressed with a system like FKSI, including the studies of debris disks, active galactic nuclei, and low mass companions around nearby stars. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics including siderostats.
    Keywords: Astrophysics
    Type: Pathways to Habitable Planets; Sep 14, 2009 - Sep 18, 2009; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the "Big Bang" and the signature of the evolution of its contents. By exploiting these clues, precise constraints on the age, mass density, and geometry of the early Universe can be derived. The history of this intriguing cosmological detective story will be reviewed. Recent results from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) will be presented.
    Keywords: Astrophysics
    Type: Teachers Workshop, Norfolk State University; Jun 25, 2009; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is thought, in some cases, to trace interstellar material that was incorporated into the solar sys tem without undergoing significant processing. In this poster, we sho w the results of several models of the nitrogen, oxygen, and carbon f ractionation in proto-stellar cores.
    Keywords: Astrophysics
    Type: Gordon Research Conference: Biological Molecules In The Gas Phase; Jul 05, 2009 - Jul 10, 2009; Massachusetts; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-19
    Description: LIGO is about to begin a new, higher sensitivity science run, where gravitational detection is plausible. A possible candidate for detection is a compact binary merger, which would also be likely to emit a high energy electromagnetic signal. Coincident observation of the gw signal from a compact merger with an x-ray or gamma-ray signal would add considerable weight to the claim for gw detection. In this talk I will consider the possibility of using LIGO triggers with time and sky position to perform a coincident analysis of EM signals from the RXTE, SWIFT, and FERMI missions.
    Keywords: Astrophysics
    Type: LSC-VIRGO Collaboration Meeting; Jun 02, 2009 - Jun 05, 2009; Orsay; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-19
    Description: The apex of the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier antinuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of antideuterons and antihelium. The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.
    Keywords: Astrophysics
    Type: International Cosmic Ray Conference; Jul 07, 2009 - Jul 15, 2009; Lodz; Poland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-19
    Description: Models are foundational for estimating states of the earth's climate system, both as tools to extrapolate information in time and space, and as observation 'operators' used to relate what is analyzed and predicted to what is observed. Expanding the simulation approach further, observing system simulation experiments (OSSEs) are designed to mimic the complete process of analyzing the climate state by replacing real observations with entirely simulated ones determined from a model-based depiction of nature. OSSEs provide a framework to 'fly' simulated satellite instruments through a synthetic atmosphere and investigate the trade-spaces of measurements for various satellite configurations and sampling strategies, and assess their measurement impact on modeling and forecasting capabilities. Such a tool is a crucial but as yet unfulfilled need for future mission selection and design. The components of a state-of-the-art OSSE system are being assembled at the Global Modeling and Assimilation Office (GMAO, Code 610.1) at NASA/GSFC, leveraging on the GMAO's existing modeling and data assimilation infrastructure for numerical weather prediction (NWP). The OSSE framework is based on the GMAO's Goddard Earth Observing System atmospheric general circulation model, version 5 (GEOS-5) and the Gridpoint Statistical Interpolation (GSI) observational analysis scheme, combined with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model developed by the Atmospheric Chemistry and Dynamics Branch (Code 613.3). This system is an evolving, key component of Goddard's planned development of an Integrated Earth System Analysis (IESA) capability, which will bring together into a single, fully interactive system Goddard's modeling and assimilation efforts in atmosphere, ocean and chemistry and aerosols to provide a comprehensive analysis and prediction system for weather and climate In addition to providing a state-of-the-art capability for assimilating current observation types, GEOS-5, and the future IESA, provide the capability to identify the need for, and assess the potential impact of, future observing systems under consideration for improving weather and climate prediction.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-19
    Description: The AM Short Course on The Modern Era Retrospective-analysis for Research and Applications (MERRA) data and accessibility will be held on January 11, 2009 preceding the 89th Annual Meeting in Phoenix, Arizona. Preliminary programs, registration, hotel, and general information will be posted on the AMS Web site in mid-September 2008. Retrospective-analyses (or reanalyses) have been established as an important tool in weather and climate research over the last decade. As computer power increases, the data assimilation and modeling systems improve and become more advanced, the input data quality increases and so reanalyses become more reliable. In 2008, NASA Global Modeling and Assimilation Office began producing a new reanalysis called the Modem Era Retrospective-analysis for Research and Applications (MERRA). The initial data from the reanalysis has been made available to the community and should be complete through 30 years (1979-present) by Fall of 2009. MERRA has taken advantage of the advancement of computing resources to provide users more data than previously available. The native spatial resolution is nominally 1/2 degrees and the surface two dimensional data are one hourly frequency. In addition to the meteorological analysis data, complete mass, energy and momentum budget data and also stratospheric data are provided. The eventual data holdings will exceed 150Tb. In order to facilitate user accessibility to the data, it will be stored in online hard drives (not tape storage) and available through several portals. Subsetting tools will also be available to allow users to tailor their data requests. The goals of this short course are to provide hands on users of reanalyses instruction on MERRA systems and also interactive experience with the online data and access tools. The course is intended for students and research scientists who will be actively interested in accessing and applying MERRA data in their weather, climate or applications work. The course has three parts. There will be an overview of the MERRA system, the validation of the system and the native data format. Second, Instructors will provide examples of weather and climate data analysis using various software packages (primarily GrADS) as well as the online access tools for subsetting and download, as well as visualization (e.g. Giovanni and Google Earth). This will also include examples on changing the data format to fit user's preferences and also to regrid the data for comparisons to other reanalyses and observational data. Lastly, there will he time set aside for participants to have hands on access to the data and software while interacting with the instructors and other developers. The course convener is Dr. Michael Bosilovich, NASA GSFC Global Modeling and Assimilation Office (GMAO). He will be joined by several GMAO, Goddard Earth Science Data and information Services Center (GES DISC) and Software Integration and Visualization Office (SIVO) staff.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approx. 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor Gamma and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have began to explore. In particular. one can this may obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the (nu)F(sub nu), spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
    Keywords: Astrophysics
    Type: APR09-2009-000098 , Opening Ceremonies of the 2009 International Year of Astrononmy; May 02, 2009 - May 05, 2009; Colorago; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-19
    Description: An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated and real human metabolic loads in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-18994 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-19
    Description: Every spacecraft atmosphere contains trace contaminants resulting from offgassing by cabin materials and human passengers. An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). Part of the risk mitigation effort for this new technology is the study of how atmospheric trace contaminants will affect and be affected by the technology. One particular area of concern is ammonia, which, in addition to the normal spacecraft sources, can also be off-gassed by the amine-based sorbent. In the first half of 2009, tests were performed with typical cabin atmosphere levels of five of the most common trace gases, most of which had not yet been tested with this technology. A subscale sample of the sorbent was exposed to each of the chemicals mixed into a stream of moist, CO2-laden air, and the CO2 adsorption capacity of the sorbent was compared before and after the exposure. After these typical-concentration chemicals were proven to have negligible effect on the subscale sample, tests proceeded on a full-scale test article in a sealed chamber with a suite of eleven contaminants. To isolate the effects of various test rig components, several extended-duration tests were run: without injection or scrubbing, with injection and without scrubbing, with injection and scrubbing by both the test article and dedicated trace contaminant filters, and with injection and scrubbing by only the test article. The high-level results of both the subscale and full-scale tests are examined in this paper.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-18995 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: Plasmaspheric drainage plumes appear in the aftermath of periods of enhanced convection/erosion and are interpreted as a near-equatorial signature of the redistribution of thermal plasma along streamlines. Analysis of IMAGE/EUV observations reveals that for Kp 〉3, there is an 84% probability of observing a plasmaspheric plume in EUV data. We present a statistical analysis of the geomagnetic conditions [Kp, Dst, and solar wind-induced electric field] associated with EUV plume observations. Additionally, statistical analysis of the a solar wind-induced convection electric field at Earth [Ey,sm] associated with EUV plume observations are presented. These results are then used to specify a single magnetospheric state vector to define the configuration of magnetosphere associated with the formation of this major plasmaspheric structure.
    Keywords: Astrophysics
    Type: 2009 AGU Fall Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: The strongest expected sources of gravitational waves in the LISA band are the mergers of massive black holes. LISA may observe these systems to high redshift, z〉10, to uncover details of the origin of massive black holes, and of the relationship between black holes and their host structures, and structure formation itself. These signals arise from the final stage in the development of a massive black-hole binary emitting strong gravitational radiation that accelerates the system's inspiral toward merger. The strongest part of the signal, at the point of merger, carries much information about the system and provides a probe of extreme gravitational physics. Theoretical predictions for these merger signals rely on supercomputer simulations to solve Einstein's equations. We discuss recent numerical results and their impact on LISA science expectations.
    Keywords: Astrophysics
    Type: Black-hole Merger Simulations for LISA Science; Jan 01, 2010; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-19
    Description: Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta= 1 level (Le., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a lOW-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.
    Keywords: Astrophysics
    Type: American Astronomics Society Solar Physics Division (AAS/SPD) 2009 Meeting; May 15, 2009 - May 18, 2009; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-19
    Description: This presentation discusses a NASA Stennis Space Center project in which NASA-supported satellite and aerial data is being used to aid state and federal agencies in restoring the Mississippi barrier islands. Led by the Applied Science and Technology Project Office (ASTPO), this project will produce geospatial information products from multiple NASA-supported data sources, including Landsat, ASTER, and MODIS satellite data as well as ATLAS multispectral, CAMS multispectral, AVIRIS hyperspectral, EAARL, and other aerial data. Project objectives include the development and testing of a regional sediment transport model and the monitoring of barrier island restoration efforts through remote sensing. Barrier islands provide invaluable benefits to the State of Mississippi, including buffering the mainland from storm surge impacts, providing habitats for valuable wildlife and fisheries habitat, offering accessible recreational opportunities, and preserving natural environments for educating the public about coastal ecosystems and cultural resources. Unfortunately, these highly valued natural areas are prone to damage from hurricanes. For example, Hurricane Camille in 1969 split Ship Island into East and West Ship Island. Hurricane Georges in 1998 caused additional land loss for the two Ship Islands. More recently, Hurricanes Ivan, Katrina, Rita, Gustav, and Ike impacted the Mississippi barrier islands. In particular, Hurricane Katrina caused major damage to island vegetation and landforms, killing island forest overstories, overwashing entire islands, and causing widespread erosion. In response, multiple state and federal agencies are working to restore damaged components of these barrier islands. Much of this work is being implemented through federally funded Coastal Impact Assessment and Mississippi Coastal Improvement programs. One restoration component involves the reestablishment of the island footprints to that in 1969. Our project will employ NASA remote sensing data and products to support these federally funded efforts on multiple fronts. Landsat and ASTER data is being analyzed to assess changes in barrier island land cover over the last 35 years. ASTER, SRTM, and EAARL terrain products and other NASA airborne imagery are being applied in assessing changes in barrier island geomorphology and geospatial extent. MODIS data is being examined as a tool for sediment transport modeling by supplying geospatial data that quantifies in-water sediment concentrations. MODIS satellite data is being assessed for monitoring changes in the spatial extent of individual barrier islands. Results thus far indicate that NASA data products are useful in assessing barrier island conditions and changes. This value is enhanced with additional historical geospatial data, commercial high resolution satellite data, other non-NASA aerial imagery, and field survey data. The project s products are relevant to the Gulf of Mexico Alliance priority issues, including coastal habitat conservation, restoration and coastal community resilience. Such products will be available to state and federal agencies involved with coastal restoration. Potential end-users of these products include the National Park Service, U.S. Geological Survey, U.S. Army Corps of Engineers, Environmental Protection Agency, Mississippi Department of Environmental Quality, and Mississippi Department of Marine Resources.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0182 , OCEANS''09 MTS/IEEE Conference and Exhibition; Oct 26, 2009 - Oct 29, 2009; Biloxi, MS; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-19
    Description: The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time.
    Keywords: Astrophysics
    Type: International Workshop on Cosmic Structure and Evolution; Sep 23, 2009 - Sep 25, 2009; Bielefeld; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-19
    Description: The Extrasolar Planetary Imaging Coronagraph (EPIC) is a NASA Astrophysics Strategic Mission Concept study and a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC would provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 5-year mission lifetime. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables starlight suppression in broadband light from 480-960 nm. To demonstrate the VNC approach and advance it's technology readiness we have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed.
    Keywords: Astrophysics
    Type: SPIE Optics and Photonics; Aug 04, 2009 - Aug 06, 2009; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-19
    Description: Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
    Keywords: Astrophysics
    Type: M09-0403 , Modern Challenges in Nonliner Plasma Physics; Jun 15, 2009 - Jun 19, 2009; Halkidiki; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Computations are performed to investigate the effect of rocket control motors on flush air-data sensor systems. Such sensors are critical for the control of space vehicles during launch and re-entry, but are prone to interference from rocket motors, hypersonic-flow effects, etc. Computational analyses provide a means for studying these interference effects and exploring opportunities for mitigating them, either through design techniques or through appropriate processing of the sensor outputs. In the present work, the influence of rocket control motors on the nosecone flush air-data sensors of a launch-abort vehicle is studied. Particular attention is paid to the differential effect of various control-jet combinations on surface pressures. The relative effectiveness of inviscid, viscous, turbulent and two-phase-flow approximations in addressing this problem is also investigated.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: DFRC-929 , 39th AIAA Fluid Dynamics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, Tx; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-19
    Description: A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M09-0241 , Satellite Thermal Control Workshop; Mar 10, 2009 - Mar 12, 2009; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The giant flares produced by highly magnetized neutron stars, "magnetars," are the brightest sources of high energy radiation outside our solar system. High frequency oscillations have been discovered during portions of the two most recently observed giant flares which may represent the first detection of global oscillation modes of neutron stars. I will give an observational and theoretical overview of these oscillations and describe how they might allow us to probe neutron star interiors and dense matter physics.
    Keywords: Astrophysics
    Type: Defining the Neutrol Star Crust: X-ray Bursts, Superbursts and Giant Flares; May 18, 2009 - May 21, 2009; Santa Fe, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: At several million degrees, the solar corona is more than two orders of magnitude hotter than the underlying solar surface. The reason for these extreme conditions has been a puzzle for decades and is considered one of the fundamental problems in astrophysics. Much of the coronal plasma is organized by the magnetic field into arch-like structures called loops. Recent observational and theoretical advances have led to great progress in understanding the nature of these loops. In particular, we now believe they are bundles of unresolved magnetic strands that are heated by storms of impulsive energy bursts called nanoflares. Turbulent convection at the solar surface shuffles the footpoints of the strands and causes them to become tangled. A nanoflare occurs when the magnetic stresses reach a critical threshold, probably by way of a mechanism called the secondary instability. I will describe our current state of knowledge concerning the corona, its loops, and how they are heated.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-19
    Description: The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (~5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19034 , 40th International Conference on Environmental Systems; Jul 11, 2009 - Jul 15, 2009; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-19
    Description: Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19217 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Often described as the successor to the Hubble Space Telescope, the James Webb Space Telescope (JWST) is a general astrophysics mission that will be used by the international astronomy community in a manner similar to other major space observatories: HST, Chandra, and Spitzer. The JWST is being developed by NASA in partnership with the European and Canadian Space Agencies for launch during 2013. This talk will review the science goals, overall mission architecture, and development status of the JWST.
    Keywords: Astrophysics
    Type: Pittcon 2009 Conference and Exposition, "Space Exploration in the 21 Century"; Mar 08, 2009 - Mar 13, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-19
    Description: The coalescence of two massive black holes produces gravitational waves (GWs) which can be detected by the space-based detector LISA. By measuring these waves, LISA can determine the various parameters which characterize the source. Measurements of the black hole masses and spins will provide information about the growth of black holes and their host galaxies over time. Measurements of a source's sky position and distance may help astronomers identify an electromagnetic counterpart to the GW event. The counterpart's redshift, combined with the GW-measured luminosity distance, can then be used to measure the Hubble constant and the dark energy parameter $w$. Because the potential science output is so high, it is useful to know in advance how well LISA can measure source parameters for a wide range of binaries. We calculate expected parameter estimation errors using the well-known Fisher matrix method. Our waveform model includes the physics of spin precession, as well as subleading harmonics. When these higher-order effects are not included, strong degeneracies between some parameters cause them to be poorly determined by a GW measurement. When precession and subleading harmonics are properly included, the degeneracies are broken, reducing parameter errors by one to several orders of magnitude.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-19
    Description: NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2014, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.
    Keywords: Astrophysics
    Type: Georgia Regional Astronomy Meeting; Nov 05, 2009 - Nov 08, 2009; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Stellar Imager (SI) is a space-based, UV Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new 'discovery space' for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates. and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future spacebased sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. S1 is a 'Landmark/Discovery Mission' in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled enhanced by an Ares V' launch, although a incrementally-deployed version could be launched using smaller rockets.
    Keywords: Astrophysics
    Type: 2008 International Year of Astronomy; Jan 04, 2009 - Jan 08, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-19
    Description: In a vehicle constrained by mass and power, it is necessary to ensure that during the process of reducing hardware mass and power that the health and well being of the crew is not compromised in the design process. To that end, it is necessary to ensure that in the final phase of flight - recovery, that the crew core body temperature remains below the crew cognitive deficit set by the Constellation program. This paper will describe the models used to calculate the thermal environment of the spacecraft after splashdown as well as the human thermal model used to calculate core body temperature. Then the results of these models will be examined to understand the key drivers for core body temperature. Finally, the analysis results will be used to show that additional cooling capability must be added to the vehicle to ensure crew member health post landing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-19
    Description: Observations of gravitational waves from massive black hole mergers will open a new window into the era of structure formation in the early universe. Past efforts have concentrated on calculating merger rates using different physical assumptions, resulting in merger rate estimates that span a wide range (0.1 - 10(exp 4) mergers/year). We develop a semi-analytical, phenomenological model of massive black hole mergers that includes plausible combinations of several physical parameters, which we then turn around to determine how well observations with the Laser Interferometer Space Antenna (LISA) will be able to enhance our understanding of the universe during the critical z approximately equal to 5-30 epoch. Our approach involves generating synthetic LISA observable data (total BH masses, BH mass ratios, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo method, thus finding constraints for the physical parameters of the mergers. We find that our method works well at estimating merger parameters and that the number of merger events is a key discriminant among models, therefore making our method robust against observational uncertainties. Our approach can also be extended to more physically-driven models and more general problems in cosmology. This work is supported in part by the Cooperative Education Program at NASA/GSFC.
    Keywords: Astrophysics
    Type: American Astronomical Society meeting (AAS); Jan 03, 2009 - Jan 08, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...