ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation  (3)
  • Cell & Developmental Biology
  • Inorganic Chemistry
  • Physics
  • Quantum optics, physics of lasers, nonlinear optics, classical optics
  • INGV  (4)
  • 2010-2014  (4)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2020-12-03
    Description: The global positioning system (GPS) phase scintillation caused by highlatitude ionospheric irregularities during an intense high-speed stream (HSS) of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Arctic and Antarctica. The one-minute phase-scintillation index derived from the data sampled at 50 Hz was complemented by a proxy index (delta phase rate) obtained from 1-Hz GPS data. The scintillation occurrence coincided with the aurora borealis and aurora australis observed by an all-sky imager at the South Pole, and by special sensor ultraviolet scanning imagers on board satellites of the Defense Meteorological Satellites Program. The South Pole (SP) station is approximately conjugate with two Canadian High Arctic Ionospheric Network stations on Baffin Island, Canada, which provided the opportunity to study magnetic conjugacy of scintillation with support of riometers and magnetometers. The GPS ionospheric pierce points were mapped at their actual or conjugate locations, along with the auroral emission over the South Pole, assuming an altitude of 120 km. As the aurora brightened and/or drifted across the field of view of the all-sky imager, sequences of scintillation events were observed that indicated conjugate auroras as a locator of simultaneous or delayed bipolar scintillation events. In spite of the greater scintillation intensity in the auroral oval, where phase scintillation sometimes exceeded 1 radian during the auroral break-up and substorms, the percentage occurrence of moderate scintillation was highest in the cusp. Interhemispheric comparisons of bipolar scintillation maps show that the scintillation occurrence is significantly higher in the southern cusp and polar cap.
    Description: Published
    Description: R0216
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Scintillations ; Solar-terrestrial interaction ; Space weather ; Solar variability and solar wind ; Magnetic storms ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-14
    Description: In recent years, several groups have installed high-frequency sampling receivers in the southern middle and high latitude regions, to monitor ionospheric scintillations and the total electron content (TEC) changes. Taking advantage of the archive of continuous and systematic observations of the ionosphere on L-band by means of signals from the Global Positioning System (GPS), we present the first attempt at ionospheric scintillation and TEC mapping from Latin America to Antarctica. The climatology of the area considered is derived through Ground-Based Scintillation Climatology, a method that can identify ionospheric sectors in which scintillations are more likely to occur. This study also introduces the novel ionospheric scintillation 'hot-spot' analysis. This analysis first identifies the crucial areas of the ionosphere in terms of enhanced probability of scintillation occurrence, and then it studies the seasonal variation of the main scintillation and TEC-related parameters. The results produced by this sophisticated analysis give significant indications of the spatial/ temporal recurrences of plasma irregularities, which contributes to the extending of current knowledge of the mechanisms that cause scintillations, and consequently to the development of efficient tools to forecast space-weather-related ionospheric events.
    Description: Published
    Description: R0220
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Scintillations ; Dynamics ; Solar-terrestrial interaction ; Space weather ; Statistical analysis ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In the framework of the project BIS - Bipolar Ionospheric Scintillation and Total Electron Content Monitoring, the ISACCO-DMC0 and ISACCO-DMC1 permanent monitoring stations were installed in 2008. The principal scope of the stations is to measure the ionospheric total electron content (TEC) and to monitor the ionospheric scintillations, using high-sampling-frequency global positioning system (GPS) ionospheric scintillation and TEC monitor (GISTM) receivers. The disturbances that the ionosphere can induce on the electromagnetic signals emitted by the Global Navigation Satellite System constellations are due to the presence of electron density anomalies in the ionosphere, which are particularly frequent at high latitudes, where the upper atmosphere is highly sensitive to perturbations coming from outer space. With the development of present and future low-frequency space-borne microwave missions (e.g., Soil Moisture and Ocean Salinity [SMOS], Aquarius, and Soil Moisture Active Passive missions), there is an increasing need to estimate the effects of the ionosphere on the propagation of electromagnetic waves that affects satellite measurements. As an example, how the TEC data collected at Concordia station are useful for the calibration of the European Space Agency SMOS data within the framework of an experiment promoted by the European Space Agency (known as DOMEX) will be discussed. The present report shows the ability of the GISTM station to monitor ionospheric scintillation and TEC, which indicates that only the use of continuous GPS measurements can provide accurate information on TEC variability, which is necessary for continuous calibration of satellite data.
    Description: Published
    Description: R0219
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 1.10. TTC - Telerilevamento
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Total electron content ; Antarctica ; GNSS ; GPS ; Faraday rotation ; Ionosphere ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-03
    Description: (extended abstract)
    Description: INGV, Regione Sicilia, Ministero Sviluppo Economico
    Description: Published
    Description: Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily
    Description: 5.9. Formazione e informazione
    Description: open
    Keywords: Inertia ; Physics ; Fluid Dynamics ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...