ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous  (5)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (4)
  • 05. General::05.08. Risk::05.08.99. General or miscellaneous
  • Elsevier B.V.  (4)
  • Nature Publishing Group  (2)
  • American Institute of Physics (AIP)
  • Periodicals Archive Online (PAO)
  • 2010-2014  (6)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Improving lava flow hazard assessment is one of the most important and challenging fields of volcanology, and has an immediate and practical impact on society. Here, we present a methodology for the quantitative assessment of lava flow hazards based on a combination of field data, numerical simulations and probability analyses. With the extensive data available on historic eruptions of Mt. Etna, going back over 2000 years, it has been possible to construct two hazard maps, one for flank and the other for summit eruptions, allowing a quantitative analysis of the most likely future courses of lava flows. The effective use of hazard maps of Etna may help in minimizing the damage from volcanic eruptions through correct land use in densely urbanized area with a population of almost one million people. Although this study was conducted on Mt. Etna, the approach used is designed to be applicable to other volcanic areas.
    Description: This work was developed within the framework of TecnoLab, the Laboratory for Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 3493
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow hazard ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-18
    Description: Morphologic data for 147 cinder cones in southern Guatemala andwestern El Salvador are comparedwith data from the San Francisco volcanic field, Arizona (USA), Cima volcanic field, California (USA), Michoácan–Guanajuato volcanic field, Mexico, and the Lamongan volcanic field, East Java. The Guatemala cones have an average height of 110+/-50 m, an average basal diameter of 660+/-230 m and an average top diameter of 180+/-150 m. The generalmorphology of these cones can be described by their average cone angle of slope (24+/-7), average heightto- radius ratio (0.33+/-0.09) and their flatness (0.24+/-0.18). Although the mean values for the Guatemalan cones are similar to those for other volcanic fields (e.g., San Francisco volcanic field, Arizona; Cima volcanic field, California; Michoácan–Guanajuato volcanic field, Mexico; and Lamongan volcanic field, East Java), the range of morphologies encompasses almost all of those observed worldwide for cinder cones. Three new 40Ar/39Ar age dates are combined with 19 previously published dates for cones in Guatemala and El Salvador. There is no indication that the morphologies of these cones have changed over the last 500–1000 ka. Furthermore, a re-analysis of published data for other volcanic fields suggests that only in the Cima volcanic field (of those studied) is there clear evidence of degradation with age. Preliminary results of a numerical model of cinder cone growth are used to show that the range of morphologies observed in the Guatemalan cinder cones could all be primary, that is, due to processes occurring at the time of eruption.
    Description: Support for Walker was provided by NSF MARGINS grant OCE- 0405666.
    Description: Published
    Description: 39-52
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: cinder cones ; morphology ; age dating ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Many volcanic edifices are subject to flank failure, usually produced by a combination of events, rather than any single process. From a dynamic point of view, the cause of collapse can be divided into factors that contribute to an increase in shear stress, and factors that contribute to the reduction in the friction coefficient μ of a potential basal failure plane. We study the potential for flank failure at Mount Etna considering a schematic section of the eastern flank, approximated by a wedge-like block. For such geometry, we perform a (steady state) limit equilibrium analysis: the resolution of the forces parallel to the possible basal failure plane allows us to determine the total force acting on the potentially unstable wedge. An estimate of the relative strength of these forces suggests that, in first approximation, the stability is controlled primarily by the balance between block weight, lithostatic load and magmatic forces. Any other force (sea load, hydrostatic uplift, and the uplift due to mechanical and thermal pore-fluid pressure) may be considered of second order. To study the model sensitivity, we let the inferred slope α of the basal surface failure vary between −10° and 10°, and consider three possible scenarios: no magma loading, magmastatic load, and magmastatic load with magma overpressure. We use error propagation to include in our analysis the uncertainties in the estimates of the mechanics and geometrical parameters controlling the block equilibrium. When there is no magma loading, the ratio between destabilizing and stabilizing forces is usually smaller than the coefficient of friction of the basal failure plane. In the absence of an initiating mechanism, and with the nominal values of the coefficient of friction μ = 0.7 ± 0.1 proposed, the representative wedge will remain stable or continue to move at constant speed. In presence of magmastatic forces, the influence of the lateral restraint decreases. If we consider the magmastatic load only, the block will remain stable (or continue to move at constant speed), unless the transient mechanical and thermal pressurization significantly decrease the friction coefficient, increasing the instability of the flank wedge for α 〉 5° (seaward dipping decollement). When the magma overpressure contribution is included in the equilibrium analysis, the ratio between destabilizing and stabilizing forces is of the same order or larger than the coefficient of friction of the basal failure plane, and the block will become unstable (or accelerate), especially in the case of the reduction in friction coefficient. Finally, our work suggests that the major challenge in studying flank instability at Mount Etna is not the lack of an appropriate physical model, but the limited knowledge of the mechanical and geometrical parameters describing the block equilibrium.
    Description: This work was funded by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Dipartimento per la Protezione Civile (DPC) (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 153-164
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; dike intrusion ; flank instability ; poro-elasticity ; analytical modelling ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We conducted geophysical–geochemical measurements on a ∼2 kmN–S profile cutting across the Pernicana Fault, one of the most active tectonic features on the NE flank of Mt. Etna. The profile passes from the unstable E flank of the volcano (to the south) to the stable N flank and significant fluctuations in electrical resistivity, self-potential, and soil gas emissions (CO2, Rn and Th) are found. The detailed multidisciplinary analysis reveals a complex interplay between the structural setting, uprising hydrothermal fluids, meteoric fluids percolating downwards, ground permeability, and surface topography. In particular, the recovered fluid circulation model highlights that the southern sector is heavily fractured and faulted, allowing the formation of convective hydrothermal cells. Although the existence of a hydrothermal system in a volcanic area does not surprise, these results have great implications in terms of flank dynamics at Mt. Etna. Indeed, the hydrothermal activity, interacting with the Pernicana Fault activity, could enhance the flank instability. Our approach should be further extended along the full extent of the boundary between the stable and unstable sectors of Etna for a better evaluation of the geohazard in this active tectonic area.
    Description: This work was partly financed by the DPC-INGV FLANK and LAVA Projects.
    Description: Published
    Description: 137–142
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Pernicana Fault ; fluid circulation ; structural geology ; Etna ; magnetic ; electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Many volcanic edifices are subject to flank failure, usually produced by a combination of events, rather than any single process. From a dynamic point of view, the cause of collapse can be divided into factors that contribute to an increase in shear stress, and factors that contribute to the reduction in the friction coefficient μ of a potential basal failure plane. We study the potential for flank failure at Mount Etna considering a schematic section of the eastern flank, approximated by a wedge-like block. For such geometry, we perform a (steady state) limit equilibrium analysis: the resolution of the forces parallel to the possible basal failure plane allows us to determine the total force acting on the potentially unstable wedge. An estimate of the relative strength of these forces suggests that, in first approximation, the stability is controlled primarily by the balance between block weight, lithostatic load and magmatic forces. Any other force (sea load, hydrostatic uplift, and the uplift due to mechanical and thermal pore-fluid pressure) may be considered of second order. To study the model sensitivity, we let the inferred slope α of the basal surface failure vary between −10° and 10°, and consider three possible scenarios: no magma loading, magmastatic load, and magmastatic load with magma overpressure. We use error propagation to include in our analysis the uncertainties in the estimates of the mechanics and geometrical parameters controlling the block equilibrium. When there is no magma loading, the ratio between destabilizing and stabilizing forces is usually smaller than the coefficient of friction of the basal failure plane. In the absence of an initiating mechanism, and with the nominal values of the coefficient of friction μ=0.7±0.1 proposed, the representative wedge will remain stable or continue to move at constant speed. In presence of magmastatic forces, the influence of the lateral restraint decreases. If we consider the magmastatic load only, the block will remain stable (or continue to move at constant speed), unless the transient mechanical and thermal pressurization significantly decrease the friction coefficient, increasing the instability of the flank wedge for αN5° (seaward dipping decollement). When the magma overpressure contribution is included in the equilibrium analysis, the ratio between destabilizing and stabilizing forces is of the same order or larger than the coefficient of friction of the basal failure plane, and the block will become unstable (or accelerate), especially in the case of the reduction in friction coefficient. Finally, our work suggests that the major challenge in studying flank instability at Mount Etna is not the lack of an appropriate physical model, but the limited knowledge of the mechanical and geometrical parameters describing the block equilibrium.
    Description: This work was funded by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Dipartimento per la Protezione Civile (DPC) (DPC-INGV project V4 “Flank”).
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; dike intrusion ; flank instability ; poro-elasticity ; analytical modelling ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...