ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (57)
  • American Institute of Physics (AIP)
  • BioMed Central
  • MDPI Publishing
  • PANGAEA
  • Reed Business Information
  • 1
    Publication Date: 2024-02-07
    Description: Military field exercises are characterised by high volumes of exercise and prolonged periods of load carriage. Exercise can decrease circulating serum calcium and increase parathyroid hormone and bone resorption. These disturbances to calcium and bone metabolism can be attenuated with calcium supplementation immediately before exercise. This randomised crossover trial will investigate the effect of calcium supplementation on calcium and bone metabolism, and bone mineral balance, during load carriage exercise in women. Methods Thirty women (eumenorrheic or using the combined oral contraceptive pill, intrauterine system, or intrauterine device) will complete two experimental testing sessions either with, or without, a calcium supplement (1000 mg). Each experimental testing session will involve one 120 min session of load carriage exercise carrying 20 kg. Venous blood samples will be taken and analysed for biochemical markers of bone resorption and formation, calcium metabolism, and endocrine function. Urine will be collected pre- and post-load carriage to measure calcium isotopes for the calculation of bone calcium balance. Discussion The results from this study will help identify whether supplementing women with calcium during load carriage is protective of bone and calcium homeostasis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Background: Animals are expected to adjust their social behaviour to cope with challenges in their environment. Therefore, for fish populations in temperate regions with seasonal and daily environmental oscillations, characteristic rhythms of social relationships should be pronounced. To date, most research concerning fish social networks and biorhythms has occurred in artificial laboratory environments or over confined temporal scales of days to weeks. Little is known about the social networks of wild, freely roaming fish, including how seasonal and diurnal rhythms modulate social networks over the course of a full year. The advent of high-resolution acoustic telemetry enables us to quantify detailed social interactions in the wild over time-scales sufficient to examine seasonal rhythms at whole-ecosystems scales. Our objective was to explore the rhythms of social interactions in a social fish population at various time-scales over one full year in the wild by examining high-resolution snapshots of a dynamic social network. Methods: To that end, we tracked the behaviour of 36 adult common carp, Cyprinus carpio, in a 25 ha lake and constructed temporal social networks among individuals across various time-scales, where social interactions were defined by proximity. We compared the network structure to a temporally shuffled null model to examine the importance of social attraction, and checked for persistent characteristic groups over time. Results: The clustering within the carp social network tended to be more pronounced during daytime than nighttime throughout the year. Social attraction, particularly during daytime, was a key driver for interactions. Shoaling behavior substantially increased during daytime in the wintertime, whereas in summer carp interacted less frequently, but the interaction duration increased. Therefore, smaller, characteristic groups were more common in the summer months and during nighttime, where the social memory of carp lasted up to two weeks. Conclusions: We conclude that social relationships of carp change diurnally and seasonally. These patterns were likely driven by predator avoidance, seasonal shifts in lake temperature, visibility, forage availability and the presence of anoxic zones. The techniques we employed can be applied generally to high-resolution biotelemetry data to reveal social structures across other fish species at ecologically realistic scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-22
    Description: This dataset contains PISM simulation results of the Antarctic Ice Sheet based on code release v1.0-paleo-ensemble (https://doi.org/10.5281/zenodo.3574033). PISM is the open-source Parallel Ice Sheet Model developed mainly at UAF, USA and PIK, Germany. See documentation in https://www.pism.io. These are additional netCDF data from the same ensemble simulations already stored in doi:10.1594/PANGAEA.909728. 1) 1000-year snapshots since 125000 years before present, of ice thickness, bed topography, change in bed topography, floating/grounded mask, surface elevation, basal melt rate and vertically averaged velocity magnitude (SIA+SSA) (16GB) 2) 5000-year snapshots since 125000 years before present, SSA velocity components in x and y direction (8GB)
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Background Edema is commonly seen after surgical fixation of ankle fractures. Rest, ice, compression, and elevation (RICE) is an established combination to prevent swelling but hardly able to stimulate lymphatic resorption. Recently, an epicutaneously applied negative pressure suction apparatus (LymphaTouch®) has been introduced to stimulate lymphatic flow. While postoperative recovery, soft tissue, and osseous healing as well as functional outcome are probably linked to the amount of postoperative swelling, estimates on this relative to prevention (RICE) or prevention + stimulated resorption (RICE + ) of fluid are scarce. Methods and analysis This is a single-center, evaluator-blinded randomized pilot trial to investigate postoperative swelling in adults requiring surgical fixation of a closed unilateral ankle fracture. A total of 50 patients will be recruited and randomly assigned to RICE or RICE + prior to surgery. All patients will undergo evaluator-blinded measurements of the ankle volume the day before surgery and subsequently from the evening of the 2nd postoperative day every 24 h until discharge. RICE will be initiated right after surgery and continued until discharge from the hospital in all patients. Additional application of negative pressure therapy (RICE + ) will be initiated on the morning of the 2nd postoperative day and repeated every 24 h until the time of discharge from the hospital. Outcome measures are (i) the relative amount and the time course of the postoperative swelling, (ii) the demand for analgesic therapy (type and amount) together with the perception of pain, (iii) the rate of complications, and (iv) mobility of the ankle joint and the recovery of walking abilities during a 12-weeks follow-up period. Serum and urine samples taken prior to sugery and during postoperative recovery will allow to evaluate the ratio of naturally occurring stable calcium isotopes (δ 44/42 Ca) as a marker of skeletal calcium accrual.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Supratidal sands are vitally important for coastal defence in the German Wadden Sea. They are less affected by human activities than other areas as they are located far off the mainland shore, touristical and commercial activities are generally prohibited. Therefore, supratidal sands are of high ecological interest. Nevertheless, the faunal inventory and distribution pattern of microorganisms on these sands were studied very little. The composition of living and dead foraminiferal assemblages was therefore investigated along a transect from the supratidal sand Japsand up to Hallig Hooge. Both assemblages were dominated by calcareous foraminifera of which Ammonia batava was the most abundant species. Elphidium selseyense and Elphidium williamsoni were also common in the living assemblage, but Elphidium williamsoni was comparably rare in the dead assemblage. The high proportions of Ammonia batava and Elphidium selseyense in the living assemblage arose from the reproduction season that differed between species. While Ammonia batava and Elphidium selseyense just finished their reproductive cycles, Elphidium williamsoni was just about to start. This was also confirmed by the size distribution patterns of the different species. The dead assemblage revealed 20 species that were not found in the living assemblage of which some were reworked from older sediments (e.g., Bucella frigida) and some were transported via tidal currents from other areas in the North Sea (e.g., Jadammina macrescens). The living foraminiferal faunas depicted close linkages between the open North Sea and the mainland. Key species revealing exchange between distant populations were Haynesina germanica, Ammonia batava and different Elphidium species. All these species share an opportunistic behaviour and are able to inhabit a variety of different environments; hence, they well may cope with changing environmental conditions. The benthic foraminiferal association from Japsand revealed that transport mechanisms via tides and currents play a major ecological role and strongly influence the faunal composition at this site.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Background: Microbiome manipulation could enhance heat tolerance and help corals survive the pressures of ocean warming. We conducted coral microbiome transplantation (CMT) experiments using the reef-building corals, Pocillopora and Porites, and investigated whether this technique can benefit coral heat resistance while modifying the bacterial microbiome. Initially, heat-tolerant donors were identified in the wild. We then used fresh homogenates made from coral donor tissues to inoculate conspecific, heat-susceptible recipients and documented their bleaching responses and microbiomes by 16S rRNA gene metabarcoding. Results: Recipients of both coral species bleached at lower rates compared to the control group when exposed to short-term heat stress (34 °C). One hundred twelve (Pocillopora sp.) and sixteen (Porites sp.) donor-specific bacterial species were identified in the microbiomes of recipients indicating transmission of bacteria. The amplicon sequence variants of the majority of these transmitted bacteria belonged to known, putatively symbiotic bacterial taxa of corals and were linked to the observed beneficial effect on the coral stress response. Microbiome dynamics in our experiments support the notion that microbiome community evenness and dominance of one or few bacterial species, rather than host-species identity, were drivers for microbiome stability in a holobiont context. Conclusions: Our results suggest that coral recipients likely favor the uptake of putative bacterial symbionts, recommending to include these taxonomic groups in future coral probiotics screening efforts. Our study suggests a scenario where these donor-specific bacterial symbionts might have been more efficient in supporting the recipients to resist heat stress compared to the native symbionts present in the control group. These findings urgently call for further experimental investigation of the mechanisms of action underlying the beneficial effect of CMT and for field-based long-term studies testing the persistence of the effect. [MediaObject not available: see fulltext.].
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Background: Biomineralization by molluscs involves regulated deposition of calcium carbonate crystals within a protein framework to produce complex biocomposite structures. Effective biomineralization is a key trait for aquaculture, and animal resilience under future climate change. While many enzymes and structural proteins have been identified from the shell and in mantle tissue, understanding biomieralization is impeded by a lack of fundamental knowledge of the genes and pathways involved. In adult bivalves, shells are secreted by the mantle tissue during growth, maintenance and repair, with the repair process, in particular, amenable to experimental dissection at the transcriptomic level in individual animals. Results: Gene expression dynamics were explored in the adult blue mussel, Mytilus edulis, during experimentally induced shell repair, using the two valves of each animal as a matched treatment-control pair. Gene expression was assessed using high-resolution RNA-Seq against a de novo assembled database of functionally annotated transcripts. A large number of differentially expressed transcripts were identified in the repair process. Analysis focused on genes encoding proteins and domains identified in shell biology, using a new database of proteins and domains previously implicated in biomineralization in mussels and other molluscs. The genes implicated in repair included many otherwise novel transcripts that encoded proteins with domains found in other shell matrix proteins, as well as genes previously associated with primary shell formation in larvae. Genes with roles in intracellular signalling and maintenance of membrane resting potential were among the loci implicated in the repair process. While haemocytes have been proposed to be actively involved in repair, no evidence was found for this in the M. edulis data. Conclusions: The shell repair experimental model and a newly developed shell protein domain database efficiently identified transcripts involved in M. edulis shell production. In particular, the matched pair analysis allowed factoring out of much of the inherent high level of variability between individual mussels. This snapshot of the damage repair process identified a large number of genes putatively involved in biomineralization from initial signalling, through calcium mobilization to shell construction, providing many novel transcripts for future in-depth functional analyses
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Background: Predators play a critical role in regulating larval mosquito prey populations in aquatic habitats. Understanding predator-prey responses to climate change-induced environmental perturbations may foster optimal efficacy in vector reduction. However, organisms may differentially respond to heterogeneous thermal environments, potentially destabilizing predator-prey trophic systems. Methods: Here, we explored the critical thermal limits of activity (CTLs; critical thermal-maxima [CTmax] and minima [CTmin]) of key predator-prey species. We concurrently examined CTL asynchrony of two notonectid predators (Anisops sardea and Enithares chinai) and one copepod predator (Lovenula falcifera) as well as larvae of three vector mosquito species, Aedes aegypti, Anopheles quadriannulatus and Culex pipiens, across instar stages (early, 1st; intermediate, 2nd/3rd; late, 4th). Results: Overall, predators and prey differed significantly in CTmax and CTmin. Predators generally had lower CTLs than mosquito prey, dependent on prey instar stage and species, with first instars having the lowest CTmax (lowest warm tolerance), but also the lowest CTmin (highest cold tolerance). For predators, L. falcifera exhibited the narrowest CTLs overall, with E. chinai having the widest and A. sardea intermediate CTLs, respectively. Among prey species, the global invader Ae. aegypti consistently exhibited the highest CTmax, whilst differences among CTmin were inconsistent among prey species according to instar stage. Conclusion: These results point to significant predator-prey mismatches under environmental change, potentially adversely affecting natural mosquito biocontrol given projected shifts in temperature fluctuations in the study region. The overall narrower thermal breadth of native predators relative to larval mosquito prey may reduce natural biotic resistance to pests and harmful mosquito species, with implications for population success and potentially vector capacity under global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-09
    Description: Background: Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype. Results: We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. Conclusion We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-01-02
    Description: This review article aims to provide an overview and insight into the most relevant aspects of wind energy development and current state-of-the-art. The industry is in a very mature stage, so it seems to be the right time to take stock of the relevant areas of wind energy use for power generation. For this review, the authors considered the essential aspects of the development of wind energy technology: research, modeling, and prediction of wind speed as an energy source, the technology development of the plants divided into the mechanical and electrical systems and the plant control, and finally the optimal plant operation including the maintenance strategies. The focus is on the development in Europe, with a partial focus on Germany. The authors are employees of the Fraunhofer Institutes, Institute for Energy Economics and Energy Systems Technology and Institute for Wind Energy Systems, who have contributed to the development of this technology for decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-01-31
    Description: Background Obligate sulfur oxidizing chemolithoauthotrophic strains of Hydrogenovibrio crunogenus have been isolated from multiple hydrothermal vent associated habitats. However, a hydrogenase gene cluster (encoding the hydrogen converting enzyme and its maturation/assembly machinery) detected on the first sequenced H. crunogenus strain (XCL-2) suggested that hydrogen conversion may also play a role in this organism. Yet, numerous experiments have underlined XCL-2’s inability to consume hydrogen under the tested conditions. A recent study showed that the closely related strain SP-41 contains a homolog of the XCL-2 hydrogenase (a group 1b [NiFe]-hydrogenase), but that it can indeed use hydrogen. Hence, the question remained unresolved, why SP-41 is capable of using hydrogen, while XCL-2 is not. Results Here, we present the genome sequence of the SP-41 strain and compare it to that of the XCL-2 strain. We show that the chromosome of SP-41 codes for a further hydrogenase gene cluster, including two additional hydrogenases: the first appears to be a group 1d periplasmic membrane-anchored hydrogenase, and the second a group 2b sensory hydrogenase. The region where these genes are located was likely acquired horizontally and exhibits similarity to other Hydrogenovibrio species (H. thermophilus MA2-6 and H. marinus MH-110 T) and other hydrogen oxidizing Proteobacteria (Cupriavidus necator H16 and Ghiorsea bivora TAG-1 T). The genomes of XCL-2 and SP-41 show a strong conservation in gene order. However, several short genomic regions are not contained in the genome of the other strain. These exclusive regions are often associated with signs of DNA mobility, such as genes coding for transposases. They code for transport systems and/or extend the metabolic potential of the strains. Conclusions Our results suggest that horizontal gene transfer plays an important role in shaping the genomes of these strains, as a likely mechanism for habitat adaptation, including, but not limited to the transfer of the hydrogen conversion ability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    BioMed Central
    In:  BMC Evolutionary Biology, 19 . Art.Nr. 80.
    Publication Date: 2022-01-31
    Description: Background Host genotype - parasite genotype co-evolutionary dynamics are influenced by local biotic and abiotic environmental conditions. This results in spatially heterogeneous selection among host populations. How such heterogeneous selection influences host resistance, parasite infectivity and virulence remains largely unknown. We hypothesized that different co-evolutionary trajectories of a vertebrate host-parasite association result in specific virulence patterns when assessed on a large geographic scale. We used two reference host populations of three-spined sticklebacks and nine strains of their specific cestode parasite Schistocephalus solidus from across the Northern Hemisphere for controlled infection experiments. Host and parasite effects on infection phenotypes including host immune gene expression were determined. Results S. solidus strains grew generally larger in hosts coming from a population with high parasite diversity and low S. solidus prevalence (DE hosts). Hosts from a population with low parasite diversity and high S. solidus prevalence (NO hosts) were better able to control the parasite’s growth, regardless of the origin of the parasite. Host condition and immunological parameters converged upon infection and parasite growth showed the same geographic pattern in both host types. Conclusion Our results suggest that NO sticklebacks evolved resistance against a variety of S. solidus strains, whereas DE sticklebacks are less resistant against S. solidus. Our data provide evidence that differences in parasite prevalence can cause immunological heterogeneity and that parasite size, a proxy for virulence and resistance, is, on a geographic scale, determined by main effects of the host and the parasite and less by an interaction of both genotypes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-03-19
    Description: The recognition that all macroorganisms live in symbiotic association with microbial communities has opened up a new field in biology. Animals, plants, and algae are now considered holobionts, complex ecosystems consisting of the host, the microbiota, and the interactions among them. Accordingly, ecological concepts can be applied to understand the host-derived and microbial processes that govern the dynamics of the interactive networks within the holobiont. In marine systems, holobionts are further integrated into larger and more complex communities and ecosystems, a concept referred to as “nested ecosystems.” In this review, we discuss the concept of holobionts as dynamic ecosystems that interact at multiple scales and respond to environmental change. We focus on the symbiosis of sponges with their microbial communities—a symbiosis that has resulted in one of the most diverse and complex holobionts in the marine environment. In recent years, the field of sponge microbiology has remarkably advanced in terms of curated databases, standardized protocols, and information on the functions of the microbiota. Like a Russian doll, these microbial processes are translated into sponge holobiont functions that impact the surrounding ecosystem. For example, the sponge-associated microbial metabolisms, fueled by the high filtering capacity of the sponge host, substantially affect the biogeochemical cycling of key nutrients like carbon, nitrogen, and phosphorous. Since sponge holobionts are increasingly threatened by anthropogenic stressors that jeopardize the stability of the holobiont ecosystem, we discuss the link between environmental perturbations, dysbiosis, and sponge diseases. Experimental studies suggest that the microbial community composition is tightly linked to holobiont health, but whether dysbiosis is a cause or a consequence of holobiont collapse remains unresolved. Moreover, the potential role of the microbiome in mediating the capacity for holobionts to acclimate and adapt to environmental change is unknown. Future studies should aim to identify the mechanisms underlying holobiont dynamics at multiple scales, from the microbiome to the ecosystem, and develop management strategies to preserve the key functions provided by the sponge holobiont in our present and future oceans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-02-08
    Description: Background: Landscape structure can affect pathogen prevalence and persistence with consequences for human and animal health. Few studies have examined how reservoir host species traits may interact with landscape structure to alter pathogen communities and dynamics. Using a landscape of islands and mainland sites we investigated how natural landscape fragmentation affects the prevalence and persistence of the zoonotic tick-borne pathogen complex Borrelia burgdorferi (sensu lato), which causes Lyme borreliosis. We hypothesized that the prevalence of B. burgdorferi (s.l.) would be lower on islands compared to the mainland and B. afzelii, a small mammal specialist genospecies, would be more affected by isolation than bird-associated B. garinii and B. valaisiana and the generalist B. burgdorferi (sensu stricto). Methods: Questing (host-seeking) nymphal I. ricinus ticks (n = 6567) were collected from 12 island and 6 mainland sites in 2011, 2013 and 2015 and tested for B. burgdorferi (s.l.). Deer abundance was estimated using dung transects. Results: The prevalence of B. burgdorferi (s.l.) was significantly higher on the mainland (2.5%, 47/1891) compared to island sites (0.9%, 44/4673) (P 〈 0.01). While all four genospecies of B. burgdorferi (s.l.) were detected on the mainland, bird-associated species B. garinii and B. valaisiana and the generalist genospecies B. burgdorferi (s.s.) predominated on islands. Conclusion: We found that landscape structure influenced the prevalence of a zoonotic pathogen, with a lower prevalence detected among island sites compared to the mainland. This was mainly due to the significantly lower prevalence of small mammal-associated B. afzelii. Deer abundance was not related to pathogen prevalence, suggesting that the structure and dynamics of the reservoir host community underpins the observed prevalence patterns, with the higher mobility of bird hosts compared to small mammal hosts leading to a relative predominance of the bird-associated genospecies B. garinii and generalist genospecies B. burgdorferi (s.s.) on islands. In contrast, the lower prevalence of B. afzelii on islands may be due to small mammal populations there exhibiting lower densities, less immigration and stronger population fluctuations. This study suggests that landscape fragmentation can influence the prevalence of a zoonotic pathogen, dependent on the biology of the reservoir host.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    BioMed Central
    In:  BMC Evolutionary Biology, 18 (Article 187).
    Publication Date: 2021-02-08
    Description: Background: Adaptive evolution is one of the crucial mechanisms for organisms to survive and thrive in new environments. Recent studies suggest that adaptive evolution could rapidly occur in species to respond to novel environments or environmental challenges during range expansion. However, for environmental adaptation, many studies successfully detected phenotypic features associated with local environments, but did not provide ample genetic evidence on microevolutionary dynamics. It is therefore crucial to thoroughly investigate the genetic basis of rapid microevolution in response to environmental changes, in particular on what genes and associated variation are responsible for environmental challenges. Here, we genotyped genome-wide gene-associated microsatellites to detect genetic signatures of rapid microevolution of a marine tunicate invader, Ciona robusta, during recent range expansion to the harsh environment in the Red Sea. Results: The Red Sea population was significantly differentiated from the other global populations. The genome-wide scan, as well as multiple analytical methods, successfully identified a set of adaptive genes. Interestingly, the allele frequency largely varied at several adaptive loci in the Red Sea population, and we found significant correlations between allele frequency and local environmental factors at these adaptive loci. Furthermore, a set of genes were annotated to get involved in local temperature and salinity adaptation, and the identified adaptive genes may largely contribute to the invasion success to harsh environments. Conclusions: All the evidence obtained in this study clearly showed that environment-driven selection had left detectable signatures in the genome of Ciona robusta within a few generations. Such a rapid microevolutionary process is largely responsible for the harsh environmental adaptation and therefore contributes to invasion success in different aquatic ecosystems with largely varied environmental factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-03-19
    Description: Marine invasions are of increasing concern for biodiversity conservation worldwide. Gelatinous macrozooplankton contain members, which have become globally invasive, for example the ctenophore Mnemiopsis leidyi or the hydromedusae Blackfordia virginica. B. virginica is characterised by a large salinity tolerance, with a brackish-water habitat preference, and by a metagenic life history strategy with an alternation between sexually reproducing planktonic medusae and asexually reproducing benthic polyps to complete the life cycle. In this study we analysed 8 years of ichthyoplankton survey data (2010–2017) from the Kiel Canal and 14 ichthyoplankton summer surveys in the central Baltic Sea (2008–2017). We report the first presence of B. virginica in northern Europe, namely from the southwestern Baltic Sea and the Kiel Canal. In the Kiel Canal, B. virginica was first sporadically sighted in 2014 and 2015 and has developed persistent populations since summer 2016. Changes in size-frequency distributions during summer 2016 indicate active recruitment in the Kiel Canal at salinities between 7 and 13 and temperatures 〉 14 °C. Close vicinity to and direct connection with the southwestern Baltic Sea, where B. virginica was observed during 2017, indicate that the Baltic Sea and other brackish-water habitats of Northern Europe are at risk for colonisation of this non-indigenous species. Our results highlight that monitoring activities should consider gelatinous macrozooplankton for standard assessments to allow for the detection of non-indigenous species at an early stage of their colonisation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-03-29
    Keywords: 551
    Language: English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-02-06
    Description: Background: For single-cell or metagenomic sequencing projects, it is necessary to sequence with a very high mean coverage in order to make sure that all parts of the sample DNA get covered by the reads produced. This leads to huge datasets with lots of redundant data. A filtering of this data prior to assembly is advisable. Brown et al. (2012) presented the algorithm Diginorm for this purpose, which filters reads based on the abundance of their k-mers. Methods: We present Bignorm, a faster and quality-conscious read filtering algorithm. An important new algorithmic feature is the use of phred quality scores together with a detailed analysis of the k-mer counts to decide which reads to keep. Results: We qualify and recommend parameters for our new read filtering algorithm. Guided by these parameters, we remove in terms of median 97.15% of the reads while keeping the mean phred score of the filtered dataset high. Using the SDAdes assembler, we produce assemblies of high quality from these filtered datasets in a fraction of the time needed for an assembly from the datasets filtered with Diginorm. Conclusions: We conclude that read filtering is a practical and efficient method for reducing read data and for speeding up the assembly process. This applies not only for single cell assembly, as shown in this paper, but also to other projects with high mean coverage datasets like metagenomic sequencing projects. Our Bignorm algorithm allows assemblies of competitive quality in comparison to Diginorm, while being much faster. Bignorm is available for download at https://git.informatik.uni-kiel.de/axw/Bignorm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    BioMed Central
    In:  BMC Evolutionary Biology, 17 (Art. Nr. 44).
    Publication Date: 2020-02-06
    Description: Background: Phenotypic changes in response to environmental influences can persist from one generation into the next. In many systems parental parasite experience influences offspring immune responses, known as transgenerational immune priming (TGIP). TGIP in vertebrates is mainly maternal and short-term, supporting the adaptive immune system of the offspring during its maturation. However, if fathers and offspring have a close physical connection, evolution of additional paternal immune priming can be adaptive. Biparental TGIP may result in maximized immunological protection. Here, we investigate multigenerational biparental TGIP in the sex-role reversed pipefish Syngnathus typhle by exposing grandparents to an immune challenge with heat-killed bacteria and assessing gene expression (44 target genes) of the F2-generation. Results: Grandparental immune challenge induced gene expression of immune genes in one-week-old grandoffspring. Similarly, genes mediating epigenetic regulation including DNA-methylation and histone modifications were involved in grandparental immune priming. While grand-maternal impact was strong on genes of the complement component system, grand-paternal exposure changed expression patterns of genes mediating innate immune defense. Conclusion: In a system with male pregnancy, grandparents influenced the immune system of their grandoffspring in a sex-specific manner, demonstrating multigenerational biparental TGIP. The involvement of epigenetic effects suggests that TGIP via the paternal line may not be limited to the pipefish system that displays male pregnancy. While the benefits and costs of grandparental TGIP depend on the temporal heterogeneity of environmental conditions, multigenerational TGIP may affect host-parasite coevolution by dampening the amplitude of Red Queen Dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-02-06
    Description: BACKGROUND: The Major Histocompatibility Complex (MHC) is a key component of the adaptive immune system of all vertebrates and consists of the most polymorphic genes known to date. Due to this complexity, however, MHC remains to be characterized in many species including any Neotropical cichlid fish. Neotropical crater lake cichlids are ideal models to study evolutionary processes as they display one of the most convincing examples of sympatric and repeated parallel radiation events within and among isolated crater lakes. RESULTS: Here, we characterized the genes of MHC class IIB chain of the Midas cichlid species complex (Amphilophus cf. citrinellus) including fish from five lakes in Nicaragua. We designed 19 new specific primers anchored in a stepwise fashion in order to detect all alleles present. We obtained 866 genomic DNA (gDNA) sequences from thirteen individuals and 756 additional sequences from complementary DNA (cDNA) of seven of those individuals. We identified 69 distinct alleles with up to 25 alleles per individual. We also found considerable intron length variation and mismatches of alleles detected in cDNA and gDNA suggesting that some loci have undergone pseudogenization. Lastly, we created a model of protein structure homology for each allele and identified their key structural components. CONCLUSIONS: Overall, the Midas cichlid has one of the most diverse repertoires of MHC class IIB genes known, which could serve as a powerful tool to elucidate the process of divergent radiations, colonization and speciation in sympatry
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    BioMed Central
    In:  Fungal Biology and Biotechnology, 4 (1). Art.Nr.5.
    Publication Date: 2020-02-06
    Description: The marine fungal natural products (MaFNaP) Consortium, a scientific network founded in 2014, aims to fuel systematic research on marine fungi and their secondary metabolites. The 2nd international conference of marine fungal natural products (MaFNaP_2017) that was held in Kiel (Germany) and hosted by GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech) in June 2017 brought together scientists working all relevant aspects of marine fungi. This conference report highlights the topics discussed in the conference and suggestions for future work on marine fungal compounds. One of the major aims is to attract scientists working on terrestrial fungi in tackling the common bottlenecks and to move marine fungal biodiscovery and biotechnology research forward.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-02-06
    Description: Background: Evolutionary shifts in bacterial virulence are often associated with a third biological player, for instance temperate phages, that can act as hyperparasites. By integrating as prophages into the bacterial genome they can contribute accessory genes, which can enhance the fitness of their prokaryotic carrier (lysogenic conversion). Hyperparasitic influence in tripartite biotic interactions has so far been largely neglected in empirical host-parasite studies due to their inherent complexity. Here we experimentally address whether bacterial resistance to phages and bacterial harm to eukaryotic hosts is linked using a natural tri-partite system with bacteria of the genus Vibrio, temperate vibriophages and the pipefish Syngnathus typhle. We induced prophages from all bacterial isolates and constructed a three-fold replicated, fully reciprocal 75 × 75 phage-bacteria infection matrix. Results: According to their resistance to phages, bacteria could be grouped into three distinct categories: highly susceptible (HS-bacteria), intermediate susceptible (IS-bacteria), and resistant (R-bacteria). We experimentally challenged pipefish with three selected bacterial isolates from each of the three categories and determined the amount of viable Vibrio counts from infected pipefish and the expression of pipefish immune genes. While the amount of viable Vibrio counts did not differ between bacterial groups, we observed a significant difference in relative gene expression between pipefish infected with phage susceptible and phage resistant bacteria. Conclusion: These findings suggest that bacteria with a phage-susceptible phenotype are more harmful against a eukaryotic host, and support the importance of hyperparasitism and the need for an integrative view across more than two levels when studying host-parasite evolution.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    BioMed Central
    In:  BMC Evolutionary Biology, 17 (1).
    Publication Date: 2020-02-06
    Description: Background: The analysis of hybrid zones is crucial for gaining a mechanistic understanding of the process of speciation and the maintenance of species boundaries. Hybrid zones have been studied intensively in terrestrial and shallow-water ecosystems, but very little is known about their occurrence in deep-sea environments. Here we used diagnostic, single nucleotide polymorphisms in combination with one mitochondrial gene to re-examine prior hypotheses about a contact zone involving deep-sea hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis, living along the Mid-Atlantic Ridge. Results: Admixture was found to be asymmetric with respect to the parental species, while introgression was more widespread geographically than previously recognized. Admixed individuals with a majority of alleles from one of the parental species were most frequent in habitats corresponding to that species. Mussels found at a geographically intermediate vent field constituted a genetically mixed population that showed no evidence for hybrid incompatibilities, a finding that does not support a previously inferred tension zone model. Conclusions: Our analyses indicate that B. azoricus and B. puteoserpentis hybridize introgressively across a large geographic area without evidence for general hybrid incompatibilities. While these findings shed new light onto the genetic structure of this hybrid zone, many aspects about its nature still remain obscure. Our study sets a baseline for further research that should primarily focus on the acquisition of additional mussel samples and environmental data, a detailed exploration of vent areas and hidden populations as well as genomic analyses in both mussel hosts and their bacterial symbionts.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-02-06
    Description: Background Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. Methods We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-04-13
    Description: Background: Parental care, while increasing parental fitness through offspring survival, also bears cost to the care-giving parent. Consequentially, trade offs between parental care and other vitally important traits, such as the immune system seem evident. In co-occurring phases of parental care and immunological challenges negative consequences through a resource allocation trade off on both the parental and the offspring conditions can be predicted. While the immune system reflects parental stress conditions, parental immunological investments also boost offspring survival via the transfer of immunological substances (trans-generational immune priming). We investigated this relationship in the mouthbrooding East African cichlid Astotatilapia burtoni. Prior to mating, females were exposed to an immunological activation, while others remained immunologically naïve. Correspondingly, the immunological status of females was either examined directly after reproduction or after mouthbrooding had ceased. Offspring from both groups were exposed to immunological challenges to assess the extent of trans-generational immune priming. As proxy for immune status, cellular immunological activity and gene expression were determined. Results: Both reproducing and mouthbrooding females allocate their resources towards reproduction. While upon reproduction the innate immune system was impeded, mouthbrooding females showed an attenuation of inflammatory components. Juveniles from immune challenged mouthbrooding females showed downregulation of immune and life history candidate genes, implying a limitation of trans-generational plasticity when parents experience stress during the costly reproductive phase. Conclusion: Our results provide evidence that both parental investment via mouthbrooding and the rise of the immunological activity upon an immune challenge are costly traits. If applied simultaneously, not only mothers seem to be impacted in their performance, but also offspring are impeded in their ability to react upon a potentially virulent pathogen exposure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-02-01
    Description: Background: A high caloric diet, in conjunction with low levels of physical activity, promotes obesity. Many studies are available regarding the relation between dietary saturated fats and the etiology of obesity, but most focus on liver, muscle and white adipose tissue. Furthermore, the majority of transcriptomic studies seek to identify linear effects of an external stimulus on gene expression, although such an assumption does not necessarily hold. Our work assesses the dose-dependent effects of dietary fat intake on differential gene expression in the proximal, middle and distal sections of the small intestine in C57BL/6J mice. Gene expression is analyzed in terms of either linear or nonlinear responses to fat intake. Results: The highest number of differentially expressed genes was observed in the middle section. In all intestine sections, most of the identified processes exhibited a linear response to increasing fat intake. The relative importance of logarithmic and exponential responses was higher in the proximal and distal sections, respectively. Functional enrichment analysis highlighted a constantly linear regulation of acute-phase response along the whole small intestine, with up-regulation of Serpina1b. The study of gene expression showed that exponential down-regulation of cholesterol transport in the middle section is coupled with logarithmic up-regulation of cholesterol homeostasis. A shift from linear to exponential response was observed in genes involved in the negative regulation of caspase activity, from middle to distal section (e.g., Birc5, up-regulated). Conclusions: The transcriptomic signature associated with inflammatory processes preserved a linear response in the whole small intestine (e.g., up-regulation of Serpina1b). Processes related to cholesterol homeostasis were particularly active in the middle small intestine and only the highest fat intake down-regulated cholesterol transport and efflux (with a key role played by the down-regulation of ATP binding cassette transporters). Characterization of nonlinear patterns of gene expression triggered by different levels of dietary fat is an absolute novelty in intestinal studies. This approach helps identifying which processes are overloaded (i.e., positive, logarithmic regulation) or arrested (i.e., negative, exponential regulation) in response to excessive fat intake, and can shed light on the relationships linking lipid intake to obesity and its associated molecular disturbances.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-02-01
    Description: Background: Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. Results: Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR) like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. Conclusions: Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-02-01
    Description: The Gram-positive actinomycete Williamsia sp. ARP1 was originally isolated from the Arabidopsis thaliana phyllosphere. Here we describe the general physiological features of this microorganism together with the draft genome sequence and annotation. The 4,745,080 bp long genome contains 4434 protein-coding genes and 70 RNA genes. To our knowledge, this is only the second reported genome from the genus Williamsia and the first sequenced strain from the phyllosphere. The presented genomic information is interpreted in the context of an adaptation to the phyllosphere habitat.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-03-05
    Description: Background: Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. Results: We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 ) GC splice donors. Micromonas has more genus-specific protein families (19 ) than other genome sequenced prasinophytes (11 ). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Conclusions: Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution. © 2016 van Baren et al.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-03-05
    Description: Background: Genetic recombination is a driving force in genome evolution. Among viruses it has a dual role. For genomes with higher fitness, it maintains genome integrity in the face of high mutation rates. Conversely, for genomes with lower fitness, it provides immediate access to sequence space that cannot be reached by mutation alone. Understanding how recombination impacts the cohesion and dissolution of individual whole genomes within viral sequence space is poorly understood across double-stranded DNA bacteriophages (a.k.a phages) due to the challenges of obtaining appropriately scaled genomic datasets. Results: Here we explore the role of recombination in both maintaining and differentiating whole genomes of 142 wild double-stranded DNA marine cyanophages. Phylogenomic analysis across the 51 core genes revealed ten lineages, six of which were well represented. These phylogenomic lineages represent discrete genotypic populations based on comparisons of intra- and inter- lineage shared gene content, genome-wide average nucleotide identity, as well as detected gaps in the distribution of pairwise differences between genomes. McDonald-Kreitman selection tests identified putative niche-differentiating genes under positive selection that differed across the six well-represented genotypic populations and that may have driven initial divergence. Concurrent with patterns of recombination of discrete populations, recombination analyses of both genic and intergenic regions largely revealed decreased genetic exchange across individual genomes between relative to within populations. Conclusions: These findings suggest that discrete double-stranded DNA marine cyanophage populations occur in nature and are maintained by patterns of recombination akin to those observed in bacteria, archaea and in sexual eukaryotes. © 2016 The Author(s).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-06-15
    Description: Background: Hypercapnia and elevated temperatures resulting from climate change may have adverse consequences for many marine organisms. While diverse physiological and ecological effects have been identified, changes in those molecular mechanisms, which shape the physiological phenotype of a species and limit its capacity to compensate, remain poorly understood. Here, we use global gene expression profiling through RNA-Sequencing to study the transcriptional responses to ocean acidification and warming in gills of the boreal spider crab Hyas araneus exposed medium-term (10 weeks) to intermediate (1,120 μatm) and high (1,960 μatm) PCO2 at different temperatures (5°C and 10°C). Results: The analyses reveal shifts in steady state gene expression from control to intermediate and from intermediate to high CO2 exposures. At 5°C acid–base, energy metabolism and stress response related genes were upregulated at intermediate PCO2, whereas high PCO2 induced a relative reduction in expression to levels closer to controls. A similar pattern was found at elevated temperature (10°C). There was a strong coordination between acid–base, metabolic and stress-related processes. Hemolymph parameters at intermediate PCO2 indicate enhanced capacity in acid–base compensation potentially supported by upregulation of a V-ATPase. The likely enhanced energy demand might be met by the upregulation of the electron transport system (ETS), but may lead to increased oxidative stress reflected in upregulated antioxidant defense transcripts. These mechanisms were attenuated by high PCO2, possibly as a result of limited acid–base compensation and metabolic down-regulation. Conclusion: Our findings indicate a PCO2 dependent threshold beyond which compensation by acclimation fails progressively. They also indicate a limited ability of this stenoecious crustacean to compensate for the effects of ocean acidification with and without concomitant warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-07-31
    Description: Introduction: Exposure to elevated seawater PCO2 limits the thermal tolerance of crustaceans but the underlying mechanisms have not been comprehensively explored. Larval stages of crustaceans are even more sensitive to environmental hypercapnia and possess narrower thermal windows than adults. Results: In a mechanistic approach, we analysed the impact of high seawater CO2 on parameters at different levels of biological organization, from the molecular to the whole animal level. At the whole animal level we measured oxygen consumption, heart rate and activity during acute warming in zoea and megalopa larvae of the spider crab Hyas araneus exposed to different levels of seawater PCO2. Furthermore, the expression of genes responsible for acid–base regulation and mitochondrial energy metabolism, and cellular responses to thermal stress (e.g. the heat shock response) was analysed before and after larvae were heat shocked by rapidly raising the seawater temperature from 10°C rearing temperature to 20°C. Zoea larvae showed a high heat tolerance, which decreased at elevated seawater PCO2, while the already low heat tolerance of megalopa larvae was not limited further by hypercapnic exposure. There was a combined effect of elevated seawater CO2 and heat shock in zoea larvae causing elevated transcript levels of heat shock proteins. In all three larval stages, hypercapnic exposure elicited an up-regulation of genes involved in oxidative phosphorylation, which was, however, not accompanied by increased energetic demands. Conclusion: The combined effect of seawater CO2 and heat shock on the gene expression of heat shock proteins reflects the downward shift in thermal limits seen on the whole animal level and indicates an associated capacity to elicit passive thermal tolerance. The up-regulation of genes involved in oxidative phosphorylation might compensate for enzyme activities being lowered through bicarbonate inhibition and maintain larval standard metabolic rates at high seawater CO2 levels. The present study underlines the necessity to align transcriptomic data with physiological responses when addressing mechanisms affected by an interaction of elevated seawater PCO2 and temperature extremes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-09-23
    Description: Background: Marine organisms produce many novel compounds with useful biological activity, but are currently underexploited. Considerable research has been invested in the study of compounds from marine bacteria, and several groups have now recognised that marine fungi also produce an interesting range of compounds. During product discovery, these compounds are often produced only in non-agitated culture conditions, which are unfortunately not well suited for scaling up. A marine isolate of Scopulariopsis brevicaulis, strain LF580, produces the cyclodepsipeptide scopularide A, which has previously only been produced in non-agitated cultivation. Results: Scopulariopsis brevicaulis LF580 produced scopularide A when grown in batch and fed-batch submerged cultures. Scopularide A was extracted primarily from the biomass, with approximately 7% being extractable from the culture supernatant. By increasing the biomass density of the cultivations, we were able to increase the volumetric production of the cultures, but it was important to avoid nitrogen limitation. Specific production also increased with increasing biomass density, leading to improvements in volumetric production up to 29-fold, compared with previous, non-agitated cultivations. Cell densities up to 36 g L-1 were achieved in 1 to 10 L bioreactors. Production of scopularide A was optimised in complex medium, but was also possible in a completely defined medium. Conclusions: Scopularide A production has been transferred from a non-agitated to a stirred tank bioreactor environment with an approximately 6-fold increase in specific and 29-fold increase in volumetric production. Production of scopularide A in stirred tank bioreactors demonstrates that marine fungal compounds can be suitable for scalable production, even with the native production organism.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In:  Journal of Renewable and Sustainable Energy, 6 (1). Art.-Nr.: 013116.
    Publication Date: 2021-06-23
    Description: Eutrophication combined with climate change has caused ephemeral filamentous macroalgae to increase and drifts of seaweed cover large areas of some Baltic Sea sites during summer. In ongoing projects, these mass occurrences of drifting filamentous macroalgae are being harvested to mitigate eutrophication, with preliminary results indicating considerable nutrient reduction potential. In the present study, an energy assessment was made of biogas production from the retrieved biomass for a Baltic Sea pilot case. Use of different indicators revealed a positive energy balance. The energy requirements corresponded to about 30%–40% of the energy content in the end products. The net energy gain was 530–800 MJ primary energy per ton wet weight of algae for small-scale and large-scale scenarios, where 6 000 and 13 000 tonnes dwt were harvested, respectively. However, the exergy efficiency differed from the energy efficiency, emphasising the importance of taking energy quality into consideration when evaluating energy systems. An uncertainty analysis indicated parametric uncertainty of about 25%–40%, which we consider to be acceptable given the generally high sensitivity of the indicators to changes in input data, allocation method, and system design. Overall, our evaluation indicated that biogas production may be a viable handling strategy for retrieved biomass, while harvesting other types of macroalgae than red filamentous species considered here may render a better energy balance due to higher methane yields.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-01-21
    Description: Background: In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. Methods: We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. Results: MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Conclusions: Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-01-21
    Description: Background: The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. Results: We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. Conclusions: These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-03-15
    Description: Background One of the most influential forms of biological invasions is that of invasive ecosystem engineers, species that affect other biota via alterations to the abiotic environment. Such species can have wide-reaching consequences because they alter ecosystems and essentially “change the rules of existence” for a broad suite of resident biota. They thus affect resources or stressors that affect other organisms.The objective of this systematic review will be to quantify the positive and negative impacts of invasive ecosystem engineers on ecosystem structure and functioning, and to identify factors that cause their effects to vary. Methods We will search a number of online databases to gather empirical evidence from the literature on the impacts of invasive ecosystem engineers on: (1) species richness and other univariate and multivariate measures of biodiversity; (2) productivity and abundance of algae, and animals; and (3) biogeochemical cycling and other flows of energy and materials, including trophic interactions. Data from relevant studies will be extracted and used in a random effects meta-analysis in order to estimate the average effect size of invasive ecosystem engineers on each response of interest.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-09
    Description: Background: One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. Results: By measuring recombination directly in the individuals under selection, we found that recombination in the host population was increased after 11 generations of coevolution. Detailed insights into genotypic and phenotypic changes occurring during the coevolution experiment furthermore helped us to reconstruct the coevolutionary dynamics that were associated with this increase in recombination frequency. As coevolved lines maintained higher genetic diversity than control lines, and because there was no evidence for heterozygote advantage or for a plastic response of recombination to infection, the observed increase in recombination most likely represented an adaptive host response under Red Queen dynamics. Conclusions: This study provides direct, experimental evidence for an increase in recombination frequency under host-parasite coevolution in an obligatory outcrossing species. Combined with earlier results, the Red Queen process is the most likely explanation for this observation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-09
    Description: Background: Host-parasite coevolution can lead to local adaptation of either parasite or host if there is specificity (GxG interactions) and asymmetric evolutionary potential between host and parasite. This has been demonstrated both experimentally and in field studies, but a substantial proportion of studies fail to detect such clear-cut patterns. One explanation for this is that adaptation can be masked by counter-adaptation by the antagonist. Additionally, genetic architecture underlying the interaction is often highly complex thus preventing specific adaptive responses. Here, we have employed a reciprocal cross-infection experiment to unravel the adaptive responses of two components of fitness affecting both parties with different complexities of the underlying genetic architecture (i.e. mortality and spore load). Furthermore, our experimental coevolution of hosts (Tribolium castaneum) and parasites (Nosema whitei) included paired replicates of naive hosts from identical genetic backgrounds to allow separation between host-and parasite-specific responses. Results: In hosts, coevolution led to higher resistance and altered resistance profiles compared to paired control lines. Host genotype x parasite genotype interactions (G(H) x G(P)) were observed for spore load (the trait of lower genetic complexity), but not for mortality. Overall parasite performance correlated with resistance of its matching host coevolution background reflecting a directional and unspecific response to strength of selection during coevolution. Despite high selective pressures exerted by the obligatory killing parasite, and host-and parasite-specific mortality profiles, no general pattern of local adaptation was observed, but one case of parasite maladaptation was consistently observed on both coevolved and control host populations. In addition, the use of replicate control host populations in the assay revealed one case of host maladaptation and one case of parasite adaptation that was masked by host counter-adaptation, suggesting the presence of complex and probably dynamically changing fitness landscapes. Conclusions: Our results demonstrate that the use of replicate naive populations can be a useful tool to differentiate between host and parasite adaptation in complex and dynamic fitness landscapes. The absence of clear local adaptation patterns during coevolution with a sexual host showing a complex genetic architecture for resistance suggests that directional selection for generality may be more important attributes of host-parasite coevolution than commonly assumed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-09-23
    Description: ABSTRACT: BACKGROUND: Biogeochemical elemental cycling is driven by primary production of biomass via phototrophic phytoplankton growth, with 40% of marine productivity being assigned to diatoms. Phytoplankton growth is widely limited by the availability of iron, an essential component of the photosynthetic apparatus. The oceanic diatom Thalassiosira oceanica shows a remarkable tolerance to low-iron conditions and was chosen as a model for deciphering the cellular response upon shortage of this essential micronutrient. RESULTS: The combined efforts in genomics, transcriptomics and proteomics reveal an unexpected metabolic flexibility in response to iron availability for T. oceanica CCMP1005. The complex response comprises cellular retrenchment as well as remodeling of bioenergetic pathways, where the abundance of iron-rich photosynthetic proteins is lowered, whereas iron-rich mitochondrial proteins are preserved. As a consequence of iron deprivation, the photosynthetic machinery undergoes a remodeling to adjust the light energy utilization with the overall decrease in photosynthetic electron transfer complexes. CONCLUSIONS: Beneficial adaptations to low-iron environments include strategies to lower the cellular iron requirements and to enhance iron uptake. A novel contribution enhancing iron economy of phototrophic growth is observed with the iron-regulated substitution of three metal-containing fructose-bisphosphate aldolases involved in metabolic conversion of carbohydrates for enzymes that do not contain metals. Further, our data identify candidate components of a high-affinity iron-uptake system, with several of the involved genes and domains originating from duplication events. A high genomic plasticity, as seen from the fraction of genes acquired through horizontal gene transfer, provides the platform for these complex adaptations to a low-iron world.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-01-21
    Description: Background: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results: In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions: These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-01-21
    Description: Background: Extinction and re-colonisation of local populations is common in ephemeral habitats such as temporary streams. In most cases, such population turnover leads to reduced genetic diversity within populations and increased genetic differentiation among populations due to stochastic founder events, genetic drift, and bottlenecks associated with re-colonisation. Here, we examined the spatio-temporal genetic structure of 8 alpine caddisfly populations inhabiting permanent and temporary streams from four valleys in two regions of the Swiss Alps in years before and after a major stream drying event, the European heat wave in summer 2003. Results: We found that population turnover after 2003 led to a loss of allelic richness and gene diversity but not to significant changes in observed heterozygosity. Within all valleys, permanent and temporary streams in any given year were not differentiated, suggesting considerable gene flow and admixture between streams with differing hydroperiods. Large changes in allele frequencies after 2003 resulted in a substantial increase in genetic differentiation among valleys within one to two years (1-2 generations) driven primarily by drift and immigration. Signatures of genetic bottlenecks were detected in all 8 populations after 2003 using the M-ratio method, but in no populations when using a heterozygosity excess method, indicating differential sensitivity of bottleneck detection methods. Conclusions: We conclude that genetic differentiation among A. uncatus populations changed markedly both temporally and spatially in response to the extreme climate event in 2003. Our results highlight the magnitude of temporal population genetic changes in response to extreme events. More specifically, our results show that extreme events can cause rapid genetic divergence in metapopulations. Further studies are needed to determine if recovery from this perturbation through gradual mixing of diverged populations by migration and gene flow leads to the pre-climate event state, or whether the observed changes represent a new genetic equilibrium.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-01-21
    Description: Background: Rapid advances in genomics have provided nearly complete genome sequences for many different species. However, no matter how the sequencing technology has improved, natural genetic polymorphism complicates the production of high quality reference genomes. To address this problem, researchers have tried using artificial modes of genome manipulation such as gynogenesis for fast production of inbred lines. Results: Here, we present the first successful induction of diploid gynogenesis in an evolutionary model system, the three-spined sticklebacks (Gasterosteus aculeatus), using a combination of UV-irradiation of the sperm and heat shock (HS) of the resulting embryo to inhibit the second meiotic division. Optimal UV irradiation of the sperm was established by exposing stickleback sperm to a UV- light source at various times. Heat shock parameters like temperature, duration, and time of initiation were tested by subjecting eggs fertilized with UV inactivated sperm 5, 10, 15, 20, 25, or 30 minutes post fertilization (mpf) to 30°C, 34°C, or 38°C for 2, 4, 6 or 8 minutes. Gynogen yield was highest when stickleback eggs were activated with 2 minutes UV-irradiated sperm and received HS 5 mpf at 34°C for 4 minutes. Conclusions: Diploid gynogenesis has been successfully performed in three-spined stickleback. This has been confirmed by microsatellite DNA analysis which revealed exclusively maternal inheritance in all gynogenetic fry tested. Ploidy verification by flow cytometry showed that gynogenetic embryos/larvae exhibiting abnormalities were haploids and those that developed normally were diploids, i.e., double haploids that can be raised until adult size.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-09-23
    Description: Background: The green crab Carcinus maenas is known for its high acclimation potential to varying environmental abiotic conditions. A high ability for ion and acid-base regulation is mainly based on an efficient regulation apparatus located in gill epithelia. However, at present it is neither known which ion transport proteins play a key role in the acid-base compensation response nor how gill epithelia respond to elevated seawater pCO2 as predicted for the future. In order to promote our understanding of the responses of green crab acid-base regulatory epithelia to high pCO2, Baltic Sea green crabs were exposed to a pCO2 of 400 Pa. Gills were screened for differentially expressed gene transcripts using a 4,462-feature microarray and quantitative real-time PCR. Results: Crabs responded mainly through fine scale adjustment of gene expression to elevated pCO2. However, 2% of all investigated transcripts were significantly regulated 1.3 to 2.2-fold upon one-week exposure to CO2 stress. Most of the genes known to code for proteins involved in osmo- and acid-base regulation, as well as cellular stress response, were were not impacted by elevated pCO2. However, after one week of exposure, significant changes were detected in a calcium-activated chloride channel, a hyperpolarization activated nucleotide-gated potassium channel, a tetraspanin, and an integrin. Furthermore, a putative syntaxin-binding protein, a protein of the transmembrane 9 superfamily, and a Cl-/HCO3 - exchanger of the SLC 4 family were differentially regulated. These genes were also affected in a previously published hypoosmotic acclimation response study. Conclusions: The moderate, but specific response of C. maenas gill gene expression indicates that (1) seawater acidification does not act as a strong stressor on the cellular level in gill epithelia; (2) the response to hypercapnia is to some degree comparable to a hypoosmotic acclimation response; (3) the specialization of each of the posterior gill arches might go beyond what has been demonstrated up to date; and (4) a re-configuration of gill epithelia might occur in response to hypercapnia.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    BioMed Central
    In:  Genome Biology, 12 (6). Art.Nr. 117.
    Publication Date: 2019-03-05
    Description: A recent study explores the genome content of uncultured unicellular marine eukaryotes and provides insights about interactions between uncultured eukaryotes and other biological entities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-01-22
    Description: Background: Diatoms represent the predominant group of eukaryotic phytoplankton in the oceans and are responsible for around 20% of global photosynthesis. Two whole genome sequences are now available. Notwithstanding, our knowledge of diatom biology remains limited because only around half of their genes can be ascribed a function based onhomology-based methods. High throughput tools are needed, therefore, to associate functions with diatom-specific genes. Results: We have performed a systematic analysis of 130,000 ESTs derived from Phaeodactylum tricornutum cells grown in 16 different conditions. These include different sources of nitrogen, different concentrations of carbon dioxide, silicate and iron, and abiotic stresses such as low temperature and low salinity. Based on unbiased statistical methods, we have catalogued transcripts with similar expression profiles and identified transcripts differentially expressed in response to specific treatments. Functional annotation of these transcripts provides insights into expression patterns of genes involved in various metabolic and regulatory pathways and into the roles of novel genes with unknown functions. Specific growth conditions could be associated with enhanced gene diversity, known gene product functions, and over-representation of novel transcripts. Comparative analysis of data from the other sequenced diatom, Thalassiosira pseudonana, helped identify several unique diatom genes that are specifically regulated under particular conditions, thus facilitating studies of gene function, genome annotation and the molecular basis of species diversity. Conclusions: The digital gene expression database represents a new resource for identifying candidate diatom-specific genes involved in processes of major ecological relevance.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Format: other
    Format: other
    Format: text
    Format: other
    Format: other
    Format: image
    Format: other
    Format: text
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-09-23
    Description: Background Although the importance and widespread occurrence of iron limitation in the contemporary ocean is well documented, we still know relatively little about genetic adaptation of phytoplankton to these environments. Compared to its coastal relative Thalassiosira pseudonana, the oceanic diatom Thalassiosira oceanica is highly tolerant to iron limitation. The adaptation to low-iron conditions in T. oceanica has been attributed to a decrease in the photosynthetic components that are rich in iron. Genomic information on T. oceanica may shed light on the genetic basis of the physiological differences between the two species. Results The complete 141790 bp sequence of the T. oceanica chloroplast genome [GenBank: GU323224], assembled from massively parallel pyrosequencing (454) shotgun reads, revealed that the petF gene encoding for ferredoxin, which is localized in the chloroplast genome in T. pseudonana and other diatoms, has been transferred to the nucleus in T. oceanica. The iron-sulfur protein ferredoxin, a key element of the chloroplast electron transport chain, can be replaced by the iron-free flavodoxin under iron-limited growth conditions thereby contributing to a reduction in the cellular iron requirements. From a comparison to the genomic context of the T. pseudonana petF gene, the T. oceanica ortholog can be traced back to its chloroplast origin. The coding potential of the T. oceanica chloroplast genome is comparable to that of T. pseudonana and Phaeodactylum tricornutum, though a novel expressed ORF appears in the genomic region that has been subjected to rearrangements linked to the petF gene transfer event. Conclusions The transfer of the petF from the cp to the nuclear genome in T. oceanica represents a major difference between the two closely related species. The ability of T. oceanica to tolerate iron limitation suggests that the transfer of petF from the chloroplast to the nuclear genome might have contributed to the ecological success of this species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-01-21
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-01-21
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-06-22
    Description: Background Polychaetes assigned as Scoloplos armiger (Orbiniidae) show a cosmopolitan distribution and have been encountered in all zoogeographic regions. Sibling S. armiger-like species have been revealed by recent studies using RAPDs and AFLP genetic data. We sequenced a ~12 kb fragment of the Scoloplos cf. armiger mitochondrial genome and developed primers for variable regions including the 3' end of the cox3 gene, trnQ, and most of nad6. A phylogenetic analysis of this 528-nucleotide fragment was carried out for S. armiger-like individuals from the Eastern North Atlantic as well as Pacific regions. The aim of this study is to test the cosmopolitan status, as well as to clarify the systematics of this species complex in the Eastern North Atlantic, while using a few specimens from the Pacific Ocean for comparision. Results Phylogenetic analysis of the cox3-trnQ-nad6 data set recovered five different clades of Scoloplos cf. armiger. The fragment of the mitochondrial genome of Scoloplos cf. armiger is 12,042 bp long and contains 13 protein coding genes, 15 of the 22 expected tRNAs, and the large ribosomal subunit (rrnl). Conclusion The sequenced cox3-trnQ-nad6 fragment proved to be very useful in phylogenetic analyses of Scoloplos cf. armiger. Due to its larger sampling scale this study goes beyond previous analyses which used RAPD and AFLP markers. The results of this study clearly supports that Scoloplos armiger represents a species complex and not a cosmopolitan species. We find at least two S. armiger-like species within the Pacific region and three different S. armiger-like species in the North Atlantic. Implications for the taxonomy and the impact on ecological studies are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-01-21
    Description: Background: Changes in the survival-rate during the larval phase may strongly influence the recruitment level in marine fish species. During the larval phase different 'critical periods' are discussed, e.g. the hatching period and the first-feeding period. No such information was available for the Baltic cod stock, a commercially important stock showing reproduction failure during the last years. We calculated field-based mortality rates for larval Baltic cod during these phases using basin-wide abundance estimates from two consecutive surveys. Survey information was corrected by three dimensional hydrodynamic model runs. Results: The corrections applied for transport were of variable impact, depending on the prevailing circulation patterns. Especially at high wind forcing scenarios, abundance estimates have the potential to be biased without accounting for transport processes. In May 1988 mortality between hatch and first feeding amounted to approximately 20% per day. Mortality rates during the onset of feeding were considerably lower with only 7% per day. In August 1991 the situation was vice versa: Extremely low mortality rates of 0.08% per day were calculated between hatch and first feeding, while the period between the onset of feeding to the state of an established feeder was more critical with mortality rates of 22% per day. Conclusions: Mortality rates during the different proposed 'critical periods' were found to be highly variable. Survival rates of Baltic cod are not only influenced by a single 'critical period', but can be limited at different points during the larval phase, depending on several biotic and abiotic factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In:  Physics Today, 51 (12). p. 32.
    Publication Date: 2021-02-25
    Description: Bringer of storms and droughts, the El Niño∕Southern Oscillation results from the complex, sometimes chaotic interplay of ocean and atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Reed Business Information
    In:  New Scientist . pp. 44-47.
    Publication Date: 2020-06-22
    Description: THE LARGE animals in the sea are almost all vertebrates: fish, turtles and whales. Only one group of invertebrates has produced creatures of comparable size and activity. These are the molluscs, on the face of it an unlikely group to have given rise to some of the ocean’s most outstanding athletes. Yet it did. The cephalopods, a class of animals that includes the squids, cuttlefish and octopuses, are indisputably molluscs. They share a common body plan with clams and snails, but are greatly modified to allow them lifestyles comparable with those of the vertebrates. Between them, the cephalopod molluscs, the fish and the toothed whales constitute a formidable assemblage of predators, eating each other and anyone else available as a source of protein in the sea. The molluscs established themselves as predators of the midwater zone before the fish. The cephalopods apparently arose from small limpet-like animals that crawled on the seabed. These primitive forerunners of today’s sophisticated predators disputed possession of the late Cambrian sea floor with a range of other animals, most of them armoured, and many, we may safely assume, predatory. What distinguished the early protocephalopod from the rest of the mob was a capacity to secrete gas into the apex of its shell.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In:  Journal of Applied Physics, 3 (6). pp. 273-295.
    Publication Date: 2020-06-11
    Description: The theory of the interpretation of seismic travel‐time curves for refracted rays in horizontal structures is treated after the manner of Herglotz‐Wiechert, under the customary assumption that the ray paths obey the laws of geometrical optics. Multiple valued travel‐time curves, discontinuous velocity functions, and the discontinuous travel‐time curves associated with a slower speed bed receive special consideration. It appears that interpretations satisfactory from the theoretical point of view may be obtained in these cases, although, experimentally, sufficiently complete data to meet the requirements of theory may often be difficult or impossible to obtain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...