ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Synthetic Biology and Assembly Cloning  (46)
  • Computational Methods  (26)
  • Oxford University Press  (72)
  • American Institute of Physics (AIP)
  • American Physical Society
  • Blackwell Publishing Ltd
  • National Academy of Sciences
  • 2010-2014  (72)
  • 1975-1979
  • 1920-1924
Collection
Publisher
  • Oxford University Press  (72)
  • American Institute of Physics (AIP)
  • American Physical Society
  • Blackwell Publishing Ltd
  • National Academy of Sciences
Years
  • 2010-2014  (72)
  • 1975-1979
  • 1920-1924
  • 2015-2019  (60)
Year
  • 1
    Publication Date: 2014-12-17
    Description: Combinatorial transcription factor (TF) binding is essential for cell-type-specific gene regulation. However, much remains to be learned about the mechanisms of TF interactions, including to what extent constrained spacing and orientation of interacting TFs are critical for regulatory element activity. To examine the relative prevalence of the ‘enhanceosome’ versus the ‘TF collective’ model of combinatorial TF binding, a comprehensive analysis of TF binding site sequences in large scale datasets is necessary. We developed a motif-pair discovery pipeline to identify motif co-occurrences with preferential distance(s) between motifs in TF-bound regions. Utilizing a compendium of 289 mouse haematopoietic TF ChIP-seq datasets, we demonstrate that haematopoietic-related motif-pairs commonly occur with highly conserved constrained spacing and orientation between motifs. Furthermore, motif clustering revealed specific associations for both heterotypic and homotypic motif-pairs with particular haematopoietic cell types. We also showed that disrupting the spacing between motif-pairs significantly affects transcriptional activity in a well-known motif-pair—E-box and GATA, and in two previously unknown motif-pairs with constrained spacing—Ets and Homeobox as well as Ets and E-box. In this study, we provide evidence for widespread sequence-specific TF pair interaction with DNA that conforms to the ‘enhanceosome’ model, and furthermore identify associations between specific haematopoietic cell-types and motif-pairs.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-17
    Description: Homologous non-coding RNAs frequently exhibit domain insertions, where a branch of secondary structure is inserted in a sequence with respect to its homologs. Dynamic programming algorithms for common secondary structure prediction of multiple RNA homologs, however, do not account for these domain insertions. This paper introduces a novel dynamic programming algorithm methodology that explicitly accounts for the possibility of inserted domains when predicting common RNA secondary structures. The algorithm is implemented as Dynalign II, an update to the Dynalign software package for predicting the common secondary structure of two RNA homologs. This update is accomplished with negligible increase in computational cost. Benchmarks on ncRNA families with domain insertions validate the method. Over base pairs occurring in inserted domains, Dynalign II improves accuracy over Dynalign, attaining 80.8% sensitivity (compared with 14.4% for Dynalign) and 91.4% positive predictive value (PPV) for tRNA; 66.5% sensitivity (compared with 38.9% for Dynalign) and 57.0% PPV for RNase P RNA; and 50.1% sensitivity (compared with 24.3% for Dynalign) and 58.5% PPV for SRP RNA. Compared with Dynalign, Dynalign II also exhibits statistically significant improvements in overall sensitivity and PPV. Dynalign II is available as a component of RNAstructure, which can be downloaded from http://rna.urmc.rochester.edu/RNAstructure.html .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-13
    Description: To reveal the full potential of human pluripotent stem cells, new methods for rapid, site-specific genomic engineering are needed. Here, we describe a system for precise genetic modification of human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We identified a novel human locus, H11 , located in a safe, intergenic, transcriptionally active region of chromosome 22, as the recipient site, to provide robust, ubiquitous expression of inserted genes. Recipient cell lines were established by site-specific placement of a ‘landing pad’ cassette carrying attP sites for phiC31 and Bxb1 integrases at the H11 locus by spontaneous or TALEN-assisted homologous recombination. Dual integrase cassette exchange (DICE) mediated by phiC31 and Bxb1 integrases was used to insert genes of interest flanked by phiC31 and Bxb1 attB sites at the H11 locus, replacing the landing pad. This system provided complete control over content, direction and copy number of inserted genes, with a specificity of 100%. A series of genes, including mCherry and various combinations of the neural transcription factors LMX1a, FOXA2 and OTX2, were inserted in recipient cell lines derived from H9 ESC, as well as iPSC lines derived from a Parkinson’s disease patient and a normal sibling control. The DICE system offers rapid, efficient and precise gene insertion in ESC and iPSC and is particularly well suited for repeated modifications of the same locus.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-13
    Description: Recombineering, which is the use of homologous recombination for DNA engineering in Escherichia coli , usually uses antibiotic selection to identify the intended recombinant. When combined in a second step with counterselection using a small molecule toxin, seamless products can be obtained. Here, we report the advantages of a genetic strategy using CcdB as the counterselectable agent. Expression of CcdB is toxic to E. coli in the absence of the CcdA antidote so counterselection is initiated by the removal of CcdA expression. CcdB counterselection is robust and does not require titrations or experiment-to-experiment optimization. Because counterselection strategies necessarily differ according to the copy number of the target, we describe two variations. For multi-copy targets, we use two E. coli hosts so that counterselection is exerted by the transformation step that is needed to separate the recombined and unrecombined plasmids. For single copy targets, we put the ccdA gene onto the temperature-sensitive pSC101 Red expression plasmid so that counterselection is exerted by the standard temperature shift to remove the expression plasmid. To reduce unwanted intramolecular recombination, we also combined CcdB counterselection with Redα omission. These options improve the use of counterselection in recombineering with BACs, plasmids and the E. coli chromosome.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-01
    Description: Determining the taxonomic affiliation of sequences assembled from metagenomes remains a major bottleneck that affects research across the fields of environmental, clinical and evolutionary microbiology. Here, we introduce MyTaxa, a homology-based bioinformatics framework to classify metagenomic and genomic sequences with unprecedented accuracy. The distinguishing aspect of MyTaxa is that it employs all genes present in an unknown sequence as classifiers, weighting each gene based on its (predetermined) classifying power at a given taxonomic level and frequency of horizontal gene transfer. MyTaxa also implements a novel classification scheme based on the genome-aggregate average amino acid identity concept to determine the degree of novelty of sequences representing uncharacterized taxa, i.e. whether they represent novel species, genera or phyla. Application of MyTaxa on in silico generated (mock) and real metagenomes of varied read length (100–2000 bp) revealed that it correctly classified at least 5% more sequences than any other tool. The analysis also showed that ~10% of the assembled sequences from human gut metagenomes represent novel species with no sequenced representatives, several of which were highly abundant in situ such as members of the Prevotella genus. Thus, MyTaxa can find several important applications in microbial identification and diversity studies.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-28
    Description: DNA ‘assembly’ from ‘building blocks’ remains a cornerstone in synthetic biology, whether it be for gene synthesis (~1 kb), pathway engineering (~10 kb) or synthetic genomes (〉100 kb). Despite numerous advances in the techniques used for DNA assembly, verification of the assembly is still a necessity, which becomes cost-prohibitive and a logistical challenge with increasing scale. Here we describe for the first time a comprehensive, high-throughput solution for structural DNA assembly verification by restriction digest using exhaustive in silico enzyme screening, rolling circle amplification of plasmid DNA, capillary electrophoresis and automated digest pattern recognition. This low-cost and robust methodology has been successfully used to screen over 31 000 clones of DNA constructs at 〈$1 per sample.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-11
    Description: Increasing numbers of protein structures are solved each year, but many of these structures belong to proteins whose sequences are homologous to sequences in the Protein Data Bank. Nevertheless, the structures of homologous proteins belonging to the same family contain useful information because functionally important residues are expected to preserve physico-chemical, structural and energetic features. This information forms the basis of our method, which detects RNA-binding residues of a given RNA-binding protein as those residues that preserve physico-chemical, structural and energetic features in its homologs. Tests on 81 RNA-bound and 35 RNA-free protein structures showed that our method yields a higher fraction of true RNA-binding residues (higher precision) than two structure-based and two sequence-based machine-learning methods. Because the method requires no training data set and has no parameters, its precision does not degrade when applied to ‘novel’ protein sequences unlike methods that are parameterized for a given training data set. It was used to predict the ‘unknown’ RNA-binding residues in the C-terminal RNA-binding domain of human CPEB3. The two predicted residues, F430 and F474, were experimentally verified to bind RNA, in particular F430, whose mutation to alanine or asparagine nearly abolished RNA binding. The method has been implemented in a webserver called DR_bind1, which is freely available with no login requirement at http://drbind.limlab.ibms.sinica.edu.tw .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-28
    Description: Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by C31 integrase. Using six orthogonal attP / attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. C31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-03
    Description: A conditional gene expression system that is fast-acting, is tunable and achieves single-gene specificity was recently developed for yeast. A gene placed directly downstream of a modified GAL1 promoter containing six Zif268 binding sequences (with single nucleotide spacing) was shown to be selectively inducible in the presence of β-estradiol, so long as cells express the artificial transcription factor, Z 3 EV (a fusion of the Zif268 DNA binding domain, the ligand binding domain of the human estrogen receptor and viral protein 16). We show the strength of Z 3 EV-responsive promoters can be modified using straightforward design principles. By moving Zif268 binding sites toward the transcription start site, expression output can be nearly doubled. Despite the reported requirement of estrogen receptor dimerization for hormone-dependent activation, a single binding site suffices for target gene activation. Target gene expression levels correlate with promoter binding site copy number and we engineer a set of inducible promoter chassis with different input–output characteristics. Finally, the coupling between inducer identity and gene activation is flexible: the ligand specificity of Z 3 EV can be re-programmed to respond to a non-hormone small molecule with only five amino acid substitutions in the human estrogen receptor domain, which may prove useful for industrial applications.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-10-10
    Description: Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold , which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold , we design ten cis -cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis -cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/ .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-09-27
    Description: The precise control of gene expression is essential in basic biological research as well as in biotechnological applications. Most regulated systems available in yeast enable only the overexpression of the target gene, excluding the possibility of intermediate or weak expression. Moreover, these systems are frequently toxic or depend on growth conditions. We constructed a heterologous transcription factor that overcomes these limitations. Our system is a fusion of the bacterial LexA DNA-binding protein, the human estrogen receptor (ER) and an activation domain (AD). The activity of this chimera, called LexA-ER-AD, is tightly regulated by the hormone β-estradiol. The selection of the AD proved to be crucial to avoid toxic effects and to define the range of activity that can be precisely tuned with β-estradiol. As our system is based on a heterologous DNA-binding domain, induction in different metabolic contexts is possible. Additionally, by controlling the number of LexA-binding sites in the target promoter, one can scale the expression levels up or down. Overall, our LexA-ER-AD system is a valuable tool to precisely control gene expression in different experimental contexts without toxic side effects.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-09-27
    Description: While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because minor groove width is highly governed by 3-base periodicity in GC, the existence of triplet-based codons might imply a functional role for the optimization of local DNA molecular dynamics via GC content at synonymous sites (GC3). We confirm a strong association between GC3-related intrinsic DNA flexibility and codon bias across 24 different prokaryotic multiple whole-genome alignments. We develop a novel test of natural selection targeting synonymous sites and demonstrate that GC3-related DNA backbone dynamics have been subject to moderate selective pressure, perhaps contributing to our observation that many genes possess extreme DNA backbone dynamics for their given protein space. This dual function of codons may impose universal functional constraints affecting the evolution of synonymous and non-synonymous sites. We propose that synonymous sites may have evolved as an ‘accessory’ during an early expansion of a primordial genetic code, allowing for multiplexed protein coding and structural dynamic information within the same molecular context.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-09-27
    Description: Inspired by the developments of synthetic biology and the need for improved genetic tools to exploit cyanobacteria for the production of renewable bioproducts, we developed a versatile platform for the construction of broad-host-range vector systems. This platform includes the following features: (i) an efficient assembly strategy in which modules released from 3 to 4 donor plasmids or produced by polymerase chain reaction are assembled by isothermal assembly guided by short GC-rich overlap sequences. (ii) A growing library of molecular devices categorized in three major groups: (a) replication and chromosomal integration; (b) antibiotic resistance; (c) functional modules. These modules can be assembled in different combinations to construct a variety of autonomously replicating plasmids and suicide plasmids for gene knockout and knockin. (iii) A web service, the CYANO-VECTOR assembly portal, which was built to organize the various modules, facilitate the in silico construction of plasmids, and encourage the use of this system. This work also resulted in the construction of an improved broad-host-range replicon derived from RSF1010, which replicates in several phylogenetically distinct strains including a new experimental model strain Synechocystis sp. WHSyn, and the characterization of nine antibiotic cassettes, four reporter genes, four promoters, and a ribozyme-based insulator in several diverse cyanobacterial strains.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-11-28
    Description: Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-12-17
    Description: The thermophilic fungus Chaetomium thermophilum holds great promise for structural biology. To increase the efficiency of its biochemical and structural characterization and to explore its thermophilic properties beyond those of individual proteins, we obtained transcriptomics and proteomics data, and integrated them with computational annotation methods and a multitude of biochemical experiments conducted by the structural biology community. We considerably improved the genome annotation of Chaetomium thermophilum and characterized the transcripts and expression of thousands of genes. We furthermore show that the composition and structure of the expressed proteome of Chaetomium thermophilum is similar to its mesophilic relatives. Data were deposited in a publicly available repository and provide a rich source to the structural biology community.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-05-01
    Description: Shotgun metagenome sequencing has become a fast, cheap and high-throughput technology for characterizing microbial communities in complex environments and human body sites. However, accurate identification of microorganisms at the strain/species level remains extremely challenging. We present a novel k -mer-based approach, termed GSMer, that identifies genome-specific markers (GSMs) from currently sequenced microbial genomes, which were then used for strain/species-level identification in metagenomes. Using 5390 sequenced microbial genomes, 8 770 321 50-mer strain-specific and 11 736 360 species-specific GSMs were identified for 4088 strains and 2005 species (4933 strains), respectively. The GSMs were first evaluated against mock community metagenomes, recently sequenced genomes and real metagenomes from different body sites, suggesting that the identified GSMs were specific to their targeting genomes. Sensitivity evaluation against synthetic metagenomes with different coverage suggested that 50 GSMs per strain were sufficient to identify most microbial strains with ≥0.25 x coverage, and 10% of selected GSMs in a database should be detected for confident positive callings. Application of GSMs identified 45 and 74 microbial strains/species significantly associated with type 2 diabetes patients and obese/lean individuals from corresponding gastrointestinal tract metagenomes, respectively. Our result agreed with previous studies but provided strain-level information. The approach can be directly applied to identify microbial strains/species from raw metagenomes, without the effort of complex data pre-processing.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-04-15
    Description: RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-04-15
    Description: Insertional oncogene activation and aberrant splicing have proved to be major setbacks for retroviral stem cell gene therapy. Integrase-deficient human immunodeficiency virus-1-derived vectors provide a potentially safer approach, but their circular genomes are rapidly lost during cell division. Here we describe a novel lentiviral vector (LV) that incorporates human ß-interferon scaffold/matrix-associated region sequences to provide an origin of replication for long-term mitotic maintenance of the episomal LTR circles. The resulting ‘anchoring’ non-integrating lentiviral vector (aniLV) achieved initial transduction rates comparable with integrating vector followed by progressive establishment of long-term episomal expression in a subset of cells. Analysis of aniLV-transduced single cell-derived clones maintained without selective pressure for 〉100 rounds of cell division showed sustained transgene expression from episomes and provided molecular evidence for long-term episome maintenance. To evaluate aniLV performance in primary cells, we transduced lineage-depleted murine hematopoietic progenitor cells, observing GFP expression in clonogenic progenitor colonies and peripheral blood leukocyte chimerism following transplantation into conditioned hosts. In aggregate, our studies suggest that scaffold/matrix-associated region elements can serve as molecular anchors for non-integrating lentivector episomes, providing sustained gene expression through successive rounds of cell division and progenitor differentiation in vitro and in vivo .
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-11-12
    Description: Assembly of DNA ‘parts’ to create larger constructs is an essential enabling technique for bioengineering and synthetic biology. Here we describe a simple method, PaperClip, which allows flexible assembly of multiple DNA parts from currently existing libraries cloned in any vector. No restriction enzymes, mutagenesis of internal restriction sites, or reamplification to add end homology are required. Order of assembly is directed by double stranded oligonucleotides—‘Clips’. Clips are formed by ligation of pairs of oligonucleotides corresponding to the ends of each part. PaperClip assembly can be performed by polymerase chain reaction or by cell extract-mediated recombination. Once multi-use Clips have been prepared, assembly of at least six DNA parts in any order can be accomplished with high efficiency within several hours.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-09-02
    Description: Functional mechanisms of biomolecules often manifest themselves precisely in transient conformational substates. Researchers have long sought to structurally characterize dynamic processes in non-coding RNA, combining experimental data with computer algorithms. However, adequate exploration of conformational space for these highly dynamic molecules, starting from static crystal structures, remains challenging. Here, we report a new conformational sampling procedure, KGSrna, which can efficiently probe the native ensemble of RNA molecules in solution. We found that KGSrna ensembles accurately represent the conformational landscapes of 3D RNA encoded by NMR proton chemical shifts. KGSrna resolves motionally averaged NMR data into structural contributions; when coupled with residual dipolar coupling data, a KGSrna ensemble revealed a previously uncharacterized transient excited state of the HIV-1 trans-activation response element stem–loop. Ensemble-based interpretations of averaged data can aid in formulating and testing dynamic, motion-based hypotheses of functional mechanisms in RNAs with broad implications for RNA engineering and therapeutic intervention.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-09-02
    Description: Binding of transcription factors to their binding sites in promoter regions is the fundamental event in transcriptional gene regulation. When a transcription factor binding site is located within a nucleosome, the DNA has to partially unwrap from the nucleosome to allow transcription factor binding. This reduces the rate of transcription factor binding and is a known mechanism for regulation of gene expression via chromatin structure. Recently a second mechanism has been reported where transcription factor off-rates are dramatically increased when binding to target sites within the nucleosome. There are two possible explanations for such an increase in off-rate short of an active role of the nucleosome in pushing the transcription factor off the DNA: (i) for dimeric transcription factors the nucleosome can change the equilibrium between monomeric and dimeric binding or (ii) the nucleosome can change the equilibrium between specific and non-specific binding to the DNA. We explicitly model both scenarios and find that dimeric binding can explain a large increase in off-rate while the non-specific binding model cannot be reconciled with the large, experimentally observed increase. Our results suggest a general mechanism how nucleosomes increase transcription factor dissociation to promote exchange of transcription factors and regulate gene expression.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-08-15
    Description: Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni , which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-08-15
    Description: High-throughput sequencing technologies, including RNA-seq, have made it possible to move beyond gene expression analysis to study transcriptional events including alternative splicing and gene fusions. Furthermore, recent studies in cancer have suggested the importance of identifying transcriptionally altered loci as biomarkers for improved prognosis and therapy. While many statistical methods have been proposed for identifying novel transcriptional events with RNA-seq, nearly all rely on contrasting known classes of samples, such as tumor and normal. Few tools exist for the unsupervised discovery of such events without class labels. In this paper, we present SigFuge for identifying genomic loci exhibiting differential transcription patterns across many RNA-seq samples. SigFuge combines clustering with hypothesis testing to identify genes exhibiting alternative splicing, or differences in isoform expression. We apply SigFuge to RNA-seq cohorts of 177 lung and 279 head and neck squamous cell carcinoma samples from the Cancer Genome Atlas, and identify several cases of differential isoform usage including CDKN2A , a tumor suppressor gene known to be inactivated in a majority of lung squamous cell tumors. By not restricting attention to known sample stratifications, SigFuge offers a novel approach to unsupervised screening of genetic loci across RNA-seq cohorts. SigFuge is available as an R package through Bioconductor.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-09-26
    Description: In reverse genetics, a gene’s function is elucidated through targeted modifications in the coding region or associated DNA cis -regulatory elements. To this purpose, recently developed customizable transcription activator-like effector nucleases (TALENs) have proven an invaluable tool, allowing introduction of double-strand breaks at predetermined sites in the genome. Here we describe a practical and efficient method for the targeted genome engineering in Drosophila . We demonstrate TALEN-mediated targeted gene integration and efficient identification of mutant flies using a traceable marker phenotype. Furthermore, we developed an easy TALEN assembly (easyT) method relying on simultaneous reactions of DNA Bae I digestion and ligation, enabling construction of complete TALENs from a monomer unit library in a single day. Taken together, our strategy with easyT and TALEN-plasmid microinjection simplifies mutant generation and enables isolation of desired mutant fly lines in the F 1 generation.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-26
    Description: Revealing the clonal composition of a single tumor is essential for identifying cell subpopulations with metastatic potential in primary tumors or with resistance to therapies in metastatic tumors. Sequencing technologies provide only an overview of the aggregate of numerous cells. Computational approaches to de-mix a collective signal composed of the aberrations of a mixed cell population of a tumor sample into its individual components are not available. We propose an evolutionary framework for deconvolving data from a single genome-wide experiment to infer the composition, abundance and evolutionary paths of the underlying cell subpopulations of a tumor. We have developed an algorithm (TrAp) for solving this mixture problem. In silico analyses show that TrAp correctly deconvolves mixed subpopulations when the number of subpopulations and the measurement errors are moderate. We demonstrate the applicability of the method using tumor karyotypes and somatic hypermutation data sets. We applied TrAp to Exome-Seq experiment of a renal cell carcinoma tumor sample and compared the mutational profile of the inferred subpopulations to the mutational profiles of single cells of the same tumor. Finally, we deconvolve sequencing data from eight acute myeloid leukemia patients and three distinct metastases of one melanoma patient to exhibit the evolutionary relationships of their subpopulations.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-06-08
    Description: Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ~40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-06-08
    Description: We describe a new cell-free protein synthesis (CFPS) method for site-specific incorporation of non-natural amino acids (nnAAs) into proteins in which the orthogonal tRNA (o-tRNA) and the modified protein (i.e. the protein containing the nnAA) are produced simultaneously. Using this method, 0.9–1.7 mg/ml of modified soluble super-folder green fluorescent protein (sfGFP) containing either p -azido- l -phenylalanine (pAzF) or p -propargyloxy- l -phenylalanine (pPaF) accumulated in the CFPS solutions; these yields correspond to 50–88% suppression efficiency. The o-tRNA can be transcribed either from a linearized plasmid or from a crude PCR product. Comparison of two different o-tRNAs suggests that the new platform is not limited by Ef-Tu recognition of the acylated o-tRNA at sufficiently high o-tRNA template concentrations. Analysis of nnAA incorporation across 12 different sites in sfGFP suggests that modified protein yields and suppression efficiencies (i.e. the position effect) do not correlate with any of the reported trends. Sites that were ineffectively suppressed with the original o-tRNA were better suppressed with an optimized o-tRNA (o-tRNA opt ) that was evolved to be better recognized by Ef-Tu. This new platform can also be used to screen scissile ribozymes for improved catalysis.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-04-02
    Description: MicroRNAs (miRNAs) constitute an important class of small regulatory RNAs that are derived from distinct hairpin precursors (pre-miRNAs). In contrast to mature miRNAs, which have been characterized in numerous genome-wide studies of different organisms, research on global profiling of pre-miRNAs is limited. Here, using massive parallel sequencing, we have performed global characterization of both mouse mature and precursor miRNAs. In total, 87 369 704 and 252 003 sequencing reads derived from 887 mature and 281 precursor miRNAs were obtained, respectively. Our analysis revealed new aspects of miRNA/pre-miRNA processing and modification, including eight Ago2-cleaved pre-miRNAs, eight new instances of miRNA editing and exclusively 5' tailed mirtrons. Furthermore, based on the sequences of both mature and precursor miRNAs, we developed a miRNA discovery pipeline, miRGrep, which does not rely on the availability of genome reference sequences. In addition to 239 known mouse pre-miRNAs, miRGrep predicted 41 novel ones with high confidence. Similar as known ones, the mature miRNAs derived from most of these novel loci showed both reduced abundance following Dicer knockdown and the binding with Argonaute2. Evaluation on data sets obtained from Caenorhabditis elegans and Caenorhabditis sp.11 demonstrated that miRGrep could be widely used for miRNA discovery in metazoans, especially in those without genome reference sequences.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-09-26
    Description: It is a challenge to classify protein-coding or non-coding transcripts, especially those re-constructed from high-throughput sequencing data of poorly annotated species. This study developed and evaluated a powerful signature tool, Coding-Non-Coding Index (CNCI), by profiling adjoining nucleotide triplets to effectively distinguish protein-coding and non-coding sequences independent of known annotations. CNCI is effective for classifying incomplete transcripts and sense–antisense pairs. The implementation of CNCI offered highly accurate classification of transcripts assembled from whole-transcriptome sequencing data in a cross-species manner, that demonstrated gene evolutionary divergence between vertebrates, and invertebrates, or between plants, and provided a long non-coding RNA catalog of orangutan. CNCI software is available at http://www.bioinfo.org/software/cnci .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-12-07
    Description: The two-step process of selection and counter-selection is a standard way to enable genetic modification and engineering of bacterial genomes using homologous recombination methods. The tetA and sacB genes are contained in a DNA cassette and confer a novel dual counter-selection system. Expression of tetA confers bacterial resistance to tetracycline (Tc R ) and also causes sensitivity to the lipophillic chelator fusaric acid; sacB causes sensitivity to sucrose. These two genes are introduced as a joint DNA cassette into Escherichia coli by selection for Tc R . A medium containing both fusaric acid and sucrose has been developed, in which, coexpression of tetA-sacB is orders of magnitude more sensitive as a counter-selection agent than either gene alone. In conjunction with the homologous recombination methods of recombineering and P1 transduction, this powerful system has been used to select changes in the bacterial genome that cannot be directly detected by other counter-selection systems.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-09-06
    Description: We developed a framework for quick and reliable construction of complex gene circuits for genetically engineering mammalian cells. Our hierarchical framework is based on a novel nucleotide addressing system for defining the position of each part in an overall circuit. With this framework, we demonstrate construction of synthetic gene circuits of up to 64 kb in size comprising 11 transcription units and 33 basic parts. We show robust gene expression control of multiple transcription units by small molecule inducers in human cells with transient transfection and stable chromosomal integration of these circuits. This framework enables development of complex gene circuits for engineering mammalian cells with unprecedented speed, reliability and scalability and should have broad applicability in a variety of areas including mammalian cell fermentation, cell fate reprogramming and cell-based assays.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-07-16
    Description: Synthetic biology has significantly advanced the design of synthetic control devices, gene circuits and networks that can reprogram mammalian cells in a trigger-inducible manner. Prokaryotic helix-turn-helix motifs have become the standard resource to design synthetic mammalian transcription factors that tune chimeric promoters in a small molecule-responsive manner. We have identified a family of Actinomycetes transcriptional repressor proteins showing a tandem TetR-family signature and have used a synthetic biology-inspired approach to reveal the potential control dynamics of these bi-partite regulators. Daisy-chain assembly of well-characterized prokaryotic repressor proteins such as TetR, ScbR, TtgR or VanR and fusion to either the Herpes simplex transactivation domain VP16 or the Krueppel-associated box domain (KRAB) of the human kox-1 gene resulted in synthetic bi- and even tri-partite mammalian transcription factors that could reversibly program their individual chimeric or hybrid promoters for trigger-adjustable transgene expression using tetracycline (TET), -butyrolactones, phloretin and vanillic acid. Detailed characterization of the bi-partite ScbR-TetR-VP16 (ST-TA) transcription factor revealed independent control of TET- and -butyrolactone-responsive promoters at high and double-pole double-throw (DPDT) relay switch qualities at low intracellular concentrations. Similar to electromagnetically operated mechanical DPDT relay switches that control two electric circuits by a fully isolated low-power signal, TET programs ST-TA to progressively switch from TetR-specific promoter-driven expression of transgene one to ScbR-specific promoter-driven transcription of transgene two while ST-TA flips back to exclusive transgene 1 expression in the absence of the trigger antibiotic. We suggest that natural repressors and activators with tandem TetR-family signatures may also provide independent as well as DPDT-mediated control of two sets of transgenes in bacteria, and that their synthetic transcription-factor analogs may enable the design of compact therapeutic gene circuits for gene and cell-based therapies.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-07-16
    Description: The coupling of chromosome conformation capture (3C) with next-generation sequencing technologies enables the high-throughput detection of long-range genomic interactions, via the generation of ligation products between DNA sequences, which are closely juxtaposed in vivo . These interactions involve promoter regions, enhancers and other regulatory and structural elements of chromosomes and can reveal key details of the regulation of gene expression. 3C-seq is a variant of the method for the detection of interactions between one chosen genomic element (viewpoint) and the rest of the genome. We present r3Cseq , an R/Bioconductor package designed to perform 3C-seq data analysis in a number of different experimental designs. The package reads a common aligned read input format, provides data normalization, allows the visualization of candidate interaction regions and detects statistically significant chromatin interactions, thus greatly facilitating hypothesis generation and the interpretation of experimental results. We further demonstrate its use on a series of real-world applications.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-01-20
    Description: Synthetic RNA control devices that use ribozymes as gene-regulatory components have been applied to controlling cellular behaviors in response to environmental signals. Quantitative measurement of the in vitro cleavage rate constants associated with ribozyme-based devices is essential for advancing the molecular design and optimization of this class of gene-regulatory devices. One of the key challenges encountered in ribozyme characterization is the efficient generation of full-length RNA from in vitro transcription reactions, where conditions generally lead to significant ribozyme cleavage. Current methods for generating full-length ribozyme-encoding RNA rely on a trans-blocking strategy, which requires a laborious gel separation and extraction step. Here, we develop a simple two-step gel-free process including cis-blocking and trans-activation steps to support scalable generation of functional full-length ribozyme-encoding RNA. We demonstrate our strategy on various types of natural ribozymes and synthetic ribozyme devices, and the cleavage rate constants obtained for the RNA generated from our strategy are comparable with those generated through traditional methods. We further develop a rapid, label-free ribozyme cleavage assay based on surface plasmon resonance, which allows continuous, real-time monitoring of ribozyme cleavage. The surface plasmon resonance-based characterization assay will complement the versatile cis-blocking and trans-activation strategy to broadly advance our ability to characterize and engineer ribozyme-based devices.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-08-28
    Description: The ability to artificially control transcription is essential both to the study of gene function and to the construction of synthetic gene networks with desired properties. Cas9 is an RNA-guided double-stranded DNA nuclease that participates in the CRISPR-Cas immune defense against prokaryotic viruses. We describe the use of a Cas9 nuclease mutant that retains DNA-binding activity and can be engineered as a programmable transcription repressor by preventing the binding of the RNA polymerase (RNAP) to promoter sequences or as a transcription terminator by blocking the running RNAP. In addition, a fusion between the omega subunit of the RNAP and a Cas9 nuclease mutant directed to bind upstream promoter regions can achieve programmable transcription activation. The simple and efficient modulation of gene expression achieved by this technology is a useful asset for the study of gene networks and for the development of synthetic biology and biotechnological applications.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-08-28
    Description: Antisense RNA transcription attenuators are a key component of the synthetic biology toolbox, with their ability to serve as building blocks for both signal integration logic circuits and transcriptional cascades. However, a central challenge to building more sophisticated RNA genetic circuitry is creating larger families of orthogonal attenuators that function independently of each other. Here, we overcome this challenge by developing a modular strategy to create chimeric fusions between the engineered transcriptional attenuator from plasmid pT181 and natural antisense RNA translational regulators. Using in vivo gene expression assays in Escherichia coli , we demonstrate our ability to create chimeric attenuators by fusing sequences from five different translational regulators. Mutagenesis of these functional attenuators allowed us to create a total of 11 new chimeric attenutaors. A comprehensive orthogonality test of these culminated in a 7 x 7 matrix of mutually orthogonal regulators. A comparison between all chimeras tested led to design principles that will facilitate further engineering of orthogonal RNA transcription regulators, and may help elucidate general principles of non-coding RNA regulation. We anticipate that our strategy will accelerate the development of even larger families of orthogonal RNA transcription regulators, and thus create breakthroughs in our ability to construct increasingly sophisticated RNA genetic circuitry.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-04-23
    Description: Studying complex biological processes such as cancer development, stem cell induction and transdifferentiation requires the modulation of multiple genes or pathways at one time in a single cell. Herein, we describe straightforward methods for rapid and efficient assembly of bacterial marker free multigene cassettes containing up to six complementary DNAs/short hairpin RNAs. We have termed this method RecWay assembly, as it makes use of both Cre recombinase and the commercially available Gateway cloning system. Further, because RecWay assembly uses truly modular components, it allows for the generation of randomly assembled multigene vector libraries. These multigene vectors are integratable, and later excisable, using the highly efficient piggyBac ( PB ) DNA transposon system. Moreover, we have dramatically improved the expression of stably integrated multigene vectors by incorporation of insulator elements to prevent promoter interference seen with multigene vectors. We demonstrate that insulated multigene PB transposons can stably integrate and faithfully express up to five fluorescent proteins and the puromycin-thymidine kinase resistance gene in vitro , with up to 70-fold higher gene expression compared with analogous uninsulated vectors . RecWay assembly of multigene transposon vectors allows for widely applicable modelling of highly complex biological processes and can be easily performed by other research laboratories.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-04-23
    Description: Techniques for assembly of designed DNA sequences are important for synthetic biology. So far, a few methods have been developed towards high-throughput seamless DNA assembly in vitro , including both the homologous sequences-based system and the type IIS-mediated system. Here, we describe a novel method designated ‘MASTER Ligation’, by which multiple DNA sequences can be seamlessly assembled through a simple and sequence-independent hierarchical procedure. The key restriction endonuclease used, MspJI, shares both type IIM and type IIS properties; thus, it only recognizes the methylation-specific 4-bp sites, m CNNR (R = A or G), and cuts DNA outside of the recognition sequences. This method was tested via successful assembly of either multiple polymerase chain reaction amplicons or restriction fragments of the actinorhodin biosynthetic cluster of Streptomyces coelicolor (~29 kb), which was further heterologously expressed in a fast-growing and moderately thermophilic strain, Streptomyces sp. 4F.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-02-20
    Description: Bacterial operons are nature’s tool for regulating and coordinating multi-gene expression in prokaryotes. They are also a gene architecture commonly used in the biosynthesis of many pharmaceutically important compounds and industrially useful chemicals. Despite being an important eukaryotic production host, Saccharomyces cerevisiae has never had such gene architecture. Here, we report the development of a system to assemble and regulate a multi-gene pathway in S. cerevisiae . Full pathways can be constructed using pre-made parts from a plasmid toolbox. Subsequently, through the use of a yeast strain containing a stably integrated gene switch, the assembled pathway can be regulated using a readily available and inexpensive compound—estradiol—with extremely high sensitivity (10 nM). To demonstrate the use of the system, we assembled the five-gene zeaxanthin biosynthetic pathway in a single step and showed the ligand-dependent coordinated expression of all five genes as well as the tightly regulated production of zeaxanthin. Compared with a previously reported constitutive zeaxanthin pathway, our inducible pathway was shown to have 50-fold higher production level.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-02-20
    Description: Zinc-finger nucleases (ZFNs) have been used for genome engineering in a wide variety of organisms; however, it remains challenging to design effective ZFNs for many genomic sequences using publicly available zinc-finger modules. This limitation is in part because of potential finger–finger incompatibility generated on assembly of modules into zinc-finger arrays (ZFAs). Herein, we describe the validation of a new set of two-finger modules that can be used for building ZFAs via conventional assembly methods or a new strategy—finger stitching—that increases the diversity of genomic sequences targetable by ZFNs. Instead of assembling ZFAs based on units of the zinc-finger structural domain, our finger stitching method uses units that span the finger–finger interface to ensure compatibility of neighbouring recognition helices. We tested this approach by generating and characterizing eight ZFAs, and we found their DNA-binding specificities reflected the specificities of the component modules used in their construction. Four pairs of ZFNs incorporating these ZFAs generated targeted lesions in vivo , demonstrating that stitching yields ZFAs with robust recognition properties.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-05-04
    Description: The reliable forward engineering of genetic systems remains limited by the ad hoc reuse of many types of basic genetic elements. Although a few intrinsic prokaryotic transcription terminators are used routinely, termination efficiencies have not been studied systematically. Here, we developed and validated a genetic architecture that enables reliable measurement of termination efficiencies. We then assembled a collection of 61 natural and synthetic terminators that collectively encode termination efficiencies across an ~800-fold dynamic range within Escherichia coli . We simulated co-transcriptional RNA folding dynamics to identify competing secondary structures that might interfere with terminator folding kinetics or impact termination activity. We found that structures extending beyond the core terminator stem are likely to increase terminator activity. By excluding terminators encoding such context-confounding elements, we were able to develop a linear sequence-function model that can be used to estimate termination efficiencies ( r = 0.9, n = 31) better than models trained on all terminators ( r = 0.67, n = 54). The resulting systematically measured collection of terminators should improve the engineering of synthetic genetic systems and also advance quantitative modeling of transcription termination.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-06-28
    Description: Recombineering in bacteria is a powerful technique for genome reconstruction, but until now, it was not generally applicable for development of small-molecule producers because of the inconspicuous phenotype of most compounds of biotechnological relevance. Here, we establish recombineering for Corynebacterium glutamicum using RecT of prophage Rac and combine this with our recently developed nanosensor technology, which enables the detection and isolation of productive mutants at the single-cell level via fluorescence-activated cell sorting (FACS). We call this new technology RecFACS, which we use for genomic site-directed saturation mutagenesis without relying on pre-constructed libraries to directly isolate l -lysine-producing cells. A mixture of 19 different oligonucleotides was used targeting codon 81 in murE of the wild-type, at a locus where one single mutation is known to cause l -lysine production. Using RecFACS, productive mutants were screened and isolated. Sequencing revealed 12 different amino acid exchanges in the targeted murE codon, which caused different l -lysine production titers. Apart from introducing a rapid genome construction technology for C. glutamicum , the present work demonstrates that RecFACS is suitable to simply create producers as well as genetic diversity in one single step, thus establishing a new general concept in synthetic biology.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-11-02
    Description: The type II CRISPR/Cas system from Streptococcus pyogenes and its simplified derivative, the Cas9/single guide RNA (sgRNA) system, have emerged as potent new tools for targeted gene knockout in bacteria, yeast, fruit fly, zebrafish and human cells. Here, we describe adaptations of these systems leading to successful expression of the Cas9/sgRNA system in two dicot plant species, Arabidopsis and tobacco, and two monocot crop species, rice and sorghum. Agrobacterium tumefaciens was used for delivery of genes encoding Cas9, sgRNA and a non-fuctional, mutant green fluorescence protein (GFP) to Arabidopsis and tobacco. The mutant GFP gene contained target sites in its 5' coding regions that were successfully cleaved by a CAS9/sgRNA complex that, along with error-prone DNA repair, resulted in creation of functional GFP genes. DNA sequencing confirmed Cas9/sgRNA-mediated mutagenesis at the target site. Rice protoplast cells transformed with Cas9/sgRNA constructs targeting the promoter region of the bacterial blight susceptibility genes, OsSWEET14 and OsSWEET11 , were confirmed by DNA sequencing to contain mutated DNA sequences at the target sites. Successful demonstration of the Cas9/sgRNA system in model plant and crop species bodes well for its near-term use as a facile and powerful means of plant genetic engineering for scientific and agricultural applications.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-11-02
    Description: Cas9 is an RNA-guided double-stranded DNA nuclease that participates in clustered regularly interspaced short palindromic repeats (CRISPR)-mediated adaptive immunity in prokaryotes. CRISPR–Cas9 has recently been used to generate insertion and deletion mutations in Caenorhabditis elegans, but not to create tailored changes (knock-ins). We show that the CRISPR–CRISPR-associated (Cas) system can be adapted for efficient and precise editing of the C. elegans genome. The targeted double-strand breaks generated by CRISPR are substrates for transgene-instructed gene conversion. This allows customized changes in the C. elegans genome by homologous recombination: sequences contained in the repair template (the transgene) are copied by gene conversion into the genome. The possibility to edit the C. elegans genome at selected locations will facilitate the systematic study of gene function in this widely used model organism.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-11-02
    Description: The generation of genome-modified animals is a powerful approach to analyze gene functions. The CAS9/guide RNA (gRNA) system is expected to become widely used for the efficient generation of genome-modified animals, but detailed studies on optimum conditions and availability are limited. In the present study, we attempted to generate large-scale genome-modified mice with an optimized CAS9/gRNA system, and confirmed the transmission of these mutations to the next generations. A comparison of different types of gRNA indicated that the target loci of almost all pups were modified successfully by the use of long-type gRNAs with CAS9. We showed that this system has much higher mutation efficiency and much lower off-target effect compared to zinc-finger nuclease. We propose that most of these off-target effects can be avoided by the careful control of CAS9 mRNA concentration and that the genome-modification efficiency depends rather on the gRNA concentration. Under optimized conditions, large-scale (~10 kb) genome-modified mice can be efficiently generated by modifying two loci on a single chromosome using two gRNAs at once in mouse zygotes. In addition, the normal transmission of these CAS9/gRNA-induced mutations to the next generation was confirmed. These results indicate that CAS9/gRNA system can become a highly effective tool for the generation of genome-modified animals.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-04-14
    Description: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems in bacteria and archaea use RNA-guided nuclease activity to provide adaptive immunity against invading foreign nucleic acids. Here, we report the use of type II bacterial CRISPR-Cas system in Saccharomyces cerevisiae for genome engineering. The CRISPR-Cas components, Cas9 gene and a designer genome targeting CRISPR guide RNA (gRNA), show robust and specific RNA-guided endonuclease activity at targeted endogenous genomic loci in yeast. Using constitutive Cas9 expression and a transient gRNA cassette, we show that targeted double-strand breaks can increase homologous recombination rates of single- and double-stranded oligonucleotide donors by 5-fold and 130-fold, respectively. In addition, co-transformation of a gRNA plasmid and a donor DNA in cells constitutively expressing Cas9 resulted in near 100% donor DNA recombination frequency. Our approach provides foundations for a simple and powerful genome engineering tool for site-specific mutagenesis and allelic replacement in yeast.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-09
    Description: Customized TALENs and Cas9/gRNAs have been used for targeted mutagenesis in zebrafish to induce indels into protein-coding genes. However, indels are usually not sufficient to disrupt the function of non-coding genes, gene clusters or regulatory sequences, whereas large genomic deletions or inversions are more desirable for this purpose. By injecting two pairs of TALEN mRNAs or two gRNAs together with Cas9 mRNA targeting distal DNA sites of the same chromosome, we obtained predictable genomic deletions or inversions with sizes ranging from several hundred bases to nearly 1 Mb. We have successfully achieved this type of modifications for 11 chromosomal loci by TALENs and 2 by Cas9/gRNAs with different combinations of gRNA pairs, including clusters of miRNA and protein-coding genes. Seven of eight TALEN-targeted lines transmitted the deletions and one transmitted the inversion through germ line. Our findings indicate that both TALENs and Cas9/gRNAs can be used as an efficient tool to engineer genomes to achieve large deletions or inversions, including fragments covering multiple genes and non-coding sequences. To facilitate the analyses and application of existing ZFN, TALEN and CRISPR/Cas data, we have updated our EENdb database to provide a chromosomal view of all reported engineered endonucleases targeting human and zebrafish genomes.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2012-09-27
    Description: Genome-scale engineering of living organisms requires precise and economical methods to efficiently modify many loci within chromosomes. One such example is the directed integration of chemically synthesized single-stranded deoxyribonucleic acid (oligonucleotides) into the chromosome of Escherichia coli during replication. Herein, we present a general co-selection strategy in multiplex genome engineering that yields highly modified cells. We demonstrate that disparate sites throughout the genome can be easily modified simultaneously by leveraging selectable markers within 500 kb of the target sites. We apply this technique to the modification of 80 sites in the E. coli genome.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2012-07-22
    Description: Sequence elements, at all levels—DNA, RNA and protein, play a central role in mediating molecular recognition and thereby molecular regulation and signaling. Studies that focus on measuring and investigating sequence-based recognition make use of statistical and computational tools, including approaches to searching sequence motifs. State-of-the-art motif searching tools are limited in their coverage and ability to address large motif spaces. We develop and present statistical and algorithmic approaches that take as input ranked lists of sequences and return significant motifs. The efficiency of our approach, based on suffix trees, allows searches over motif spaces that are not covered by existing tools. This includes searching variable gap motifs—two half sites with a flexible length gap in between—and searching long motifs over large alphabets. We used our approach to analyze several high-throughput measurement data sets and report some validation results as well as novel suggested motifs and motif refinements. We suggest a refinement of the known estrogen receptor 1 motif in humans, where we observe gaps other than three nucleotides that also serve as significant recognition sites, as well as a variable length motif related to potential tyrosine phosphorylation.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2012-07-22
    Description: Cataloging the association of transcripts to genetic variants in recent years holds the promise for functional dissection of regulatory structure of human transcription. Here, we present a novel approach, which aims at elucidating the joint relationships between transcripts and single-nucleotide polymorphisms (SNPs). This entails detection and analysis of modules of transcripts, each weakly associated to a single genetic variant, together exposing a high-confidence association signal between the module and this ‘main’ SNP. To explore how transcripts in a module are related to causative loci for that module, we represent such dependencies by a graphical model. We applied our method to the existing data on genetics of gene expression in the liver. The modules are significantly more, larger and denser than found in permuted data. Quantification of the confidence in a module as a likelihood score, allows us to detect transcripts that do not reach genome-wide significance level. Topological analysis of each module identifies novel insights regarding the flow of causality between the main SNP and transcripts. We observe similar annotations of modules from two sources of information: the enrichment of a module in gene subsets and locus annotation of the genetic variants. This and further phenotypic analysis provide a validation for our methodology.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2012-07-22
    Description: Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in ‘on/off’ status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2012-09-13
    Description: Control of translation in eukaryotes is complex, depending on the binding of various factors to mRNAs. Available data for subsets of mRNAs that are translationally up- and down-regulated in yeast eIF4E-binding protein (4E-BP) deletion mutants are coupled with reported mRNA secondary structure measurements to investigate whether 5'-UTR secondary structure varies between the subsets. Genes with up-regulated translational efficiencies in the caf20 mutant have relatively high averaged 5'-UTR secondary structure. There is no apparent wide-scale correlation of RNA-binding protein preferences with the increased 5'-UTR secondary structure, leading us to speculate that the secondary structure itself may play a role in differential partitioning of mRNAs between eIF4E/4E-BP repression and eIF4E/eIF4G translation initiation. Both Caf20p and Eap1p contain stretches of positive charge in regions of predicted disorder. Such regions are also present in eIF4G and have been reported to associate with mRNA binding. The pattern of these segments, around the canonical eIF4E-binding motif, varies between each 4E-BP and eIF4G. Analysis of gene ontology shows that yeast proteins containing predicted disordered segments, with positive charge runs, are enriched for nucleic acid binding. We propose that the 4E-BPs act, in part, as differential, flexible, polyelectrostatic scaffolds for mRNAs.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-06-06
    Description: A chemistry-based artificial restriction DNA cutter (ARCUT) was recently prepared from Ce(IV)/EDTA complex and a pair of pseudo-complementary peptide nucleic acids. This cutter has freely tunable scission-site and site specificity. In this article, homologous recombination (HR) in human cells was promoted by cutting a substrate DNA with ARCUT, and the efficiency of this bioprocess was optimized by various chemical and biological approaches. Of two kinds of terminal structure formed by ARCUT, 3'-overhang termini provided by 1.7-fold higher efficiency than 5'-overhang termini. A longer homology length (e.g. 698 bp) was about 2-fold more favorable than shorter one (e.g. 100 bp). When the cell cycle was synchronized to G2/M phase with nocodazole, the HR was promoted by about 2-fold. Repression of the NHEJ-relevant proteins Ku70 and Ku80 by siRNA increased the efficiency by 2- to 3-fold. It was indicated that appropriate combination of all these chemical and biological approaches should be very effective to promote ARCUT-mediated HR in human cells.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2012-04-24
    Description: We describe a novel cloning method termed SLiCE (Seamless L i gation Cloning Extract) that utilizes easy to generate bacterial cell extracts to assemble multiple DNA fragments into recombinant DNA molecules in a single in vitro recombination reaction. SLiCE overcomes the sequence limitations of traditional cloning methods, facilitates seamless cloning by recombining short end homologies (≥15 bp) with or without flanking heterologous sequences and provides an effective strategy for directional subcloning of DNA fragments from Bacteria Artificial Chromosomes (BACs) or other sources. SLiCE is highly cost effective as a number of standard laboratory bacterial strains can serve as sources for SLiCE extract. In addition, the cloning efficiencies and capabilities of these strains can be greatly improved by simple genetic modifications. As an example, we modified the DH10B Escherichia coli strain to express an optimized prophage Red recombination system. This strain, termed PPY, facilitates SLiCE with very high efficiencies and demonstrates the versatility of the method.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2012-04-24
    Description: Targeted gene addition to mammalian genomes is central to biotechnology, basic research and gene therapy. For example, gene targeting to the ROSA26 locus by homologous recombination in embryonic stem cells is commonly used for mouse transgenesis to achieve ubiquitous and persistent transgene expression. However, conventional methods are not readily adaptable to gene targeting in other cell types. The emerging zinc finger nuclease (ZFN) technology facilitates gene targeting in diverse species and cell types, but an optimal strategy for engineering highly active ZFNs is still unclear. We used a modular assembly approach to build ZFNs that target the ROSA26 locus. ZFN activity was dependent on the number of modules in each zinc finger array. The ZFNs were active in a variety of cell types in a time- and dose-dependent manner. The ZFNs directed gene addition to the ROSA26 locus, which enhanced the level of sustained gene expression, the uniformity of gene expression within clonal cell populations and the reproducibility of gene expression between clones. These ZFNs are a promising resource for cell engineering, mouse transgenesis and pre-clinical gene therapy studies. Furthermore, this characterization of the modular assembly method provides general insights into the implementation of the ZFN technology.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2012-05-13
    Description: A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2012-05-23
    Description: The activation of cryptic 5' splice sites (5' SSs) is often related to human hereditary diseases. The DNA-based mutation screening strategies are commonly used to recognize the cryptic 5' SSs, because features of the local DNA sequence can influence the choice of cryptic 5' SSs. To improve the identification of the cryptic 5' SSs, we developed a structure-based method, named SPO (structure profiles and odds measure), which combines two parameters, the structural feature derived from hydroxyl radical cleavage pattern and odds measure, to assess the likelihood of a cryptic 5' SS activation in competing with its paired authentic 5' SS. Compared to the current tools for identifying activated cryptic 5' SSs, the SPO algorithm achieves higher prediction accuracy than the other methods, including MaxEnt, MDD, Markov model, weight matrix model, Shapiro and Senapathy matrix, R i and G . In addition, the predicted SPO scores from the SPO algorithm exhibited a greater degree of correlation with the strength of cryptic 5' SS activation than that measured from the other seven methods. In conclusion, the SPO algorithm provides an optimal identification of cryptic 5' SSs, can be applied in designing mutagenesis experiments for various splicing events and may be helpful to investigate the relationship between structural variants and human hereditary diseases.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2012-02-28
    Description: Synthetic scaffolds that permit spatial and temporal organization of enzymes in living cells are a promising post-translational strategy for controlling the flow of information in both metabolic and signaling pathways. Here, we describe the use of plasmid DNA as a stable, robust and configurable scaffold for arranging biosynthetic enzymes in the cytoplasm of Escherichia coli . This involved conversion of individual enzymes into custom DNA-binding proteins by genetic fusion to zinc-finger domains that specifically bind unique DNA sequences. When expressed in cells that carried a rationally designed DNA scaffold comprising corresponding zinc finger binding sites, the titers of diverse metabolic products, including resveratrol, 1,2-propanediol and mevalonate were increased as a function of the scaffold architecture. These results highlight the utility of DNA scaffolds for assembling biosynthetic enzymes into functional metabolic structures. Beyond metabolism, we anticipate that DNA scaffolds may be useful in sequestering different types of enzymes for specifying the output of biological signaling pathways or for coordinating other assembly-line processes such as protein folding, degradation and post-translational modifications.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2012-03-29
    Description: We demonstrate a system for cloning and modifying the chloroplast genome from the green alga, Chlamydomonas reinhardtii . Through extensive use of sequence stabilization strategies, the ex vivo genome is assembled in yeast from a collection of overlapping fragments. The assembled genome is then moved into bacteria for large-scale preparations and transformed into C. reinhardtii cells. This system also allows for the generation of simultaneous, systematic and complex genetic modifications at multiple loci in vivo. We use this system to substitute genes encoding core subunits of the photosynthetic apparatus with orthologs from a related alga, Scenedesmus obliquus . Once transformed into algae, the substituted genome recombines with the endogenous genome, resulting in a hybrid plastome comprising modifications in disparate loci. The in vivo function of the genomes described herein demonstrates that simultaneous engineering of multiple sites within the chloroplast genome is now possible. This work represents the first steps toward a novel approach for creating genetic diversity in any or all regions of a chloroplast genome.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2012-02-17
    Description: The increasing interest in genetic manipulation of bacterial host metabolic pathways for protein or small molecule production has led to a need to add new genes to a chromosome quickly and easily without leaving behind a selectable marker. The present report describes a vector and four-day procedure that enable site-specific chromosomal insertion of cloned genes in a context insulated from external transcription, usable once in a construction series. The use of rhamnose-inducible transcription from rhaBp allows regulation of the inserted genes independently of the commonly used IPTG and arabinose strategies. Using lacZ as a reporter, we first show that expression from the rhamnose promoter is tightly regulatable, exhibiting very low leakage of background expression compared with background, and moderate rhamnose-induced expression compared with IPTG-induced expression from lacp . Second, the expression of a DNA methyltransferase was used to show that rhamnose regulation yielded on-off expression of this enzyme, such that a resident high-copy plasmid was either fully sensitive or fully resistant to isoschizomer restriction enzyme cleavage. In both cases, growth medium manipulation allows intermediate levels of expression. The vehicle can also be adapted as an ORF-cloning vector.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2012-02-17
    Description: The development of economical and high-throughput gene synthesis technology has been hampered by the high occurrence of errors in the synthesized products, which requires expensive labor and time to correct. Here, we describe an error correction reaction (ECR), which employs Surveyor, a mismatch-specific DNA endonuclease, to remove errors from synthetic genes. In ECR reactions, errors are revealed as mismatches by re-annealing of the synthetic gene products. Mismatches are recognized and excised by a combination of mismatch-specific endonuclease and 3'-〉5' exonuclease activities in the reaction mixture. Finally, overlap extension polymerase chain reaction (OE-PCR) re-assembles the resulting fragments into intact genes. The process can be iterated for increased fidelity. With two iterations, we were able to reduce errors in synthetic genes by 〉16-fold, yielding a final error rate of ~1 in 8700 bp.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-10-10
    Description: The Joint BioEnergy Institute Inventory of Composable Elements (JBEI-ICEs) is an open source registry platform for managing information about biological parts. It is capable of recording information about ‘legacy’ parts, such as plasmids, microbial host strains and Arabidopsis seeds, as well as DNA parts in various assembly standards. ICE is built on the idea of a web of registries and thus provides strong support for distributed interconnected use. The information deposited in an ICE installation instance is accessible both via a web browser and through the web application programming interfaces, which allows automated access to parts via third-party programs. JBEI-ICE includes several useful web browser-based graphical applications for sequence annotation, manipulation and analysis that are also open source. As with open source software, users are encouraged to install, use and customize JBEI-ICE and its components for their particular purposes. As a web application programming interface, ICE provides well-developed parts storage functionality for other synthetic biology software projects. A public instance is available at public-registry.jbei.org, where users can try out features, upload parts or simply use it for their projects. The ICE software suite is available via Google Code, a hosting site for community-driven open source projects.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2012-10-10
    Description: A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named ‘customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER)’ for rapid tuning of gene expression in a heterologous pathway under distinct metabolic backgrounds. Specifically, a library of mutant pathways is created by de novo assembly of promoter mutants of varying strengths for each pathway gene in a target organism followed by high-throughput screening/selection. To demonstrate this approach, a single round of COMPACTER was used to generate both a xylose utilizing pathway with near-highest efficiency and a cellobiose utilizing pathway with highest efficiency that were ever reported in literature for both laboratory and industrial yeast strains. Interestingly, these engineered xylose and cellobiose utilizing pathways were all host-specific. Therefore, COMPACTER represents a powerful approach to tailor-make metabolic pathways for different strain backgrounds, which is difficult if not impossible to achieve by existing pathway engineering methods.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-10-10
    Description: We developed a highly scalable ‘shotgun’ DNA synthesis technology by utilizing microchip oligonucleotides, shotgun assembly and next-generation sequencing technology. A pool of microchip oligonucleotides targeting a penicillin biosynthetic gene cluster were assembled into numerous random fragments, and tagged with 20 bp degenerate barcode primer pairs. An optimal set of error-free fragments were identified by high-throughput DNA sequencing, selectively amplified using the barcode sequences, and successfully assembled into the target gene cluster.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-12-14
    Description: Multivalent molecular interactions can be exploited to dramatically enhance the performance of an affinity reagent. The enhancement in affinity and specificity achieved with a multivalent construct depends critically on the effectiveness of the scaffold that joins the ligands, as this determines their positions and orientations with respect to the target molecule. Currently, no generalizable design rules exist for construction of an optimal multivalent ligand for targets with known structures, and the design challenge remains an insurmountable obstacle for the large number of proteins whose structures are not known. As an alternative to such design-based strategies, we report here a directed evolution-based method for generating optimal bivalent aptamers. To demonstrate this approach, we fused two thrombin aptamers with a randomized DNA sequence and used a microfluidic in vitro selection strategy to isolate scaffolds with exceptionally high affinities. Within five rounds of selection, we generated a bivalent aptamer that binds thrombin with an apparent dissociation constant (K d ) 〈10 pM, representing a ~200-fold improvement in binding affinity over the monomeric aptamers and a ~15-fold improvement over the best designed bivalent construct. The process described here can be used to produce high-affinity multivalent aptamers and could potentially be adapted to other classes of biomolecules.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2012-08-08
    Description: Cy3B is an extremely bright and stable fluorescent dye, which is only available for coupling to nucleic acids post-synthetically. This severely limits its use in the fields of genomics, biology and nanotechnology. We have optimized the synthesis of Cy3B, and for the first time produced a diverse range of Cy3B monomers for use in solid-phase oligonucleotide synthesis. This molecular toolkit includes phosphoramidite monomers with Cy3B linked to deoxyribose, to the 5-position of thymine, and to a hexynyl linker, in addition to an oligonucleotide synthesis resin in which Cy3B is linked to deoxyribose. These monomers have been used to incorporate single and multiple Cy3B units into oligonucleotides internally and at both termini. Cy3B Taqman probes, Scorpions and HyBeacons have been synthesized and used successfully in mutation detection, and a dual Cy3B Molecular Beacon was synthesized and found to be superior to the corresponding Cy3B/DABCYL Beacon. Attachment of Cy3, Cy3B and Cy5 to the 5-position of thymidine by an ethynyl linker enabled the synthesis of an oligonucleotide FRET system. The rigid linker between the dye and nucleobase minimizes dye–dye and dye–DNA interactions and reduces fluorescence quenching. These reagents open up new future applications of Cy3B, including more sensitive single-molecule and cell-imaging studies.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-08-08
    Description: Understanding the numerous functions that RNAs play in living cells depends critically on knowledge of their three-dimensional structure. Due to the difficulties in experimentally assessing structures of large RNAs, there is currently great demand for new high-resolution structure prediction methods. We present the novel method for the fully automated prediction of RNA 3D structures from a user-defined secondary structure. The concept is founded on the machine translation system. The translation engine operates on the RNA FRABASE database tailored to the dictionary relating the RNA secondary structure and tertiary structure elements. The translation algorithm is very fast. Initial 3D structure is composed in a range of seconds on a single processor. The method assures the prediction of large RNA 3D structures of high quality. Our approach needs neither structural templates nor RNA sequence alignment, required for comparative methods. This enables the building of unresolved yet native and artificial RNA structures. The method is implemented in a publicly available, user-friendly server RNAComposer. It works in an interactive mode and a batch mode. The batch mode is designed for large-scale modelling and accepts atomic distance restraints. Presently, the server is set to build RNA structures of up to 500 residues.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2012-09-27
    Description: Programmed –1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structure, a stem–loop or RNA pseudoknot. Antisense oligonucleotides annealed appropriately 3' of a slippery sequence have also shown activity in frameshifting, at least in vitro . Here we examined frameshifting at the U 6 A slippery sequence of the HIV gag/pol signal and found high levels of both –1 and –2 frameshifting with stem–loop, pseudoknot or antisense oligonucleotide stimulators. By examining –1 and –2 frameshifting outcomes on mRNAs with varying slippery sequence-stimulatory RNA spacing distances, we found that –2 frameshifting was optimal at a spacer length 1–2 nucleotides shorter than that optimal for –1 frameshifting with all stimulatory RNAs tested. We propose that the shorter spacer increases the tension on the mRNA such that when the tRNA detaches, it more readily enters the –2 frame on the U 6 A heptamer. We propose that mRNA tension is central to frameshifting, whether promoted by stem–loop, pseudoknot or antisense oligonucleotide stimulator.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2012-10-24
    Description: Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped 〉2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2012-11-04
    Description: Recent advances have demonstrated the use of RNA-based control devices to program sophisticated cellular functions; however, the efficiency with which these devices can be quantitatively tailored has limited their broader implementation in cellular networks. Here, we developed a high-efficiency, high-throughput and quantitative two-color fluorescence-activated cell sorting-based screening strategy to support the rapid generation of ribozyme-based control devices with user-specified regulatory activities. The high-efficiency of this screening strategy enabled the isolation of a single functional sequence from a library of over 10 6 variants within two sorting cycles. We demonstrated the versatility of our approach by screening large libraries generated from randomizing individual components within the ribozyme device platform to efficiently isolate new device sequences that exhibit increased in vitro cleavage rates up to 10.5-fold and increased in vivo activation ratios up to 2-fold. We also identified a titratable window within which in vitro cleavage rates and in vivo gene-regulatory activities are correlated, supporting the importance of optimizing RNA device activity directly in the cellular environment. Our two-color fluorescence-activated cell sorting-based screen provides a generalizable strategy for quantitatively tailoring genetic control elements for broader integration within biological networks.
    Keywords: Synthetic Biology and Assembly Cloning
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2012-11-04
    Description: The development of algorithms for designing artificial RNA sequences that fold into specific secondary structures has many potential biomedical and synthetic biology applications. To date, this problem remains computationally difficult, and current strategies to address it resort to heuristics and stochastic search techniques. The most popular methods consist of two steps: First a random seed sequence is generated; next, this seed is progressively modified (i.e. mutated) to adopt the desired folding properties. Although computationally inexpensive, this approach raises several questions such as (i) the influence of the seed; and (ii) the efficiency of single-path directed searches that may be affected by energy barriers in the mutational landscape. In this article, we present RNA-ensign , a novel paradigm for RNA design. Instead of taking a progressive adaptive walk driven by local search criteria, we use an efficient global sampling algorithm to examine large regions of the mutational landscape under structural and thermodynamical constraints until a solution is found. When considering the influence of the seeds and the target secondary structures, our results show that, compared to single-path directed searches, our approach is more robust, succeeds more often and generates more thermodynamically stable sequences. An ensemble approach to RNA design is thus well worth pursuing as a complement to existing approaches. RNA-ensign is available at http://csb.cs.mcgill.ca/RNAensign .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2012-11-25
    Description: Identifying cancer driver genes and pathways among all somatic mutations detected in a cohort of tumors is a key challenge in cancer genomics. Traditionally, this is done by prioritizing genes according to the recurrence of alterations that they bear. However, this approach has some known limitations, such as the difficulty to correctly estimate the background mutation rate, and the fact that it cannot identify lowly recurrently mutated driver genes. Here we present a novel approach, Oncodrive-fm, to detect candidate cancer drivers which does not rely on recurrence. First, we hypothesized that any bias toward the accumulation of variants with high functional impact observed in a gene or group of genes may be an indication of positive selection and can thus be used to detect candidate driver genes or gene modules. Next, we developed a method to measure this bias (FM bias) and applied it to three datasets of tumor somatic variants. As a proof of concept of our hypothesis we show that most of the highly recurrent and well-known cancer genes exhibit a clear FM bias. Moreover, this novel approach avoids some known limitations of recurrence-based approaches, and can successfully identify lowly recurrent candidate cancer drivers.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...