ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring  (3)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
  • Copernicus Publications  (2)
  • Copernicus  (1)
  • Nature Publishing Group
  • 2010-2014  (3)
  • 1985-1989
Collection
Keywords
Years
  • 2010-2014  (3)
  • 1985-1989
Year
  • 1
    Publication Date: 2017-04-04
    Description: A new tsunami detector prototype designed to operate in tsunami generation areas has been tested offshore SW Iberia, in the Gulf of Cadiz. The prototype, hosted on board of GEOSTAR has been deployed, at to 3200 meters depth, in August 2007 and recovered one year later by R/V Urania. After refurbishment and a partial upgrade, the tsunameter has been re-deployed in the same location on November 2009 by R/V Sarmiento de Gamboa.We report samples of the data collected by the pressure sensors and the critical analysis of the achievements and problems faced during these test periods.
    Description: Published
    Description: Vienna
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: open
    Keywords: Tsunami warning ; Gulf of Cadiz ; 03. Hydrosphere::03.02. Hydrology::03.02.99. General or miscellaneous ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The new stand-alone tsunami detector prototype designed to operate in tsunami generation areas, already tested in the Gulf of Cadiz (SW Iberia) on board of GEOSTAR abyssal station, has been re-designed to be hosted on the cabled SN1 abyssal station. A new control software has been implemented to manage, in real time, from the land-based control room the basic component of the tsunameter. The tsunami detection software which perform the real time analysis of the parent tsunami signals, differently form the Gulf of Cadiz stand-alone prototype, runs on a land-based PC. Moreover, the cabled tsunameter is equipped with a new low-frequency hydrophone to detect the hydro-acoustic noise and signals that may be related to tsunami generation.
    Description: Published
    Description: Vienna
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: open
    Keywords: Tsunami warning ; Gulf of Cadiz ; 03. Hydrosphere::03.02. Hydrology::03.02.99. General or miscellaneous ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Etna volcano, Italy, hosts one of the major groundwater systems of the island of Sicily. Waters circulate within highly permeable fractured, mainly hawaiitic, volcanic rocks. Aquifers are limited downwards by the underlying impermeable sedimentary terrains. Thickness of the volcanic rocks generally does not exceed some 300 m, preventing the waters to reach great depths. This is faced by short travel times (years to tens of years) and low thermalisation of the Etnean groundwaters. Measured temperatures are, in fact, generally lower than 25 °C. But the huge annual meteoric recharge (about 0.97 kmˆ3) with a high actual infiltration coefficient (0.75) implies a great underground circulation. During their travel from the summit area to the periphery of the volcano, waters acquire magmatic heat together with volcanic gases and solutes through water-rock interaction processes. In the last 20 years the Etnean aquifers has been extensively studied. Their waters were analysed for dissolved major, minor and trace element, O, H, C, S, B, Sr and He isotopes, and dissolved gas composition. These data have been published in several articles. Here, after a summary of the obtained results, the estimation of the magmatic heat flux through the aquifer will be discussed. To calculate heat uptake during subsurface circulation, for each sampling point (spring, well or drainage gallery) the following data have been considered: flow rate, water temperature, and oxygen isotopic composition. The latter was used to calculate the mean recharge altitude through the measured local isotopic lapse rate. Mean recharge temperatures, weighted for rain amount throughout the year, were obtained from the local weather station network. Calculations were made for a representative number of sampling points (216) including all major issues and corresponding to a total water flow of about 0.315 kmˆ3/a, which is 40% of the effective meteoric recharge. Results gave a total energy output of about 140 MW/a the half of which is ascribable to only 13 sampling points. These correspond to the highest flow drainage galleries with fluxes ranging from 50 to 1000 l/s and wells with pumping rates from 70 to 250 l/s. Geographical distribution indicates that, like magmatic gas leakage, heat flow is influenced by structural features of the volcanic edifice. The major heat discharge through groundwater are all tightly connected either to the major regional tectonic systems or to the major volcanic rift zones along which the most important flank eruptions take place. But rift zones are much more important for heat upraise due to the frequent dikes injection than for gas escape because generally when dikes have been emplaced the structure is no more permeable to gases because it becomes sealed by the cooling magma.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: groundwaters ; volcanic surveillance ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...