ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
  • Wiley-Blackwell  (3)
  • American Chemical Society (ACS)
  • Nature Publishing Group
  • 2010-2014  (4)
  • 1985-1989
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Improving lava flow hazard assessment is one of the most important and challenging fields of volcanology, and has an immediate and practical impact on society. Here, we present a methodology for the quantitative assessment of lava flow hazards based on a combination of field data, numerical simulations and probability analyses. With the extensive data available on historic eruptions of Mt. Etna, going back over 2000 years, it has been possible to construct two hazard maps, one for flank and the other for summit eruptions, allowing a quantitative analysis of the most likely future courses of lava flows. The effective use of hazard maps of Etna may help in minimizing the damage from volcanic eruptions through correct land use in densely urbanized area with a population of almost one million people. Although this study was conducted on Mt. Etna, the approach used is designed to be applicable to other volcanic areas.
    Description: This work was developed within the framework of TecnoLab, the Laboratory for Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 3493
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow hazard ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-22
    Description: The building materials of the Theatre of Marcellus, 44–11 BCE, reflect Roman builders’ careful selections of tuff and travertine for dimension stone and volcanic aggregates for pozzolanic concretes. The vitric–lithic–crystal Tufo Lionato tuff dimension stone contains a high proportion of lava lithic fragments, which increase its compressive strength and decrease water sorption, enhancing durability. Sophisticated installations of travertine dimension stone reinforce the tuff masonry, which is integrated with durable concrete walls and barrel vaults. The pozzolanic mortars of the concretes contain harenae fossiciae mainly from the intermediate alteration facies of the mid-Pleistocene, scoriaceous Pozzolane Rosse pyroclastic flow. They have pervasive interpenetrating pozzolanic cements, including strätlingite, similar to highquality, imperial era mortars. Concrete walls are faced with refined Tufo Lionato opus reticulatum and tufelli, and opus testaceum of fired, greyish-yellow brick. The exploratory concrete masonry, which includes some of the earliest examples of brick facings and strätlingite cements in Rome, and the integration of these materials in complex architectural elements and internal spaces, reflect the highly skilled workmanship, rigorous work-site management and technical supervision of Roman builders trained in republican era methods and materials.
    Description: Published
    Description: 728–742
    Description: JCR Journal
    Description: restricted
    Keywords: VOLCANIC TUFF MASONRY ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: Campi Flegrei collapse caldera (Italy) is a high-risk volcanic area located close to Naples and includes part of the densely populated city. This area is characterised by large up and down ground displacements. The last large uplift episode caused 3.5 m of cumulative vertical displacement at the centre of the town of Pozzuoli, during the period 1969–1984. Up and down ground movements in this area often occur without intercurring eruptions and are similar to what is observed at other calderas worldwide. Here, however, they appear more evident and amplified. Understanding the mechanism of such movements is crucial for hazard assessment and eruption forecast, mainly due to this densely populated area. This paper presents a detailed model for ground displacements due to deep fluid injection in shallower layers. Such a model explains in a natural way the occurrence of uplift and subsidence without eruptions. We show that it is possible to fit observed ground deformation in this area with a thermofluid dynamical model. The model obtained is also consistent with other observations like microgravity changes, changes in CO2 flux, etc. Here, we suggest that significant uplift and subsidence at calderas can be due to effects of deep fluid injections other than magma. At Campi Flegrei, however, a partial magmatic contribution at the origin of the observed episodes cannot be excluded.
    Description: Published
    Description: 833–847
    Description: JCR Journal
    Description: restricted
    Keywords: Numerical approximations and analysis; Hydrothermal systems; Explosive volcanism; Calderas ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-15
    Description: Some of the most structurally innovative concrete vaults built in imperial Rome employed lightweight volcanic rocks to reduce the lateral thrust on the supporting walls, the most famous being the Pantheon. Roman concrete (opus caementicium) was made up of mortar binding together pieces of large aggregate (caementa) usually ranging from 10 to 20 cm long, which were hand laid in the mortar (as opposed to being poured as is typical in modern concrete), so that it resembles mortared rubble. A key aspect of the development of large-scale concrete vaulting was the ability to regulate the weight of the ingredients in order to reduce the weight of the vaults and to control the forces within the structure. The volcanic environment along the west coast of Italy provided numerous stones of different weights and physical properties from which the builders could choose (Fig. 1), including pumice and scoria, which were the most common choices for the lightweight caementa of the most innovative vaulted structures. Because these materials were produced by many of the Italian volcanoes, our goal was to establish the provenance of those used in vaults in Rome in order to understand better the supply network. We first used thin sections to narrow the potential sources and then we submitted selected samples to X-ray fluorescence
    Description: Published
    Description: 707-727
    Description: JCR Journal
    Description: restricted
    Keywords: concrete vault ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...