ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous  (2)
  • EGU General Assembly  (1)
  • Nature Publishing Group
  • 2010-2014  (2)
  • 1985-1989
  • 1940-1944
Collection
Years
  • 2010-2014  (2)
  • 1985-1989
  • 1940-1944
Year
  • 1
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Implementation of crustal structure challenges accuracy and efficiency of practical numerical solutions of the seismic wave equation. Extremely varying thickness of sedimentary layers and depth of Moho discontinuity create the need for finding viable compromises between speed and precision. We present a study of the influence of different numerical representations of crustal structure on synthetic seismograms. We focus our attention on the European continental scale and consider realistic models for the crust based on a new, comprehensive compilation of currently available information from diverse sources, ranging from seismic prospection to receiver function studies. We investigate different renditions of the Earth structure comparing two approaches: (i) computational meshes honoring the (laterally-varying) geometry of interfaces for a layered crust, and (ii) meshes smoothing out discontinuities of the crustal model within computational elements. The second approach results in computationally more efficient meshes, at the expense of some accuracy in the delineation of the structure, that is however known with some approximation. We compare seismograms, computed using different model discretization accuracies along 2D cross sections, to reference solutions derived from the most accurate structural representation. For the required seismic wave propagation simulations we use the Discontinuous Galerkin Finite Element Method (ADER-DG) providing high-order accuracy in space and time on unstructured meshes. With this approach strong and undulating discontinuities can be considered by the element interfaces and modifications of the geometrical properties can be carried out rapidly due to an external mesh generation process. We analyze the results of the different meshing strategies with respect to accuracy and computational effort. The analysis is based on time-frequency error measures of amplitude and phase misfits and aims at a clear definition of limits in the discretization approach of the crustal structure at the continental scale. Our results are crucial for the creation of computationally more demanding 3D tetrahedral meshes of the model of the European crust in order to understand how much structural detail has actually to be resolved to get sufficiently accurate synthetic data sets in a desired frequency band as this is essential to validate crustal models by comparisons to real seismic observations.
    Description: Published
    Description: Vienna, Austria
    Description: 3.1. Fisica dei terremoti
    Description: restricted
    Keywords: crust ; wave propagation ; ADER-DG ; misfit ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...