ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Marine mammal  (3)
  • Cell & Developmental Biology
  • General Chemistry
  • Limnology
  • Inter-Research  (4)
  • 2010-2014  (4)
  • 1990-1994
  • 1955-1959
  • 1945-1949
Collection
Keywords
Years
  • 2010-2014  (4)
  • 1990-1994
  • 1955-1959
  • 1945-1949
  • 2015-2019  (1)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2013. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Diseases of Aquatic Organisms 103 (2013): 229-264, doi:10.3354/dao02566.
    Description: Post-mortem examination of dead and live stranded beach-cast pinnipeds and cetaceans for determination of a cause of death provides valuable information for the management, mitigation and prosecution of unintentional and sometimes malicious human impacts, such as vessel collision, fishing gear entanglement and gunshot. Delayed discovery, inaccessibility, logistics, human safety concerns, and weather make these events challenging. Over the past 3 decades, in response to public concern and federal and state or provincial regulations mandating such investigations to inform mitigation efforts, there has been an increasing effort to objectively and systematically investigate these strandings from a diagnostic and forensic perspective. This Theme Section provides basic investigative methods, and case definitions for each of the more commonly recognized case presentations of human interactions in pinnipeds and cetaceans. Wild animals are often adversely affected by factors such as parasitism, anthropogenic contaminants, biotoxins, subclinical microbial infections and competing habitat uses, such as prey depletion and elevated background and episodic noise. Understanding the potential contribution of these subclinical factors in predisposing or contributing to a particular case of trauma of human origin is hampered, especially where putrefaction is significant and resources as well as expertise are limited. These case criteria descriptions attempt to acknowledge those confounding factors to enable an appreciation of the significance of the observed human-derived trauma in that broader context where possible.
    Description: Funded by NOAA Cooperative Agreement NA09OAR4320129.
    Keywords: Seal ; Dolphin ; Whale ; Marine mammal ; Entrapment ; Entanglement ; Vessel strike ; Gunshot
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2008. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 360 (2008): 179-187, doi:10.3354/meps07314.
    Description: Complex 3D biological-physical models are becoming widely used in marine and freshwater ecology. These models are highly valued synthesizing tools because they provide insights into complex dynamics that are difficult to understand using purely empirical methods or theoretical analytical models. Of particular interest has been the incorporation of concentration-based copepod population dynamics into 3D physical transport models. These physical models typically have large numbers of grid points and therefore require a simplified biological model. However, concentration-based copepod models have used a fine resolution age-stage structure to prevent artificially short generation times, known as numerical ‘diffusion.’ This increased resolution has precluded use of age-stage structured copepod models in 3D physical models due to computational constraints. In this paper, we describe a new method, which tracks the mean age of each life stage instead of using age classes within each stage. We then compare this model to previous age-stage structured models. A probability model is developed with the molting rate derived from the mean age of the population and the probability density function (PDF) of molting. The effects of temperature and mortality on copepod population dynamics are also discussed. The mean-age method effectively removes the numerical diffusion problem and reproduces observed median development times (MDTs) without the need for a high-resolution age-stage structure. Thus, it is well-suited for finding solutions of concentration-based zooplankton models in complex biological-physical models.
    Description: This work was supported by US GLOBEC NOAA grant NA17RJ1223.
    Description: 2013-05-22
    Keywords: Plankton ; Copepods ; Modeling ; Marine ecology ; Oceanography ; Limnology ; Methodology ; Mean age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2009. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 395 (2009): 55-73, doi:10.3354/meps08255.
    Description: Many marine animals use sound passively or actively for communication, foraging, predator avoidance, navigation, and to sense their environment. The advent of acoustic recording tags has allowed biologists to get the on-animal perspective of the sonic environment and, in combination with movement sensors, to relate sounds to the activities of the tagged animal. These powerful tools have led to a wide range of insights into the behaviour of marine animals and have opened new opportunities for studying the ways they interact with their environment. Acoustic tags demand new analysis methods and careful experimental design to optimize the consistency between research objectives and the realistic performance of the tags. Technical details to consider are the suitability of the tag attachment to a given species, the accuracy of the tag sensors, and the recording and attachment duration of the tag. Here we consider the achievements, potential, and limitations of acoustic recording tags in studying the behaviour, habitat use and sensory ecology of marine mammals, the taxon to which this technology has been most often applied. We examine the application of acoustic tags to studies of vocal behaviour, foraging ecology, acoustic tracking, and the effects of noise to assess both the breadth of applications and the specific issues that arise in each.
    Description: Funding for the review came from the National Oceanographic Partnership Program. The DTAG work described here has been supported by the Mineral Management Service, Office of Naval Research, Strategic Environmental Research and Development Program, Navy N45, Packard Foundation and others.
    Keywords: Acoustics ; Tag ; Marine mammal ; Foraging ; Tracking ; Behaviour ; Effects of noise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 309 (2006): 279-295, doi:10.3354/meps309279.
    Description: The demand for renewable energy has led to construction of offshore wind farms with high-power turbines, and many more wind farms are being planned for the shallow waters of the world’s marine habitats. The growth of offshore wind farms has raised concerns about their impact on the marine environment. Marine mammals use sound for foraging, orientation and communication and are therefore possibly susceptible to negative effects of man-made noise generated from constructing and operating large offshore wind turbines. This paper reviews the existing literature and assesses zones of impact from different noise-generating activities in conjunction with wind farms on 4 representative shallow-water species of marine mammals. Construction involves many types of activities that can generate high sound pressure levels, and pile-driving seems to be the noisiest of all. Both the literature and modeling show that pile-driving and other activities that generate intense impulses during construction are likely to disrupt the behavior of marine mammals at ranges of many kilometers, and that these activities have the potential to induce hearing impairment at close range. The reported noise levels from operating wind turbines are low, and are unlikely to impair hearing in marine mammals. The impact zones for marine mammals from operating wind turbines depend on the low-frequency hearing-abilities of the species in question, on sound-propagation conditions, and on the presence of other noise sources such as shipping. The noise impact on marine mammals is more severe during the construction of wind farms than during their operation.
    Description: This study was funded by Massachusetts Technology Collaborative grant # OWEC-05-02. M.W. was funded by the Carlsberg Foundation. The work of K.L. was partially supported by the German Federal Agency for Nature Conservation through the German Ministry for the Environment.
    Keywords: Marine mammal ; Wind turbine ; Pile-driving ; Underwater noise ; Impact zones ; Masking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...