ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mt. Etna  (2)
  • Volcanic Tremor Data  (1)
  • EGU, Geophysical Research Abstracts  (1)
  • Elsevier, Amsterdam  (1)
  • American Institute of Physics (AIP)
  • 2010-2014  (2)
  • 1995-1999
  • 1
    Publication Date: 2017-04-04
    Description: Extensive geochemical surveys were carried out on the Western flank of Mt. Etna volcano for the determination of soil CO2 effluxes, in order to study the relationship between soil gas anomalies, faults and volcanic activity. The areas of Santa Maria di Licodia (SML) and W-Rift (WR) were selected, because of their importance within the volcano-tectonic framework of Etna. Two gas surveys were performed in each area in different periods (November 2005 and May 2006 in SML, September 2007 and June 2008 in WR), with 2140 measurements in total. In each survey, data were log-normally distributed and were statistically different from the other surveys, therefore their standard normal form was used to compare them. Log probability plots revealed five populations of data in each survey, due to varying degrees of mixing between biogenic and magmatic CO2, and indicated anomalous CO2 effluxes for values N36 g m−2 d−1. Magmatic output was 39.2 t d−1 in November 2005, 15.8 t d−1 in May 2006, 98.4 t d−1 in September 2007 and 234.1t d−1 in June 2008. Natural Neighbor interpolation of standardized data produced distribution maps that showed some clustering of anomalous values along directions possibly related to hidden faults compatible with volcanic or regional structural trends. Analysis of magmatic CO2 emissions in time suggested a possible influence from seasonal variations, but comparison with volcanic activity of Etna also indicated a volcanic influence accompanying the 2008–2009 flank eruption.
    Description: Published
    Description: 1-14
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; soil CO2 effluxes ; magmatic degassing ; statistical analysis ; volcano-tectonic structures ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Mt Etna is among the best monitored basaltic volcano worldwide. High-quality, multidisciplinary data set are continuously available for around-the-clock surveillance. Seismic data sets cover decades long local recordings, obtained during different regimes of eruptive activity, from Strombolian eruptions to lava fountains and lava flows. Earthquakes swarms have often heralded effusive activity. However, volcanic tremor – the persistently radiated signal by the volcano - has proved to be a key indicator of impending eruptive activity. Changes in the volcano feeder show up in the signature of tremor, its spectral characteristics and source location. We apply a recently developed software for the analysis of volcanic tremor, combining Kohonen Maps along with Cluster and Fuzzy Analysis, in order to identify transitions from pre-eruptive to eruptive activity. Throughout the analysis of the data flow, the software provides an unsupervised classification of the spectral characteristics (i.e., amplitude and frequency content) of the signal, which is interpreted in the context of a specific state of the volcano. We present an application on the eruptive events occurred during the 2007-2009 time period, encompassing 7 episodes of lava fountaining, periodic Strombolian activity at the summit craters, and a lava emission on the upper east flank of the volcano, which started on 13 May 2008 and ended on 6 July 2009. In this time span the source of volcanic tremor was always shallow (less than 3 km), i. e., within the volcano edifice. From the analysis we conclude that the upraise of magma to the surface was fast, taking several hours to a few minutes. We discuss the possible reasons of such variability in the light of the characteristics of the overall seismicity preceding the eruptions in the study period, taking into account field observations and rheology of the ascending magma as well.
    Description: Published
    Description: Vienna, Austria
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: open
    Keywords: Volcanic Tremor Data ; Unsupervised Classification ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...