ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mt. Etna  (5)
  • Volcanic Tremor Data
  • Springer Berlin Heidelberg  (2)
  • Copernicus  (1)
  • EGU, Geophysical Research Abstracts  (1)
  • Elsevier, Amsterdam  (1)
  • American Institute of Physics (AIP)
  • 2010-2014  (5)
  • 1995-1999
Collection
Years
Year
  • 1
    Publication Date: 2020-12-15
    Description: Stratigraphic and morphostructural analyses have been carried out in the Mt. Etna volcanic region (eastern Sicily) to investigate in detail the deformation events that have affected the sedimentary successions forming the substratum of the volcano. In the foredeep, Quaternary submarine sedimentation ended 600 ka ago when the whole area emerged in response to homogeneous regional uplift. The irregular distribution of a stratigraphic marker, recognized through the analysis of more than 250 borehole logs, suggests that local dynamics also affected the area. We identify both compressional tectonic dynamics and volcano-related tectonic activity, and discriminate among their associated deformations. In particular, we quantify the vertical deformation component of the compressional structures (thrusts and related folds) and recognize for the first time a vertical component of deformation whose pattern clearly indicates a doming process acting at Mt. Etna. The comparison between long-term and short-term rates suggests that the doming has acted consistently over space and time through the last 600 ka and provides clues to the source of uplift. This component, defined by a specific Quaternary sedimentary horizon, has been compared with vertical deformation obtained by analytical inversion of morphological substratum data, and localizes the source at a depth of ∼16 km, at the mantle-crust transition. This uplift may be the consequence of hydration occurring in the altered ocean-like crust.
    Description: Published
    Description: 816
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal structure ; Volcanotectonics ; Doming process ; Recent deformation ; Sicily ; Mt. Etna ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We report the results of 16 months of continuous measurements of soil CO2 flux at a fumarole field in the summit area of Mt. Etna. The patterns of soil CO2 emissions suggest two contrasting degassing regimes. During the period of observation, volcanic activity at the summit craters displayed striking extremes, ranging from passive to explosive degassing, which culminated in lava fountains. These changes in activity coincided with fluctuation between the two degassing patterns. Building on the findings of previous studies, we propose an interpretative framework that explains the observed correlation in terms of a modification of the dynamics of magma supply. We argue that periods of higher CO2 flux are associated with deep open system degassing conditions, whereas low-level CO2 flux signals closed system degassing and less efficient discharge of deeply exsolved gas. An important implication of our study is that, in relation to the two degassing regimes, two types of activity are expected at the summit craters. Thus, our measurements represent a valuable tool for the evaluation of the evolution of volcanic activity
    Description: Published
    Description: 846
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Magma supply dynamics ; Soil CO2 emissions ; Lava fountain ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Extensive geochemical surveys were carried out on the Western flank of Mt. Etna volcano for the determination of soil CO2 effluxes, in order to study the relationship between soil gas anomalies, faults and volcanic activity. The areas of Santa Maria di Licodia (SML) and W-Rift (WR) were selected, because of their importance within the volcano-tectonic framework of Etna. Two gas surveys were performed in each area in different periods (November 2005 and May 2006 in SML, September 2007 and June 2008 in WR), with 2140 measurements in total. In each survey, data were log-normally distributed and were statistically different from the other surveys, therefore their standard normal form was used to compare them. Log probability plots revealed five populations of data in each survey, due to varying degrees of mixing between biogenic and magmatic CO2, and indicated anomalous CO2 effluxes for values N36 g m−2 d−1. Magmatic output was 39.2 t d−1 in November 2005, 15.8 t d−1 in May 2006, 98.4 t d−1 in September 2007 and 234.1t d−1 in June 2008. Natural Neighbor interpolation of standardized data produced distribution maps that showed some clustering of anomalous values along directions possibly related to hidden faults compatible with volcanic or regional structural trends. Analysis of magmatic CO2 emissions in time suggested a possible influence from seasonal variations, but comparison with volcanic activity of Etna also indicated a volcanic influence accompanying the 2008–2009 flank eruption.
    Description: Published
    Description: 1-14
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; soil CO2 effluxes ; magmatic degassing ; statistical analysis ; volcano-tectonic structures ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Mt Etna is among the best monitored basaltic volcano worldwide. High-quality, multidisciplinary data set are continuously available for around-the-clock surveillance. Seismic data sets cover decades long local recordings, obtained during different regimes of eruptive activity, from Strombolian eruptions to lava fountains and lava flows. Earthquakes swarms have often heralded effusive activity. However, volcanic tremor – the persistently radiated signal by the volcano - has proved to be a key indicator of impending eruptive activity. Changes in the volcano feeder show up in the signature of tremor, its spectral characteristics and source location. We apply a recently developed software for the analysis of volcanic tremor, combining Kohonen Maps along with Cluster and Fuzzy Analysis, in order to identify transitions from pre-eruptive to eruptive activity. Throughout the analysis of the data flow, the software provides an unsupervised classification of the spectral characteristics (i.e., amplitude and frequency content) of the signal, which is interpreted in the context of a specific state of the volcano. We present an application on the eruptive events occurred during the 2007-2009 time period, encompassing 7 episodes of lava fountaining, periodic Strombolian activity at the summit craters, and a lava emission on the upper east flank of the volcano, which started on 13 May 2008 and ended on 6 July 2009. In this time span the source of volcanic tremor was always shallow (less than 3 km), i. e., within the volcano edifice. From the analysis we conclude that the upraise of magma to the surface was fast, taking several hours to a few minutes. We discuss the possible reasons of such variability in the light of the characteristics of the overall seismicity preceding the eruptions in the study period, taking into account field observations and rheology of the ascending magma as well.
    Description: Published
    Description: Vienna, Austria
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: open
    Keywords: Volcanic Tremor Data ; Unsupervised Classification ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...