ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mt. Etna
  • Volcanic Tremor Data
  • Springer  (3)
  • Copernicus  (1)
  • EGU, Geophysical Research Abstracts  (1)
  • Elsevier, Amsterdam  (1)
  • American Institute of Physics (AIP)
  • 2010-2014  (5)
  • 1995-1999  (1)
  • 1
    Publication Date: 2017-04-04
    Description: Using a lava flow emplacement model and a satellite-based land cover classification, we produce a map to allow assessment of the type and quantity of natural, agricultural and urban land cover at risk from lava flow invasion. The first step is to produce lava effusion rate contours, i.e., lines linking distances down a volcano’s flank that a lava flow will likely extend if fed at a given effusion rate from a predetermined vent zone. This involves first identifying a vent mask and then running a downhill flow path model from the edge of every pixel around the vent mask perimeter to the edge of the DEM. To do this, we run a stochastic model whereby the flow path is projected 1,000 times from every pixel around the vent mask perimeter with random noise being added to the DEM with each run so that a slightly different flow path is generated with each run. The FLOWGO lava flow model is then run down each path, at a series of effusion rates, to determine likely run-out distance for channel-fed flow extending down each path. These results are used to plot effusion rate contours. Finally, effusion rate contours are projected onto a land classification map (produced from an ASTER image of Etna) to assess the type and amount of each land cover class falling within each contour. The resulting maps are designed to provide a quick look-up capability to assess the type of land at risk from lava extending from any location at a range of likely effusion rates. For our first (2,000 m) vent zone case used for Etna, we find a total of area of ~680 km2 is at risk from flows fed at 40 m3 s−1, of which ~6 km2 is urban, ~150 km2 is agriculture and ~270 km2 is grass/woodland. The model can also be run for specific cases, where we find that Etna’s 1669 vent location, if active today, would likely inundate almost 11 km2 of urban land, as well as 15.6 km2 of agricultural land, including 9.5 km2 of olive groves and 5.2 km2 of vineyards and fruit/nut orchards.
    Description: Published
    Description: 1001-1027
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow ; Risk ; FLOWGO ; ASTER image ; Land classification ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-16
    Description: Active volcanoes characterized by open conduit conditions generate sonic and infrasonic signals, whose investigation provides useful information for both monitoring purposes and studying the dynamics of explosive processes. In this work, we discuss the automatic procedures implemented for a real-time application to the data acquired by a permanent network of five infrasound stations running at Mt. Etna volcano. The infrasound signals at Mt. Etna consist in amplitude transients, called infrasound events. The adopted procedure uses a multi-algorithm approach for event detection, counting, characterization and location. It is designed for an efficient and accurate processing of infrasound records provided by single-site and array stations. Moreover, the source mechanism of these events can be investigated off-line or in near real-time by using three different models: i) Strombolian bubble; ii) resonating conduit and iii) Helmholtz resonator. The infrasound waveforms allow us to choose the most suitable model, to get quantitative information about the source and to follow the time evolution of the source parameters.
    Description: Published
    Description: 1215–1231
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; monitoring system ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Extensive geochemical surveys were carried out on the Western flank of Mt. Etna volcano for the determination of soil CO2 effluxes, in order to study the relationship between soil gas anomalies, faults and volcanic activity. The areas of Santa Maria di Licodia (SML) and W-Rift (WR) were selected, because of their importance within the volcano-tectonic framework of Etna. Two gas surveys were performed in each area in different periods (November 2005 and May 2006 in SML, September 2007 and June 2008 in WR), with 2140 measurements in total. In each survey, data were log-normally distributed and were statistically different from the other surveys, therefore their standard normal form was used to compare them. Log probability plots revealed five populations of data in each survey, due to varying degrees of mixing between biogenic and magmatic CO2, and indicated anomalous CO2 effluxes for values N36 g m−2 d−1. Magmatic output was 39.2 t d−1 in November 2005, 15.8 t d−1 in May 2006, 98.4 t d−1 in September 2007 and 234.1t d−1 in June 2008. Natural Neighbor interpolation of standardized data produced distribution maps that showed some clustering of anomalous values along directions possibly related to hidden faults compatible with volcanic or regional structural trends. Analysis of magmatic CO2 emissions in time suggested a possible influence from seasonal variations, but comparison with volcanic activity of Etna also indicated a volcanic influence accompanying the 2008–2009 flank eruption.
    Description: Published
    Description: 1-14
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; soil CO2 effluxes ; magmatic degassing ; statistical analysis ; volcano-tectonic structures ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Mt Etna is among the best monitored basaltic volcano worldwide. High-quality, multidisciplinary data set are continuously available for around-the-clock surveillance. Seismic data sets cover decades long local recordings, obtained during different regimes of eruptive activity, from Strombolian eruptions to lava fountains and lava flows. Earthquakes swarms have often heralded effusive activity. However, volcanic tremor – the persistently radiated signal by the volcano - has proved to be a key indicator of impending eruptive activity. Changes in the volcano feeder show up in the signature of tremor, its spectral characteristics and source location. We apply a recently developed software for the analysis of volcanic tremor, combining Kohonen Maps along with Cluster and Fuzzy Analysis, in order to identify transitions from pre-eruptive to eruptive activity. Throughout the analysis of the data flow, the software provides an unsupervised classification of the spectral characteristics (i.e., amplitude and frequency content) of the signal, which is interpreted in the context of a specific state of the volcano. We present an application on the eruptive events occurred during the 2007-2009 time period, encompassing 7 episodes of lava fountaining, periodic Strombolian activity at the summit craters, and a lava emission on the upper east flank of the volcano, which started on 13 May 2008 and ended on 6 July 2009. In this time span the source of volcanic tremor was always shallow (less than 3 km), i. e., within the volcano edifice. From the analysis we conclude that the upraise of magma to the surface was fast, taking several hours to a few minutes. We discuss the possible reasons of such variability in the light of the characteristics of the overall seismicity preceding the eruptions in the study period, taking into account field observations and rheology of the ascending magma as well.
    Description: Published
    Description: Vienna, Austria
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: open
    Keywords: Volcanic Tremor Data ; Unsupervised Classification ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-157X
    Keywords: earthquake locations ; energy density ; hypocentral probability ; Mt. Etna ; volcanic structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We analysed earthquakes at Mt. Etna for the period 1983–1991 using a method that weights uncertainties in hypocentral location. Three-dimensional distributions of ‘hypocentral probability’ and ‘energy density’ were studied, and two first-order volcano-tectonic structures identified. The first, on the northern and western sides, is roughly NE–SW oriented, and strongly marks the northernmost limit of earthquake occurrences in the volcano region; the second, NNW–SSE trending, affects the south-eastern flank of the volcano, and is evidence for an almost aseismic uprise of magma along it. Both structures fit well with the geodynamic framework of eastern Sicily. On the contrary, there is no evidence for a main magma chamber, as postulated in the literature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...